Properties

Label 21.4.g.a.17.5
Level $21$
Weight $4$
Character 21.17
Analytic conductor $1.239$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 21.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.23904011012\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} - 29 x^{9} + 6 x^{8} - 49 x^{7} + 1564 x^{6} - 441 x^{5} + 486 x^{4} - 21141 x^{3} - 59049 x + 531441\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.5
Root \(-2.59957 + 1.49740i\) of defining polynomial
Character \(\chi\) \(=\) 21.17
Dual form 21.4.g.a.5.5

$q$-expansion

\(f(q)\) \(=\) \(q+(2.24076 - 1.29370i) q^{2} +(2.59358 + 4.50260i) q^{3} +(-0.652660 + 1.13044i) q^{4} +(-8.05907 - 13.9587i) q^{5} +(11.6366 + 6.73392i) q^{6} +(-5.67909 - 17.6280i) q^{7} +24.0767i q^{8} +(-13.5467 + 23.3556i) q^{9} +O(q^{10})\) \(q+(2.24076 - 1.29370i) q^{2} +(2.59358 + 4.50260i) q^{3} +(-0.652660 + 1.13044i) q^{4} +(-8.05907 - 13.9587i) q^{5} +(11.6366 + 6.73392i) q^{6} +(-5.67909 - 17.6280i) q^{7} +24.0767i q^{8} +(-13.5467 + 23.3556i) q^{9} +(-36.1169 - 20.8521i) q^{10} +(30.8296 + 17.7995i) q^{11} +(-6.78264 - 0.00678109i) q^{12} -7.40831i q^{13} +(-35.5309 - 32.1532i) q^{14} +(41.9486 - 72.4897i) q^{15} +(25.9268 + 44.9065i) q^{16} +(-14.4601 + 25.0457i) q^{17} +(-0.139688 + 69.8599i) q^{18} +(30.4580 - 17.5849i) q^{19} +21.0393 q^{20} +(64.6428 - 71.2903i) q^{21} +92.1090 q^{22} +(48.0017 - 27.7138i) q^{23} +(-108.407 + 62.4446i) q^{24} +(-67.3971 + 116.735i) q^{25} +(-9.58416 - 16.6003i) q^{26} +(-140.295 - 0.420792i) q^{27} +(23.6340 + 5.08525i) q^{28} -68.1510i q^{29} +(0.216652 - 216.701i) q^{30} +(-154.734 - 89.3356i) q^{31} +(-50.6165 - 29.2234i) q^{32} +(-0.184935 + 184.977i) q^{33} +74.8285i q^{34} +(-200.297 + 221.338i) q^{35} +(-17.5608 - 30.5571i) q^{36} +(116.838 + 202.370i) q^{37} +(45.4994 - 78.8072i) q^{38} +(33.3566 - 19.2140i) q^{39} +(336.079 - 194.035i) q^{40} +370.068 q^{41} +(52.6205 - 243.373i) q^{42} -187.068 q^{43} +(-40.2425 + 23.2340i) q^{44} +(435.189 + 0.870180i) q^{45} +(71.7068 - 124.200i) q^{46} +(-87.3726 - 151.334i) q^{47} +(-134.953 + 233.206i) q^{48} +(-278.496 + 200.222i) q^{49} +348.768i q^{50} +(-150.274 - 0.150240i) q^{51} +(8.37465 + 4.83511i) q^{52} +(-235.715 - 136.090i) q^{53} +(-314.913 + 180.558i) q^{54} -573.789i q^{55} +(424.424 - 136.733i) q^{56} +(158.173 + 91.5321i) q^{57} +(-88.1672 - 152.710i) q^{58} +(-48.4354 + 83.8926i) q^{59} +(54.5671 + 94.7315i) q^{60} +(-333.882 + 192.767i) q^{61} -462.295 q^{62} +(488.647 + 106.164i) q^{63} -566.055 q^{64} +(-103.411 + 59.7041i) q^{65} +(238.892 + 414.730i) q^{66} +(509.009 - 881.630i) q^{67} +(-18.8751 - 32.6926i) q^{68} +(249.280 + 144.254i) q^{69} +(-162.471 + 755.091i) q^{70} -125.333i q^{71} +(-562.326 - 326.160i) q^{72} +(195.346 + 112.783i) q^{73} +(523.613 + 302.308i) q^{74} +(-700.411 - 0.700251i) q^{75} +45.9079i q^{76} +(138.686 - 644.550i) q^{77} +(49.8870 - 86.2076i) q^{78} +(532.154 + 921.718i) q^{79} +(417.891 - 723.809i) q^{80} +(-361.972 - 632.785i) q^{81} +(829.234 - 478.758i) q^{82} -601.040 q^{83} +(38.3996 + 119.603i) q^{84} +466.140 q^{85} +(-419.175 + 242.011i) q^{86} +(306.856 - 176.755i) q^{87} +(-428.552 + 742.274i) q^{88} +(752.606 + 1303.55i) q^{89} +(976.280 - 561.055i) q^{90} +(-130.594 + 42.0725i) q^{91} +72.3506i q^{92} +(0.928190 - 928.402i) q^{93} +(-391.562 - 226.069i) q^{94} +(-490.926 - 283.436i) q^{95} +(0.303630 - 303.699i) q^{96} +327.463i q^{97} +(-365.014 + 808.942i) q^{98} +(-833.358 + 478.920i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} + 14 q^{4} - 56 q^{7} - 3 q^{9} + O(q^{10}) \) \( 12 q - 3 q^{3} + 14 q^{4} - 56 q^{7} - 3 q^{9} + 30 q^{10} - 192 q^{12} + 6 q^{15} + 134 q^{16} + 66 q^{18} + 300 q^{19} + 357 q^{21} - 268 q^{22} + 414 q^{24} - 42 q^{25} - 602 q^{28} - 822 q^{30} - 930 q^{31} - 855 q^{33} + 852 q^{36} + 764 q^{37} - 426 q^{39} + 2298 q^{40} + 966 q^{42} - 1012 q^{43} + 2367 q^{45} + 608 q^{46} - 336 q^{49} - 1341 q^{51} - 3000 q^{52} - 4158 q^{54} + 270 q^{57} + 2870 q^{58} - 918 q^{60} + 2358 q^{61} + 1071 q^{63} - 548 q^{64} + 2934 q^{66} + 792 q^{67} - 4242 q^{70} - 2712 q^{72} - 2904 q^{73} - 2418 q^{75} + 4296 q^{78} + 1674 q^{79} + 837 q^{81} + 5040 q^{82} + 3864 q^{84} + 348 q^{85} + 1638 q^{87} - 554 q^{88} - 1218 q^{91} - 1479 q^{93} - 1356 q^{94} - 4410 q^{96} - 3354 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).

\(n\) \(8\) \(10\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.24076 1.29370i 0.792229 0.457393i −0.0485179 0.998822i \(-0.515450\pi\)
0.840747 + 0.541429i \(0.182116\pi\)
\(3\) 2.59358 + 4.50260i 0.499134 + 0.866525i
\(4\) −0.652660 + 1.13044i −0.0815825 + 0.141305i
\(5\) −8.05907 13.9587i −0.720825 1.24851i −0.960670 0.277694i \(-0.910430\pi\)
0.239845 0.970811i \(-0.422903\pi\)
\(6\) 11.6366 + 6.73392i 0.791771 + 0.458185i
\(7\) −5.67909 17.6280i −0.306642 0.951825i
\(8\) 24.0767i 1.06405i
\(9\) −13.5467 + 23.3556i −0.501731 + 0.865024i
\(10\) −36.1169 20.8521i −1.14212 0.659401i
\(11\) 30.8296 + 17.7995i 0.845043 + 0.487886i 0.858975 0.512017i \(-0.171102\pi\)
−0.0139322 + 0.999903i \(0.504435\pi\)
\(12\) −6.78264 0.00678109i −0.163165 0.000163128i
\(13\) 7.40831i 0.158054i −0.996872 0.0790268i \(-0.974819\pi\)
0.996872 0.0790268i \(-0.0251813\pi\)
\(14\) −35.5309 32.1532i −0.678289 0.613807i
\(15\) 41.9486 72.4897i 0.722073 1.24778i
\(16\) 25.9268 + 44.9065i 0.405106 + 0.701664i
\(17\) −14.4601 + 25.0457i −0.206300 + 0.357322i −0.950546 0.310584i \(-0.899476\pi\)
0.744246 + 0.667905i \(0.232809\pi\)
\(18\) −0.139688 + 69.8599i −0.00182915 + 0.914785i
\(19\) 30.4580 17.5849i 0.367765 0.212329i −0.304716 0.952443i \(-0.598562\pi\)
0.672482 + 0.740114i \(0.265228\pi\)
\(20\) 21.0393 0.235227
\(21\) 64.6428 71.2903i 0.671725 0.740801i
\(22\) 92.1090 0.892623
\(23\) 48.0017 27.7138i 0.435175 0.251249i −0.266374 0.963870i \(-0.585825\pi\)
0.701549 + 0.712621i \(0.252492\pi\)
\(24\) −108.407 + 62.4446i −0.922024 + 0.531102i
\(25\) −67.3971 + 116.735i −0.539177 + 0.933881i
\(26\) −9.58416 16.6003i −0.0722927 0.125215i
\(27\) −140.295 0.420792i −0.999996 0.00299931i
\(28\) 23.6340 + 5.08525i 0.159514 + 0.0343222i
\(29\) 68.1510i 0.436390i −0.975905 0.218195i \(-0.929983\pi\)
0.975905 0.218195i \(-0.0700169\pi\)
\(30\) 0.216652 216.701i 0.00131850 1.31880i
\(31\) −154.734 89.3356i −0.896484 0.517585i −0.0204262 0.999791i \(-0.506502\pi\)
−0.876058 + 0.482206i \(0.839836\pi\)
\(32\) −50.6165 29.2234i −0.279619 0.161438i
\(33\) −0.184935 + 184.977i −0.000975549 + 0.975771i
\(34\) 74.8285i 0.377440i
\(35\) −200.297 + 221.338i −0.967323 + 1.06894i
\(36\) −17.5608 30.5571i −0.0812998 0.141468i
\(37\) 116.838 + 202.370i 0.519137 + 0.899172i 0.999753 + 0.0222405i \(0.00707996\pi\)
−0.480615 + 0.876931i \(0.659587\pi\)
\(38\) 45.4994 78.8072i 0.194236 0.336427i
\(39\) 33.3566 19.2140i 0.136957 0.0788899i
\(40\) 336.079 194.035i 1.32847 0.766992i
\(41\) 370.068 1.40963 0.704816 0.709390i \(-0.251030\pi\)
0.704816 + 0.709390i \(0.251030\pi\)
\(42\) 52.6205 243.373i 0.193322 0.894126i
\(43\) −187.068 −0.663432 −0.331716 0.943379i \(-0.607628\pi\)
−0.331716 + 0.943379i \(0.607628\pi\)
\(44\) −40.2425 + 23.2340i −0.137881 + 0.0796059i
\(45\) 435.189 + 0.870180i 1.44165 + 0.00288264i
\(46\) 71.7068 124.200i 0.229839 0.398093i
\(47\) −87.3726 151.334i −0.271162 0.469666i 0.697998 0.716100i \(-0.254075\pi\)
−0.969160 + 0.246434i \(0.920741\pi\)
\(48\) −134.953 + 233.206i −0.405807 + 0.701259i
\(49\) −278.496 + 200.222i −0.811942 + 0.583739i
\(50\) 348.768i 0.986464i
\(51\) −150.274 0.150240i −0.412599 0.000412505i
\(52\) 8.37465 + 4.83511i 0.0223338 + 0.0128944i
\(53\) −235.715 136.090i −0.610905 0.352706i 0.162415 0.986723i \(-0.448072\pi\)
−0.773319 + 0.634017i \(0.781405\pi\)
\(54\) −314.913 + 180.558i −0.793597 + 0.455015i
\(55\) 573.789i 1.40672i
\(56\) 424.424 136.733i 1.01279 0.326282i
\(57\) 158.173 + 91.5321i 0.367553 + 0.212697i
\(58\) −88.1672 152.710i −0.199602 0.345721i
\(59\) −48.4354 + 83.8926i −0.106877 + 0.185117i −0.914504 0.404578i \(-0.867419\pi\)
0.807626 + 0.589695i \(0.200752\pi\)
\(60\) 54.5671 + 94.7315i 0.117410 + 0.203830i
\(61\) −333.882 + 192.767i −0.700807 + 0.404611i −0.807648 0.589665i \(-0.799260\pi\)
0.106841 + 0.994276i \(0.465927\pi\)
\(62\) −462.295 −0.946960
\(63\) 488.647 + 106.164i 0.977203 + 0.212307i
\(64\) −566.055 −1.10558
\(65\) −103.411 + 59.7041i −0.197331 + 0.113929i
\(66\) 238.892 + 414.730i 0.445538 + 0.773480i
\(67\) 509.009 881.630i 0.928140 1.60759i 0.141708 0.989908i \(-0.454741\pi\)
0.786432 0.617677i \(-0.211926\pi\)
\(68\) −18.8751 32.6926i −0.0336609 0.0583023i
\(69\) 249.280 + 144.254i 0.434924 + 0.251684i
\(70\) −162.471 + 755.091i −0.277414 + 1.28929i
\(71\) 125.333i 0.209497i −0.994499 0.104749i \(-0.966596\pi\)
0.994499 0.104749i \(-0.0334038\pi\)
\(72\) −562.326 326.160i −0.920427 0.533866i
\(73\) 195.346 + 112.783i 0.313199 + 0.180825i 0.648357 0.761337i \(-0.275456\pi\)
−0.335158 + 0.942162i \(0.608790\pi\)
\(74\) 523.613 + 302.308i 0.822551 + 0.474900i
\(75\) −700.411 0.700251i −1.07835 0.00107811i
\(76\) 45.9079i 0.0692894i
\(77\) 138.686 644.550i 0.205256 0.953939i
\(78\) 49.8870 86.2076i 0.0724178 0.125142i
\(79\) 532.154 + 921.718i 0.757874 + 1.31268i 0.943933 + 0.330138i \(0.107095\pi\)
−0.186059 + 0.982539i \(0.559572\pi\)
\(80\) 417.891 723.809i 0.584021 1.01155i
\(81\) −361.972 632.785i −0.496533 0.868018i
\(82\) 829.234 478.758i 1.11675 0.644756i
\(83\) −601.040 −0.794852 −0.397426 0.917634i \(-0.630096\pi\)
−0.397426 + 0.917634i \(0.630096\pi\)
\(84\) 38.3996 + 119.603i 0.0498779 + 0.155354i
\(85\) 466.140 0.594824
\(86\) −419.175 + 242.011i −0.525590 + 0.303450i
\(87\) 306.856 176.755i 0.378143 0.217817i
\(88\) −428.552 + 742.274i −0.519134 + 0.899166i
\(89\) 752.606 + 1303.55i 0.896360 + 1.55254i 0.832112 + 0.554607i \(0.187131\pi\)
0.0642474 + 0.997934i \(0.479535\pi\)
\(90\) 976.280 561.055i 1.14343 0.657116i
\(91\) −130.594 + 42.0725i −0.150439 + 0.0484658i
\(92\) 72.3506i 0.0819900i
\(93\) 0.928190 928.402i 0.00103493 1.03517i
\(94\) −391.562 226.069i −0.429645 0.248055i
\(95\) −490.926 283.436i −0.530189 0.306105i
\(96\) 0.303630 303.699i 0.000322803 0.322876i
\(97\) 327.463i 0.342771i 0.985204 + 0.171386i \(0.0548244\pi\)
−0.985204 + 0.171386i \(0.945176\pi\)
\(98\) −365.014 + 808.942i −0.376245 + 0.833831i
\(99\) −833.358 + 478.920i −0.846017 + 0.486195i
\(100\) −87.9747 152.377i −0.0879747 0.152377i
\(101\) −547.845 + 948.895i −0.539729 + 0.934837i 0.459190 + 0.888338i \(0.348140\pi\)
−0.998918 + 0.0464990i \(0.985194\pi\)
\(102\) −336.922 + 194.073i −0.327062 + 0.188393i
\(103\) 179.848 103.835i 0.172048 0.0993318i −0.411503 0.911408i \(-0.634996\pi\)
0.583551 + 0.812076i \(0.301663\pi\)
\(104\) 178.367 0.168177
\(105\) −1516.08 327.797i −1.40909 0.304664i
\(106\) −704.242 −0.645302
\(107\) 1561.25 901.391i 1.41058 0.814399i 0.415138 0.909759i \(-0.363733\pi\)
0.995443 + 0.0953593i \(0.0304000\pi\)
\(108\) 92.0409 158.321i 0.0820059 0.141060i
\(109\) −141.825 + 245.647i −0.124627 + 0.215860i −0.921587 0.388172i \(-0.873107\pi\)
0.796960 + 0.604032i \(0.206440\pi\)
\(110\) −742.313 1285.72i −0.643425 1.11444i
\(111\) −608.160 + 1050.94i −0.520036 + 0.898652i
\(112\) 644.374 712.067i 0.543639 0.600750i
\(113\) 1037.39i 0.863627i −0.901963 0.431814i \(-0.857874\pi\)
0.901963 0.431814i \(-0.142126\pi\)
\(114\) 472.843 + 0.472735i 0.388472 + 0.000388383i
\(115\) −773.697 446.694i −0.627371 0.362213i
\(116\) 77.0406 + 44.4794i 0.0616641 + 0.0356018i
\(117\) 173.026 + 100.358i 0.136720 + 0.0793003i
\(118\) 250.644i 0.195540i
\(119\) 523.626 + 112.667i 0.403368 + 0.0867915i
\(120\) 1745.31 + 1009.98i 1.32770 + 0.768320i
\(121\) −31.8573 55.1785i −0.0239349 0.0414564i
\(122\) −498.767 + 863.890i −0.370133 + 0.641090i
\(123\) 959.799 + 1666.27i 0.703595 + 1.22148i
\(124\) 201.977 116.611i 0.146275 0.0844518i
\(125\) 157.864 0.112958
\(126\) 1232.29 394.278i 0.871276 0.278770i
\(127\) 1645.81 1.14994 0.574968 0.818176i \(-0.305015\pi\)
0.574968 + 0.818176i \(0.305015\pi\)
\(128\) −863.461 + 498.520i −0.596249 + 0.344245i
\(129\) −485.175 842.291i −0.331142 0.574881i
\(130\) −154.479 + 267.565i −0.104221 + 0.180516i
\(131\) 314.185 + 544.184i 0.209545 + 0.362943i 0.951571 0.307428i \(-0.0994683\pi\)
−0.742026 + 0.670371i \(0.766135\pi\)
\(132\) −208.985 120.936i −0.137802 0.0797437i
\(133\) −482.961 437.048i −0.314873 0.284939i
\(134\) 2634.03i 1.69810i
\(135\) 1124.78 + 1961.74i 0.717077 + 1.25066i
\(136\) −603.016 348.151i −0.380207 0.219513i
\(137\) 432.079 + 249.461i 0.269453 + 0.155569i 0.628639 0.777697i \(-0.283612\pi\)
−0.359186 + 0.933266i \(0.616946\pi\)
\(138\) 745.199 + 0.745029i 0.459678 + 0.000459573i
\(139\) 1216.65i 0.742410i −0.928551 0.371205i \(-0.878945\pi\)
0.928551 0.371205i \(-0.121055\pi\)
\(140\) −119.484 370.882i −0.0721303 0.223895i
\(141\) 454.788 785.900i 0.271631 0.469395i
\(142\) −162.144 280.841i −0.0958226 0.165970i
\(143\) 131.864 228.395i 0.0771121 0.133562i
\(144\) −1400.04 2.79945i −0.810211 0.00162005i
\(145\) −951.300 + 549.233i −0.544835 + 0.314561i
\(146\) 583.631 0.330833
\(147\) −1623.82 734.663i −0.911092 0.412204i
\(148\) −305.022 −0.169410
\(149\) −2010.18 + 1160.58i −1.10524 + 0.638111i −0.937592 0.347736i \(-0.886950\pi\)
−0.167648 + 0.985847i \(0.553617\pi\)
\(150\) −1570.36 + 904.555i −0.854795 + 0.492377i
\(151\) −488.726 + 846.497i −0.263390 + 0.456205i −0.967141 0.254242i \(-0.918174\pi\)
0.703750 + 0.710447i \(0.251507\pi\)
\(152\) 423.386 + 733.326i 0.225929 + 0.391320i
\(153\) −389.070 677.012i −0.205585 0.357733i
\(154\) −523.095 1623.70i −0.273716 0.849621i
\(155\) 2879.85i 1.49235i
\(156\) −0.0502364 + 50.2479i −2.57829e−5 + 0.0257888i
\(157\) −143.752 82.9950i −0.0730740 0.0421893i 0.463018 0.886349i \(-0.346767\pi\)
−0.536092 + 0.844160i \(0.680100\pi\)
\(158\) 2384.86 + 1376.90i 1.20082 + 0.693293i
\(159\) 1.41397 1414.29i 0.000705251 0.705412i
\(160\) 942.055i 0.465475i
\(161\) −761.145 688.786i −0.372588 0.337168i
\(162\) −1629.73 949.635i −0.790393 0.460558i
\(163\) −488.511 846.127i −0.234743 0.406587i 0.724455 0.689322i \(-0.242092\pi\)
−0.959198 + 0.282735i \(0.908758\pi\)
\(164\) −241.528 + 418.340i −0.115001 + 0.199188i
\(165\) 2583.54 1488.16i 1.21896 0.702142i
\(166\) −1346.79 + 777.568i −0.629704 + 0.363560i
\(167\) 1.00709 0.000466651 0.000233326 1.00000i \(-0.499926\pi\)
0.000233326 1.00000i \(0.499926\pi\)
\(168\) 1716.43 + 1556.38i 0.788248 + 0.714747i
\(169\) 2142.12 0.975019
\(170\) 1044.51 603.048i 0.471236 0.272068i
\(171\) −1.89874 + 949.584i −0.000849123 + 0.424658i
\(172\) 122.092 211.469i 0.0541245 0.0937463i
\(173\) −1978.27 3426.47i −0.869395 1.50584i −0.862616 0.505860i \(-0.831175\pi\)
−0.00677983 0.999977i \(-0.502158\pi\)
\(174\) 458.923 793.046i 0.199948 0.345521i
\(175\) 2440.57 + 525.130i 1.05423 + 0.226835i
\(176\) 1845.93i 0.790582i
\(177\) −503.356 0.503241i −0.213754 0.000213706i
\(178\) 3372.82 + 1947.30i 1.42024 + 0.819978i
\(179\) −2423.54 1399.23i −1.01198 0.584266i −0.100208 0.994967i \(-0.531951\pi\)
−0.911770 + 0.410701i \(0.865284\pi\)
\(180\) −285.014 + 491.387i −0.118020 + 0.203477i
\(181\) 1506.74i 0.618758i 0.950939 + 0.309379i \(0.100121\pi\)
−0.950939 + 0.309379i \(0.899879\pi\)
\(182\) −238.201 + 263.224i −0.0970144 + 0.107206i
\(183\) −1733.90 1003.38i −0.700403 0.405312i
\(184\) 667.255 + 1155.72i 0.267341 + 0.463048i
\(185\) 1883.21 3261.82i 0.748414 1.29629i
\(186\) −1199.00 2081.53i −0.472660 0.820565i
\(187\) −891.599 + 514.765i −0.348664 + 0.201301i
\(188\) 228.098 0.0884882
\(189\) 789.332 + 2475.52i 0.303786 + 0.952740i
\(190\) −1466.73 −0.560041
\(191\) 3184.51 1838.58i 1.20640 0.696518i 0.244433 0.969666i \(-0.421398\pi\)
0.961972 + 0.273148i \(0.0880650\pi\)
\(192\) −1468.11 2548.71i −0.551830 0.958009i
\(193\) 64.7335 112.122i 0.0241431 0.0418171i −0.853701 0.520763i \(-0.825648\pi\)
0.877845 + 0.478946i \(0.158981\pi\)
\(194\) 423.640 + 733.766i 0.156781 + 0.271553i
\(195\) −537.026 310.769i −0.197217 0.114126i
\(196\) −44.5763 445.500i −0.0162450 0.162354i
\(197\) 3044.81i 1.10119i 0.834774 + 0.550593i \(0.185598\pi\)
−0.834774 + 0.550593i \(0.814402\pi\)
\(198\) −1247.78 + 2151.27i −0.447856 + 0.772140i
\(199\) 3458.29 + 1996.64i 1.23192 + 0.711248i 0.967429 0.253141i \(-0.0814637\pi\)
0.264488 + 0.964389i \(0.414797\pi\)
\(200\) −2810.59 1622.70i −0.993695 0.573710i
\(201\) 5289.78 + 5.28857i 1.85628 + 0.00185586i
\(202\) 2835.00i 0.987473i
\(203\) −1201.37 + 387.035i −0.415367 + 0.133815i
\(204\) 98.2476 169.778i 0.0337191 0.0582687i
\(205\) −2982.40 5165.67i −1.01610 1.75993i
\(206\) 268.664 465.339i 0.0908674 0.157387i
\(207\) −2.99240 + 1496.54i −0.00100476 + 0.502496i
\(208\) 332.682 192.074i 0.110901 0.0640285i
\(209\) 1252.01 0.414370
\(210\) −3821.25 + 1226.85i −1.25567 + 0.403145i
\(211\) −4383.67 −1.43026 −0.715129 0.698992i \(-0.753632\pi\)
−0.715129 + 0.698992i \(0.753632\pi\)
\(212\) 307.683 177.641i 0.0996783 0.0575493i
\(213\) 564.324 325.061i 0.181534 0.104567i
\(214\) 2332.27 4039.60i 0.745002 1.29038i
\(215\) 1507.59 + 2611.23i 0.478219 + 0.828299i
\(216\) 10.1313 3377.85i 0.00319141 1.06404i
\(217\) −696.065 + 3235.00i −0.217751 + 1.01201i
\(218\) 733.916i 0.228014i
\(219\) −1.17181 + 1172.07i −0.000361568 + 0.361650i
\(220\) 648.634 + 374.489i 0.198777 + 0.114764i
\(221\) 185.546 + 107.125i 0.0564759 + 0.0326064i
\(222\) −3.14096 + 3141.68i −0.000949583 + 0.949799i
\(223\) 4851.53i 1.45687i −0.685114 0.728436i \(-0.740247\pi\)
0.685114 0.728436i \(-0.259753\pi\)
\(224\) −227.697 + 1058.23i −0.0679180 + 0.315652i
\(225\) −1813.42 3155.48i −0.537308 0.934958i
\(226\) −1342.08 2324.55i −0.395017 0.684190i
\(227\) −1184.05 + 2050.83i −0.346203 + 0.599642i −0.985572 0.169259i \(-0.945863\pi\)
0.639368 + 0.768901i \(0.279196\pi\)
\(228\) −206.705 + 119.066i −0.0600410 + 0.0345847i
\(229\) −3737.27 + 2157.72i −1.07845 + 0.622646i −0.930479 0.366345i \(-0.880609\pi\)
−0.147975 + 0.988991i \(0.547276\pi\)
\(230\) −2311.56 −0.662695
\(231\) 3261.84 1047.24i 0.929062 0.298284i
\(232\) 1640.85 0.464340
\(233\) −4826.98 + 2786.86i −1.35719 + 0.783576i −0.989245 0.146270i \(-0.953273\pi\)
−0.367949 + 0.929846i \(0.619940\pi\)
\(234\) 517.544 + 1.03485i 0.144585 + 0.000289104i
\(235\) −1408.28 + 2439.22i −0.390920 + 0.677094i
\(236\) −63.2237 109.507i −0.0174386 0.0302046i
\(237\) −2769.94 + 4786.62i −0.759186 + 1.31192i
\(238\) 1319.08 424.957i 0.359257 0.115739i
\(239\) 4683.70i 1.26763i −0.773485 0.633814i \(-0.781488\pi\)
0.773485 0.633814i \(-0.218512\pi\)
\(240\) 4342.85 + 4.34186i 1.16804 + 0.00116778i
\(241\) −1896.77 1095.10i −0.506977 0.292703i 0.224613 0.974448i \(-0.427888\pi\)
−0.731590 + 0.681745i \(0.761222\pi\)
\(242\) −142.769 82.4279i −0.0379238 0.0218953i
\(243\) 1910.37 3270.99i 0.504323 0.863515i
\(244\) 503.245i 0.132037i
\(245\) 5039.26 + 2273.84i 1.31407 + 0.592940i
\(246\) 4306.34 + 2492.01i 1.11611 + 0.645872i
\(247\) −130.275 225.642i −0.0335594 0.0581266i
\(248\) 2150.90 3725.47i 0.550736 0.953902i
\(249\) −1558.84 2706.24i −0.396738 0.688759i
\(250\) 353.735 204.229i 0.0894887 0.0516663i
\(251\) 2240.70 0.563473 0.281736 0.959492i \(-0.409090\pi\)
0.281736 + 0.959492i \(0.409090\pi\)
\(252\) −438.932 + 483.098i −0.109723 + 0.120763i
\(253\) 1973.16 0.490323
\(254\) 3687.86 2129.19i 0.911012 0.525973i
\(255\) 1208.97 + 2098.84i 0.296897 + 0.515429i
\(256\) 974.345 1687.61i 0.237877 0.412015i
\(257\) −555.785 962.648i −0.134898 0.233651i 0.790660 0.612255i \(-0.209737\pi\)
−0.925559 + 0.378604i \(0.876404\pi\)
\(258\) −2176.84 1259.70i −0.525287 0.303975i
\(259\) 2903.85 3208.90i 0.696665 0.769851i
\(260\) 155.866i 0.0371784i
\(261\) 1591.71 + 923.223i 0.377488 + 0.218950i
\(262\) 1408.03 + 812.924i 0.332016 + 0.191689i
\(263\) 1782.86 + 1029.34i 0.418007 + 0.241337i 0.694224 0.719759i \(-0.255748\pi\)
−0.276217 + 0.961095i \(0.589081\pi\)
\(264\) −4453.64 4.45262i −1.03827 0.00103803i
\(265\) 4387.04i 1.01696i
\(266\) −1647.61 354.512i −0.379780 0.0817162i
\(267\) −3917.42 + 6769.54i −0.897912 + 1.55164i
\(268\) 664.420 + 1150.81i 0.151440 + 0.262302i
\(269\) −2414.62 + 4182.24i −0.547294 + 0.947940i 0.451165 + 0.892441i \(0.351009\pi\)
−0.998459 + 0.0554999i \(0.982325\pi\)
\(270\) 5058.26 + 2940.65i 1.14013 + 0.662824i
\(271\) −191.772 + 110.720i −0.0429865 + 0.0248183i −0.521339 0.853350i \(-0.674567\pi\)
0.478353 + 0.878168i \(0.341234\pi\)
\(272\) −1499.62 −0.334293
\(273\) −528.141 478.894i −0.117086 0.106168i
\(274\) 1290.91 0.284624
\(275\) −4155.65 + 2399.27i −0.911255 + 0.526113i
\(276\) −325.766 + 187.647i −0.0710463 + 0.0409240i
\(277\) −1233.58 + 2136.62i −0.267576 + 0.463455i −0.968235 0.250041i \(-0.919556\pi\)
0.700660 + 0.713496i \(0.252889\pi\)
\(278\) −1573.99 2726.22i −0.339573 0.588158i
\(279\) 4182.63 2403.70i 0.897517 0.515792i
\(280\) −5329.09 4822.47i −1.13741 1.02928i
\(281\) 4174.76i 0.886282i −0.896452 0.443141i \(-0.853864\pi\)
0.896452 0.443141i \(-0.146136\pi\)
\(282\) 2.34884 2349.37i 0.000495997 0.496111i
\(283\) −5628.39 3249.55i −1.18224 0.682565i −0.225706 0.974195i \(-0.572469\pi\)
−0.956531 + 0.291630i \(0.905802\pi\)
\(284\) 141.681 + 81.7998i 0.0296030 + 0.0170913i
\(285\) 2.94488 2945.55i 0.000612069 0.612209i
\(286\) 682.372i 0.141082i
\(287\) −2101.65 6523.57i −0.432252 1.34172i
\(288\) 1368.22 786.299i 0.279942 0.160879i
\(289\) 2038.31 + 3530.46i 0.414881 + 0.718595i
\(290\) −1421.09 + 2461.40i −0.287756 + 0.498408i
\(291\) −1474.43 + 849.300i −0.297020 + 0.171089i
\(292\) −254.989 + 147.218i −0.0511030 + 0.0295043i
\(293\) 5637.32 1.12401 0.562007 0.827133i \(-0.310030\pi\)
0.562007 + 0.827133i \(0.310030\pi\)
\(294\) −4589.03 + 454.540i −0.910332 + 0.0901677i
\(295\) 1561.38 0.308159
\(296\) −4872.38 + 2813.07i −0.956762 + 0.552387i
\(297\) −4317.76 2510.16i −0.843576 0.490418i
\(298\) −3002.90 + 5201.17i −0.583735 + 1.01106i
\(299\) −205.312 355.611i −0.0397108 0.0687810i
\(300\) 457.922 791.315i 0.0881270 0.152289i
\(301\) 1062.38 + 3297.64i 0.203436 + 0.631472i
\(302\) 2529.06i 0.481892i
\(303\) −5693.37 5.69207i −1.07946 0.00107921i
\(304\) 1579.36 + 911.841i 0.297968 + 0.172032i
\(305\) 5381.56 + 3107.05i 1.01032 + 0.583308i
\(306\) −1747.67 1013.68i −0.326495 0.189373i
\(307\) 3442.95i 0.640064i −0.947407 0.320032i \(-0.896306\pi\)
0.947407 0.320032i \(-0.103694\pi\)
\(308\) 638.111 + 577.448i 0.118051 + 0.106828i
\(309\) 933.976 + 540.477i 0.171948 + 0.0995037i
\(310\) 3725.67 + 6453.05i 0.682593 + 1.18228i
\(311\) −75.7324 + 131.172i −0.0138083 + 0.0239167i −0.872847 0.487994i \(-0.837729\pi\)
0.859039 + 0.511911i \(0.171062\pi\)
\(312\) 462.609 + 803.116i 0.0839426 + 0.145729i
\(313\) 8335.31 4812.40i 1.50524 0.869050i 0.505257 0.862969i \(-0.331398\pi\)
0.999982 0.00608123i \(-0.00193573\pi\)
\(314\) −429.484 −0.0771885
\(315\) −2456.13 7676.47i −0.439325 1.37308i
\(316\) −1389.26 −0.247317
\(317\) 7866.93 4541.98i 1.39385 0.804741i 0.400112 0.916466i \(-0.368971\pi\)
0.993739 + 0.111726i \(0.0356377\pi\)
\(318\) −1826.50 3170.91i −0.322092 0.559170i
\(319\) 1213.05 2101.07i 0.212909 0.368768i
\(320\) 4561.87 + 7901.39i 0.796926 + 1.38032i
\(321\) 8107.83 + 4691.87i 1.40977 + 0.815809i
\(322\) −2596.63 558.709i −0.449393 0.0966946i
\(323\) 1017.12i 0.175214i
\(324\) 951.570 + 3.80543i 0.163164 + 0.000652509i
\(325\) 864.811 + 499.299i 0.147603 + 0.0852188i
\(326\) −2189.27 1263.98i −0.371941 0.214740i
\(327\) −1473.88 1.47355i −0.249254 0.000249197i
\(328\) 8910.00i 1.49992i
\(329\) −2171.52 + 2399.65i −0.363890 + 0.402118i
\(330\) 3863.85 6676.95i 0.644539 1.11380i
\(331\) 702.788 + 1217.26i 0.116703 + 0.202136i 0.918459 0.395516i \(-0.129434\pi\)
−0.801756 + 0.597651i \(0.796101\pi\)
\(332\) 392.275 679.440i 0.0648460 0.112317i
\(333\) −6309.25 12.6156i −1.03827 0.00207607i
\(334\) 2.25664 1.30287i 0.000369695 0.000213443i
\(335\) −16408.6 −2.67611
\(336\) 4877.38 + 1054.55i 0.791913 + 0.171222i
\(337\) 7983.35 1.29045 0.645223 0.763994i \(-0.276764\pi\)
0.645223 + 0.763994i \(0.276764\pi\)
\(338\) 4799.97 2771.27i 0.772438 0.445967i
\(339\) 4670.97 2690.56i 0.748354 0.431066i
\(340\) −304.231 + 526.944i −0.0485272 + 0.0840516i
\(341\) −3180.25 5508.36i −0.505045 0.874764i
\(342\) 1224.23 + 2130.25i 0.193563 + 0.336815i
\(343\) 5111.13 + 3772.26i 0.804592 + 0.593828i
\(344\) 4503.97i 0.705924i
\(345\) 4.64112 4642.18i 0.000724260 0.724425i
\(346\) −8865.68 5118.60i −1.37752 0.795312i
\(347\) 2268.41 + 1309.67i 0.350935 + 0.202612i 0.665097 0.746757i \(-0.268390\pi\)
−0.314162 + 0.949369i \(0.601724\pi\)
\(348\) −0.462138 + 462.243i −7.11873e−5 + 0.0712036i
\(349\) 6032.33i 0.925224i −0.886561 0.462612i \(-0.846912\pi\)
0.886561 0.462612i \(-0.153088\pi\)
\(350\) 6148.09 1980.68i 0.938941 0.302491i
\(351\) −3.11736 + 1039.35i −0.000474052 + 0.158053i
\(352\) −1040.32 1801.89i −0.157527 0.272845i
\(353\) −2658.15 + 4604.06i −0.400791 + 0.694190i −0.993822 0.110990i \(-0.964598\pi\)
0.593031 + 0.805180i \(0.297931\pi\)
\(354\) −1128.55 + 650.066i −0.169440 + 0.0976005i
\(355\) −1749.49 + 1010.07i −0.261558 + 0.151011i
\(356\) −1964.78 −0.292509
\(357\) 850.770 + 2649.89i 0.126128 + 0.392849i
\(358\) −7240.77 −1.06896
\(359\) 1612.51 930.982i 0.237061 0.136867i −0.376764 0.926309i \(-0.622963\pi\)
0.613825 + 0.789442i \(0.289630\pi\)
\(360\) −20.9510 + 10477.9i −0.00306727 + 1.53398i
\(361\) −2811.04 + 4868.87i −0.409832 + 0.709851i
\(362\) 1949.28 + 3376.25i 0.283016 + 0.490198i
\(363\) 165.822 286.550i 0.0239763 0.0414325i
\(364\) 37.6731 175.088i 0.00542475 0.0252118i
\(365\) 3635.70i 0.521373i
\(366\) −5183.34 5.18215i −0.740266 0.000740097i
\(367\) −1675.89 967.574i −0.238367 0.137621i 0.376059 0.926596i \(-0.377279\pi\)
−0.614426 + 0.788975i \(0.710612\pi\)
\(368\) 2489.06 + 1437.06i 0.352585 + 0.203565i
\(369\) −5013.21 + 8643.18i −0.707255 + 1.21937i
\(370\) 9745.28i 1.36928i
\(371\) −1060.36 + 4928.06i −0.148385 + 0.689629i
\(372\) 1048.90 + 606.980i 0.146190 + 0.0845980i
\(373\) −3871.04 6704.83i −0.537359 0.930732i −0.999045 0.0436892i \(-0.986089\pi\)
0.461687 0.887043i \(-0.347244\pi\)
\(374\) −1331.91 + 2306.93i −0.184148 + 0.318953i
\(375\) 409.432 + 710.797i 0.0563812 + 0.0978810i
\(376\) 3643.61 2103.64i 0.499747 0.288529i
\(377\) −504.884 −0.0689730
\(378\) 4971.30 + 4525.90i 0.676445 + 0.615839i
\(379\) −3722.15 −0.504470 −0.252235 0.967666i \(-0.581166\pi\)
−0.252235 + 0.967666i \(0.581166\pi\)
\(380\) 640.815 369.975i 0.0865082 0.0499455i
\(381\) 4268.53 + 7410.41i 0.573972 + 0.996448i
\(382\) 4757.15 8239.63i 0.637165 1.10360i
\(383\) 3546.73 + 6143.12i 0.473184 + 0.819578i 0.999529 0.0306926i \(-0.00977131\pi\)
−0.526345 + 0.850271i \(0.676438\pi\)
\(384\) −4484.08 2594.87i −0.595905 0.344841i
\(385\) −10114.8 + 3258.60i −1.33895 + 0.431359i
\(386\) 334.984i 0.0441716i
\(387\) 2534.16 4369.09i 0.332864 0.573885i
\(388\) −370.177 213.722i −0.0484353 0.0279641i
\(389\) −6173.12 3564.05i −0.804601 0.464537i 0.0404765 0.999180i \(-0.487112\pi\)
−0.845077 + 0.534644i \(0.820446\pi\)
\(390\) −1605.39 1.60502i −0.208441 0.000208394i
\(391\) 1602.98i 0.207330i
\(392\) −4820.69 6705.25i −0.621126 0.863945i
\(393\) −1635.38 + 2826.03i −0.209908 + 0.362733i
\(394\) 3939.08 + 6822.69i 0.503675 + 0.872391i
\(395\) 8577.33 14856.4i 1.09259 1.89242i
\(396\) 2.50870 1254.63i 0.000318351 0.159211i
\(397\) 7738.99 4468.11i 0.978360 0.564857i 0.0765855 0.997063i \(-0.475598\pi\)
0.901775 + 0.432206i \(0.142265\pi\)
\(398\) 10332.3 1.30128
\(399\) 715.255 3308.10i 0.0897432 0.415068i
\(400\) −6989.56 −0.873695
\(401\) −7719.60 + 4456.91i −0.961343 + 0.555032i −0.896586 0.442869i \(-0.853961\pi\)
−0.0647568 + 0.997901i \(0.520627\pi\)
\(402\) 11860.0 6831.56i 1.47145 0.847580i
\(403\) −661.826 + 1146.32i −0.0818062 + 0.141692i
\(404\) −715.112 1238.61i −0.0880648 0.152533i
\(405\) −5915.71 + 10152.3i −0.725812 + 1.24561i
\(406\) −2191.27 + 2421.47i −0.267859 + 0.295999i
\(407\) 8318.63i 1.01312i
\(408\) 3.61727 3618.09i 0.000438925 0.439025i
\(409\) −2680.13 1547.37i −0.324019 0.187073i 0.329163 0.944273i \(-0.393233\pi\)
−0.653183 + 0.757200i \(0.726567\pi\)
\(410\) −13365.7 7716.69i −1.60996 0.929513i
\(411\) −2.59188 + 2592.47i −0.000311066 + 0.311137i
\(412\) 271.076i 0.0324149i
\(413\) 1753.93 + 377.389i 0.208972 + 0.0449639i
\(414\) 1929.38 + 3357.26i 0.229043 + 0.398552i
\(415\) 4843.82 + 8389.74i 0.572949 + 0.992377i
\(416\) −216.496 + 374.983i −0.0255159 + 0.0441948i
\(417\) 5478.09 3155.48i 0.643317 0.370562i
\(418\) 2805.45 1619.73i 0.328276 0.189530i
\(419\) 7234.25 0.843476 0.421738 0.906718i \(-0.361420\pi\)
0.421738 + 0.906718i \(0.361420\pi\)
\(420\) 1360.04 1499.90i 0.158008 0.174256i
\(421\) 406.124 0.0470148 0.0235074 0.999724i \(-0.492517\pi\)
0.0235074 + 0.999724i \(0.492517\pi\)
\(422\) −9822.77 + 5671.18i −1.13309 + 0.654191i
\(423\) 4718.11 + 9.43408i 0.542323 + 0.00108440i
\(424\) 3276.60 5675.23i 0.375296 0.650032i
\(425\) −1949.14 3376.01i −0.222464 0.385319i
\(426\) 843.982 1458.45i 0.0959885 0.165874i
\(427\) 5294.25 + 4790.95i 0.600016 + 0.542975i
\(428\) 2353.21i 0.265763i
\(429\) 1370.37 + 1.37006i 0.154224 + 0.000154189i
\(430\) 6756.31 + 3900.76i 0.757717 + 0.437468i
\(431\) 10590.4 + 6114.37i 1.18358 + 0.683338i 0.956839 0.290618i \(-0.0938609\pi\)
0.226737 + 0.973956i \(0.427194\pi\)
\(432\) −3618.52 6311.09i −0.403000 0.702876i
\(433\) 3252.79i 0.361014i −0.983574 0.180507i \(-0.942226\pi\)
0.983574 0.180507i \(-0.0577738\pi\)
\(434\) 2625.41 + 8149.36i 0.290378 + 0.901341i
\(435\) −4940.24 2858.84i −0.544521 0.315105i
\(436\) −185.126 320.648i −0.0203348 0.0352208i
\(437\) 974.689 1688.21i 0.106695 0.184801i
\(438\) 1513.69 + 2627.85i 0.165130 + 0.286675i
\(439\) −13036.8 + 7526.81i −1.41734 + 0.818303i −0.996065 0.0886287i \(-0.971752\pi\)
−0.421278 + 0.906932i \(0.638418\pi\)
\(440\) 13814.9 1.49682
\(441\) −903.614 9216.81i −0.0975720 0.995228i
\(442\) 554.353 0.0596558
\(443\) 204.373 117.995i 0.0219189 0.0126549i −0.489001 0.872283i \(-0.662638\pi\)
0.510919 + 0.859629i \(0.329305\pi\)
\(444\) −791.098 1373.39i −0.0845583 0.146798i
\(445\) 12130.6 21010.8i 1.29224 2.23822i
\(446\) −6276.44 10871.1i −0.666364 1.15418i
\(447\) −10439.2 6040.99i −1.10460 0.639215i
\(448\) 3214.67 + 9978.44i 0.339016 + 1.05231i
\(449\) 5874.66i 0.617466i 0.951149 + 0.308733i \(0.0999049\pi\)
−0.951149 + 0.308733i \(0.900095\pi\)
\(450\) −8145.69 4724.66i −0.853315 0.494939i
\(451\) 11409.0 + 6587.02i 1.19120 + 0.687739i
\(452\) 1172.71 + 677.066i 0.122035 + 0.0704568i
\(453\) −5078.98 5.07782i −0.526780 0.000526660i
\(454\) 6127.24i 0.633405i
\(455\) 1639.74 + 1483.86i 0.168950 + 0.152889i
\(456\) −2203.79 + 3808.27i −0.226320 + 0.391094i
\(457\) −153.883 266.533i −0.0157513 0.0272821i 0.858042 0.513579i \(-0.171681\pi\)
−0.873794 + 0.486297i \(0.838347\pi\)
\(458\) −5582.89 + 9669.85i −0.569588 + 0.986556i
\(459\) 2039.23 3507.71i 0.207370 0.356701i
\(460\) 1009.92 583.079i 0.102365 0.0591004i
\(461\) −4752.26 −0.480119 −0.240060 0.970758i \(-0.577167\pi\)
−0.240060 + 0.970758i \(0.577167\pi\)
\(462\) 5954.19 6566.48i 0.599597 0.661256i
\(463\) −9529.43 −0.956523 −0.478261 0.878218i \(-0.658733\pi\)
−0.478261 + 0.878218i \(0.658733\pi\)
\(464\) 3060.42 1766.94i 0.306199 0.176784i
\(465\) −12966.8 + 7469.10i −1.29316 + 0.744884i
\(466\) −7210.74 + 12489.4i −0.716805 + 1.24154i
\(467\) −3269.28 5662.56i −0.323949 0.561097i 0.657350 0.753586i \(-0.271677\pi\)
−0.981299 + 0.192489i \(0.938344\pi\)
\(468\) −226.376 + 130.096i −0.0223595 + 0.0128497i
\(469\) −18432.1 3965.99i −1.81475 0.390474i
\(470\) 7287.61i 0.715218i
\(471\) 0.862312 862.509i 8.43593e−5 0.0843786i
\(472\) −2019.85 1166.16i −0.196973 0.113723i
\(473\) −5767.23 3329.71i −0.560629 0.323679i
\(474\) −14.3059 + 14309.2i −0.00138627 + 1.38659i
\(475\) 4740.69i 0.457932i
\(476\) −469.113 + 518.395i −0.0451718 + 0.0499172i
\(477\) 6371.64 3661.70i 0.611609 0.351484i
\(478\) −6059.32 10495.0i −0.579805 1.00425i
\(479\) 3671.28 6358.85i 0.350199 0.606562i −0.636085 0.771619i \(-0.719447\pi\)
0.986284 + 0.165057i \(0.0527807\pi\)
\(480\) −4241.69 + 2443.29i −0.403345 + 0.232334i
\(481\) 1499.22 865.574i 0.142117 0.0820515i
\(482\) −5666.94 −0.535523
\(483\) 1127.24 5213.55i 0.106193 0.491148i
\(484\) 83.1680 0.00781066
\(485\) 4570.96 2639.05i 0.427952 0.247078i
\(486\) 48.9940 9800.97i 0.00457287 0.914775i
\(487\) −3508.78 + 6077.39i −0.326485 + 0.565489i −0.981812 0.189857i \(-0.939198\pi\)
0.655327 + 0.755345i \(0.272531\pi\)
\(488\) −4641.19 8038.77i −0.430526 0.745693i
\(489\) 2542.77 4394.06i 0.235150 0.406352i
\(490\) 14233.5 1424.19i 1.31225 0.131302i
\(491\) 224.222i 0.0206089i 0.999947 + 0.0103045i \(0.00328007\pi\)
−0.999947 + 0.0103045i \(0.996720\pi\)
\(492\) −2510.04 2.50946i −0.230002 0.000229950i
\(493\) 1706.89 + 985.471i 0.155932 + 0.0900272i
\(494\) −583.829 337.074i −0.0531735 0.0306997i
\(495\) 13401.2 + 7772.96i 1.21685 + 0.705795i
\(496\) 9264.74i 0.838708i
\(497\) −2209.38 + 711.777i −0.199405 + 0.0642406i
\(498\) −6994.07 4047.36i −0.629341 0.364189i
\(499\) 10396.1 + 18006.6i 0.932651 + 1.61540i 0.778770 + 0.627309i \(0.215844\pi\)
0.153881 + 0.988089i \(0.450823\pi\)
\(500\) −103.031 + 178.456i −0.00921540 + 0.0159615i
\(501\) 2.61196 + 4.53451i 0.000232922 + 0.000404365i
\(502\) 5020.87 2898.80i 0.446399 0.257729i
\(503\) −7341.52 −0.650780 −0.325390 0.945580i \(-0.605496\pi\)
−0.325390 + 0.945580i \(0.605496\pi\)
\(504\) −2556.06 + 11765.0i −0.225905 + 1.03979i
\(505\) 17660.5 1.55620
\(506\) 4421.38 2552.69i 0.388448 0.224270i
\(507\) 5555.74 + 9645.09i 0.486665 + 0.844878i
\(508\) −1074.15 + 1860.49i −0.0938146 + 0.162492i
\(509\) 9956.11 + 17244.5i 0.866988 + 1.50167i 0.865060 + 0.501669i \(0.167280\pi\)
0.00192778 + 0.999998i \(0.499386\pi\)
\(510\) 5424.29 + 3138.95i 0.470964 + 0.272539i
\(511\) 878.757 4084.07i 0.0760742 0.353559i
\(512\) 13018.4i 1.12370i
\(513\) −4280.52 + 2454.27i −0.368400 + 0.211225i
\(514\) −2490.76 1438.04i −0.213741 0.123403i
\(515\) −2898.81 1673.63i −0.248032 0.143202i
\(516\) 1268.81 + 1.26852i 0.108249 + 0.000108224i
\(517\) 6220.75i 0.529184i
\(518\) 2355.46 10947.1i 0.199793 0.928548i
\(519\) 10297.2 17794.2i 0.870900 1.50497i
\(520\) −1437.47 2489.78i −0.121226 0.209969i
\(521\) 3745.90 6488.08i 0.314992 0.545582i −0.664444 0.747338i \(-0.731332\pi\)
0.979436 + 0.201756i \(0.0646649\pi\)
\(522\) 4761.02 + 9.51987i 0.399203 + 0.000798225i
\(523\) 249.515 144.058i 0.0208614 0.0120444i −0.489533 0.871985i \(-0.662833\pi\)
0.510394 + 0.859940i \(0.329499\pi\)
\(524\) −820.223 −0.0683809
\(525\) 3965.35 + 12350.8i 0.329642 + 1.02673i
\(526\) 5326.62 0.441543
\(527\) 4474.94 2583.61i 0.369889 0.213555i
\(528\) −8311.49 + 4787.57i −0.685059 + 0.394606i
\(529\) −4547.39 + 7876.32i −0.373748 + 0.647351i
\(530\) 5675.53 + 9830.30i 0.465149 + 0.805662i
\(531\) −1303.23 2267.71i −0.106507 0.185330i
\(532\) 809.266 260.715i 0.0659514 0.0212470i
\(533\) 2741.58i 0.222797i
\(534\) −20.2323 + 20236.9i −0.00163958 + 1.63996i
\(535\) −25164.5 14528.7i −2.03356 1.17408i
\(536\) 21226.7 + 12255.2i 1.71055 + 0.987586i
\(537\) 14.5379 14541.2i 0.00116826 1.16853i
\(538\) 12495.2i 1.00131i
\(539\) −12149.8 + 1215.69i −0.970923 + 0.0971496i
\(540\) −2951.72 8.85317i −0.235226 0.000705518i
\(541\) −7400.87 12818.7i −0.588149 1.01870i −0.994475 0.104975i \(-0.966524\pi\)
0.406326 0.913728i \(-0.366810\pi\)
\(542\) −286.478 + 496.194i −0.0227034 + 0.0393235i
\(543\) −6784.24 + 3907.85i −0.536169 + 0.308843i
\(544\) 1463.84 845.149i 0.115371 0.0666093i
\(545\) 4571.90 0.359337
\(546\) −1802.98 389.829i −0.141320 0.0305552i
\(547\) −4036.80 −0.315541 −0.157771 0.987476i \(-0.550431\pi\)
−0.157771 + 0.987476i \(0.550431\pi\)
\(548\) −564.001 + 325.626i −0.0439652 + 0.0253833i
\(549\) 20.8141 10409.4i 0.00161807 0.809221i
\(550\) −6207.88 + 10752.4i −0.481282 + 0.833604i
\(551\) −1198.43 2075.74i −0.0926585 0.160489i
\(552\) −3473.16 + 6001.82i −0.267803 + 0.462780i
\(553\) 13225.9 14615.4i 1.01704 1.12388i
\(554\) 6383.53i 0.489549i
\(555\) 19570.9 + 19.5664i 1.49683 + 0.00149649i
\(556\) 1375.35 + 794.059i 0.104906 + 0.0605676i
\(557\) −14891.1 8597.36i −1.13277 0.654007i −0.188142 0.982142i \(-0.560246\pi\)
−0.944631 + 0.328135i \(0.893580\pi\)
\(558\) 6262.59 10797.2i 0.475119 0.819143i
\(559\) 1385.86i 0.104858i
\(560\) −15132.6 3256.03i −1.14191 0.245701i
\(561\) −4630.21 2679.43i −0.348463 0.201650i
\(562\) −5400.90 9354.64i −0.405380 0.702138i
\(563\) −9453.63 + 16374.2i −0.707678 + 1.22573i 0.258038 + 0.966135i \(0.416924\pi\)
−0.965716 + 0.259600i \(0.916409\pi\)
\(564\) 591.591 + 1027.04i 0.0441675 + 0.0766773i
\(565\) −14480.7 + 8360.43i −1.07824 + 0.622524i
\(566\) −16815.8 −1.24880
\(567\) −9099.09 + 9974.51i −0.673944 + 0.738783i
\(568\) 3017.60 0.222915
\(569\) 6255.57 3611.66i 0.460891 0.266096i −0.251528 0.967850i \(-0.580933\pi\)
0.712419 + 0.701754i \(0.247600\pi\)
\(570\) −3804.07 6604.09i −0.279535 0.485289i
\(571\) 4965.17 8599.93i 0.363898 0.630290i −0.624700 0.780865i \(-0.714779\pi\)
0.988599 + 0.150574i \(0.0481122\pi\)
\(572\) 172.125 + 298.129i 0.0125820 + 0.0217926i
\(573\) 16537.7 + 9570.08i 1.20571 + 0.697724i
\(574\) −13148.9 11898.9i −0.956138 0.865242i
\(575\) 7471.31i 0.541870i
\(576\) 7668.19 13220.6i 0.554701 0.956349i
\(577\) 7254.16 + 4188.19i 0.523388 + 0.302178i 0.738320 0.674451i \(-0.235620\pi\)
−0.214932 + 0.976629i \(0.568953\pi\)
\(578\) 9134.73 + 5273.94i 0.657361 + 0.379528i
\(579\) 672.730 + 0.672576i 0.0482862 + 4.82752e-5i
\(580\) 1433.85i 0.102651i
\(581\) 3413.36 + 10595.2i 0.243735 + 0.756560i
\(582\) −2205.11 + 3810.56i −0.157053 + 0.271397i
\(583\) −4844.67 8391.21i −0.344161 0.596104i
\(584\) −2715.44 + 4703.27i −0.192407 + 0.333258i
\(585\) 6.44656 3224.01i 0.000455611 0.227857i
\(586\) 12631.9 7293.03i 0.890476 0.514116i
\(587\) 21277.2 1.49609 0.748043 0.663650i \(-0.230994\pi\)
0.748043 + 0.663650i \(0.230994\pi\)
\(588\) 1890.29 1356.15i 0.132576 0.0951132i
\(589\) −6283.84 −0.439594
\(590\) 3498.67 2019.96i 0.244132 0.140950i
\(591\) −13709.5 + 7896.94i −0.954204 + 0.549639i
\(592\) −6058.48 + 10493.6i −0.420611 + 0.728520i
\(593\) 1424.49 + 2467.29i 0.0986454 + 0.170859i 0.911124 0.412132i \(-0.135216\pi\)
−0.812479 + 0.582991i \(0.801882\pi\)
\(594\) −12922.5 38.7587i −0.892619 0.00267725i
\(595\) −2647.25 8217.14i −0.182398 0.566168i
\(596\) 3029.86i 0.208235i
\(597\) −20.7450 + 20749.7i −0.00142217 + 1.42249i
\(598\) −920.111 531.227i −0.0629200 0.0363269i
\(599\) −3844.40 2219.57i −0.262234 0.151401i 0.363119 0.931743i \(-0.381712\pi\)
−0.625353 + 0.780342i \(0.715045\pi\)
\(600\) 16.8597 16863.5i 0.00114716 1.14742i
\(601\) 7868.29i 0.534033i 0.963692 + 0.267017i \(0.0860379\pi\)
−0.963692 + 0.267017i \(0.913962\pi\)
\(602\) 6646.70 + 6014.83i 0.449999 + 0.407220i
\(603\) 13695.6 + 23831.4i 0.924924 + 1.60944i
\(604\) −637.943 1104.95i −0.0429761 0.0744367i
\(605\) −513.480 + 889.374i −0.0345057 + 0.0597656i
\(606\) −12764.8 + 7352.78i −0.855670 + 0.492881i
\(607\) −15144.9 + 8743.92i −1.01271 + 0.584686i −0.911983 0.410228i \(-0.865449\pi\)
−0.100724 + 0.994914i \(0.532116\pi\)
\(608\) −2055.57 −0.137112
\(609\) −4858.50 4405.47i −0.323278 0.293134i
\(610\) 16078.4 1.06720
\(611\) −1121.13 + 647.284i −0.0742324 + 0.0428581i
\(612\) 1019.25 + 2.03804i 0.0673216 + 0.000134613i
\(613\) −6422.07 + 11123.3i −0.423140 + 0.732900i −0.996245 0.0865820i \(-0.972406\pi\)
0.573105 + 0.819482i \(0.305739\pi\)
\(614\) −4454.16 7714.83i −0.292761 0.507077i
\(615\) 15523.8 26826.1i 1.01786 1.75892i
\(616\) 15518.6 + 3339.10i 1.01504 + 0.218403i
\(617\) 23625.5i 1.54153i −0.637117 0.770767i \(-0.719873\pi\)
0.637117 0.770767i \(-0.280127\pi\)
\(618\) 2792.03 + 2.79140i 0.181735 + 0.000181693i
\(619\) 16529.1 + 9543.05i 1.07328 + 0.619657i 0.929075 0.369891i \(-0.120605\pi\)
0.144202 + 0.989548i \(0.453938\pi\)
\(620\) −3255.49 1879.56i −0.210877 0.121750i
\(621\) −6746.08 + 3867.92i −0.435927 + 0.249942i
\(622\) 391.901i 0.0252633i
\(623\) 18704.9 20669.9i 1.20289 1.32925i
\(624\) 1727.67 + 999.772i 0.110836 + 0.0641393i
\(625\) 7152.40 + 12388.3i 0.457754 + 0.792853i
\(626\) 12451.6 21566.9i 0.794996 1.37697i
\(627\) 3247.18 + 5637.29i 0.206826 + 0.359062i
\(628\) 187.642 108.335i 0.0119231 0.00688382i
\(629\) −6757.98 −0.428391
\(630\) −15434.7 14023.6i −0.976084 0.886848i
\(631\) 32.3893 0.00204342 0.00102171 0.999999i \(-0.499675\pi\)
0.00102171 + 0.999999i \(0.499675\pi\)
\(632\) −22191.9 + 12812.5i −1.39675 + 0.806414i
\(633\) −11369.4 19737.9i −0.713891 1.23935i
\(634\) 11751.9 20355.0i 0.736166 1.27508i
\(635\) −13263.7 22973.4i −0.828902 1.43570i
\(636\) 1597.85 + 924.648i 0.0996207 + 0.0576489i
\(637\) 1483.31 + 2063.19i 0.0922620 + 0.128330i
\(638\) 6277.32i 0.389532i
\(639\) 2927.23 + 1697.85i 0.181220 + 0.105111i
\(640\) 13917.4 + 8035.20i 0.859583 + 0.496280i
\(641\) 18742.7 + 10821.1i 1.15490 + 0.666784i 0.950078 0.312014i \(-0.101004\pi\)
0.204827 + 0.978798i \(0.434337\pi\)
\(642\) 24237.6 + 24.2321i 1.49000 + 0.00148966i
\(643\) 19867.3i 1.21849i 0.792982 + 0.609246i \(0.208528\pi\)
−0.792982 + 0.609246i \(0.791472\pi\)
\(644\) 1275.40 410.886i 0.0780401 0.0251416i
\(645\) −7847.24 + 13560.5i −0.479046 + 0.827820i
\(646\) 1315.85 + 2279.12i 0.0801417 + 0.138809i
\(647\) −11212.2 + 19420.1i −0.681294 + 1.18004i 0.293293 + 0.956023i \(0.405249\pi\)
−0.974586 + 0.224012i \(0.928084\pi\)
\(648\) 15235.4 8715.08i 0.923613 0.528335i
\(649\) −2986.49 + 1724.25i −0.180632 + 0.104288i
\(650\) 2583.78 0.155914
\(651\) −16371.2 + 5256.11i −0.985618 + 0.316441i
\(652\) 1275.33 0.0766038
\(653\) −17358.5 + 10021.9i −1.04026 + 0.600594i −0.919907 0.392137i \(-0.871736\pi\)
−0.120353 + 0.992731i \(0.538403\pi\)
\(654\) −3304.53 + 1903.47i −0.197580 + 0.113810i
\(655\) 5064.07 8771.22i 0.302091 0.523237i
\(656\) 9594.67 + 16618.5i 0.571050 + 0.989088i
\(657\) −5280.41 + 3034.59i −0.313559 + 0.180199i
\(658\) −1761.43 + 8186.34i −0.104358 + 0.485011i
\(659\) 13217.9i 0.781327i −0.920533 0.390664i \(-0.872246\pi\)
0.920533 0.390664i \(-0.127754\pi\)
\(660\) −3.89091 + 3891.80i −0.000229475 + 0.229527i
\(661\) 8470.90 + 4890.68i 0.498457 + 0.287784i 0.728076 0.685496i \(-0.240415\pi\)
−0.229619 + 0.973281i \(0.573748\pi\)
\(662\) 3149.56 + 1818.40i 0.184911 + 0.106758i
\(663\) −1.11302 + 1113.28i −6.51979e−5 + 0.0652128i
\(664\) 14471.0i 0.845761i
\(665\) −2208.41 + 10263.7i −0.128780 + 0.598511i
\(666\) −14153.8 + 8134.03i −0.823499 + 0.473254i
\(667\) −1888.72 3271.36i −0.109642 0.189906i
\(668\) −0.657286 + 1.13845i −3.80706e−5 + 6.59402e-5i
\(669\) 21844.5 12582.8i 1.26242 0.727174i
\(670\) −36767.7 + 21227.8i −2.12009 + 1.22403i
\(671\) −13724.6 −0.789617
\(672\) −5355.34 + 1719.38i −0.307421 + 0.0987001i
\(673\) −4670.73 −0.267524 −0.133762 0.991014i \(-0.542706\pi\)
−0.133762 + 0.991014i \(0.542706\pi\)
\(674\) 17888.8 10328.1i 1.02233 0.590242i
\(675\) 9504.63 16349.1i 0.541975 0.932260i
\(676\) −1398.07 + 2421.53i −0.0795445 + 0.137775i
\(677\) 13521.0 + 23419.1i 0.767584 + 1.32949i 0.938870 + 0.344273i \(0.111875\pi\)
−0.171286 + 0.985221i \(0.554792\pi\)
\(678\) 6985.73 12071.8i 0.395701 0.683795i
\(679\) 5772.53 1859.69i 0.326258 0.105108i
\(680\) 11223.1i 0.632921i
\(681\) −12305.0 12.3022i −0.692406 0.000692248i
\(682\) −14252.4 8228.61i −0.800222 0.462009i
\(683\) −11596.9 6695.45i −0.649694 0.375101i 0.138645 0.990342i \(-0.455725\pi\)
−0.788339 + 0.615241i \(0.789059\pi\)
\(684\) −1072.21 621.902i −0.0599370 0.0347646i
\(685\) 8041.69i 0.448551i
\(686\) 16333.0 + 1840.44i 0.909034 + 0.102432i
\(687\) −19408.2 11231.2i −1.07783 0.623724i
\(688\) −4850.07 8400.57i −0.268761 0.465507i
\(689\) −1008.20 + 1746.25i −0.0557464 + 0.0965557i
\(690\) −5995.21 10408.0i −0.330773 0.574241i
\(691\) 26837.3 15494.6i 1.47748 0.853025i 0.477807 0.878465i \(-0.341432\pi\)
0.999676 + 0.0254396i \(0.00809856\pi\)
\(692\) 5164.56 0.283710
\(693\) 13175.1 + 11970.6i 0.722197 + 0.656172i
\(694\) 6777.28 0.370694
\(695\) −16982.9 + 9805.07i −0.926903 + 0.535147i
\(696\) 4255.66 + 7388.07i 0.231768 + 0.402362i
\(697\) −5351.23 + 9268.60i −0.290807 + 0.503692i
\(698\) −7804.05 13517.0i −0.423191 0.732989i
\(699\) −25067.3 14506.0i −1.35641 0.784933i
\(700\) −2186.49 + 2416.18i −0.118059 + 0.130462i
\(701\) 2892.67i 0.155855i −0.996959 0.0779277i \(-0.975170\pi\)
0.996959 0.0779277i \(-0.0248303\pi\)
\(702\) 1337.63 + 2332.97i 0.0719168 + 0.125431i
\(703\) 7117.31 + 4109.18i 0.381841 + 0.220456i
\(704\) −17451.2 10075.5i −0.934259 0.539395i
\(705\) −14635.3 14.6320i −0.781841 0.000781662i
\(706\) 13755.5i 0.733277i
\(707\) 19838.4 + 4268.57i 1.05530 + 0.227067i
\(708\) 329.089 568.685i 0.0174688 0.0301871i
\(709\) −7965.19 13796.1i −0.421917 0.730781i 0.574210 0.818708i \(-0.305309\pi\)
−0.996127 + 0.0879267i \(0.971976\pi\)
\(710\) −2613.46 + 4526.64i −0.138143 + 0.239270i
\(711\) −28736.3 57.4595i −1.51574 0.00303080i
\(712\) −31385.2 + 18120.2i −1.65198 + 0.953770i
\(713\) −9903.30 −0.520171
\(714\) 5334.54 + 4837.12i 0.279608 + 0.253536i
\(715\) −4250.81 −0.222337
\(716\) 3163.50 1826.45i 0.165119 0.0953317i
\(717\) 21088.8 12147.5i 1.09843 0.632716i
\(718\) 2408.83 4172.22i 0.125204 0.216860i
\(719\) 5938.87 + 10286.4i 0.308042 + 0.533545i 0.977934 0.208914i \(-0.0669928\pi\)
−0.669892 + 0.742459i \(0.733659\pi\)
\(720\) 11244.0 + 19565.4i 0.581997 + 1.01272i
\(721\) −2851.78 2580.67i −0.147303 0.133300i
\(722\) 14546.6i 0.749819i
\(723\) 11.3780 11380.6i 0.000585273 0.585407i
\(724\) −1703.28 983.389i −0.0874336 0.0504798i
\(725\) 7955.61 + 4593.18i 0.407537 + 0.235291i
\(726\) 0.856420 856.615i 4.37806e−5 0.0437906i
\(727\) 16795.8i 0.856839i −0.903580 0.428419i \(-0.859071\pi\)
0.903580 0.428419i \(-0.140929\pi\)
\(728\) −1012.96 3144.27i −0.0515700 0.160075i
\(729\) 19682.6 + 118.070i 0.999982 + 0.00599859i
\(730\) −4703.52 8146.74i −0.238473 0.413047i
\(731\) 2705.03 4685.24i 0.136866 0.237059i
\(732\) 2265.91 1305.20i 0.114413 0.0659040i
\(733\) 22048.4 12729.7i 1.11102 0.641447i 0.171926 0.985110i \(-0.445001\pi\)
0.939093 + 0.343663i \(0.111668\pi\)
\(734\) −5007.02 −0.251788
\(735\) 2831.54 + 28587.1i 0.142099 + 1.43463i
\(736\) −3239.57 −0.162245
\(737\) 31385.1 18120.2i 1.56864 0.905653i
\(738\) −51.6941 + 25852.9i −0.00257843 + 1.28951i
\(739\) 9319.48 16141.8i 0.463901 0.803499i −0.535251 0.844693i \(-0.679783\pi\)
0.999151 + 0.0411940i \(0.0131162\pi\)
\(740\) 2458.19 + 4257.72i 0.122115 + 0.211509i
\(741\) 678.099 1171.79i 0.0336175 0.0580930i
\(742\) 3999.45 + 12414.4i 0.197877 + 0.614214i
\(743\) 14043.3i 0.693401i 0.937976 + 0.346700i \(0.112698\pi\)
−0.937976 + 0.346700i \(0.887302\pi\)
\(744\) 22352.8 + 22.3477i 1.10147 + 0.00110122i
\(745\) 32400.4 + 18706.4i 1.59337 + 0.919932i
\(746\) −17348.1 10016.0i −0.851422 0.491569i
\(747\) 8142.12 14037.7i 0.398802 0.687566i
\(748\) 1343.87i 0.0656907i
\(749\) −24756.3 22402.8i −1.20771 1.09290i
\(750\) 1837.00 + 1063.04i 0.0894370 + 0.0517557i
\(751\) −8115.13 14055.8i −0.394308 0.682961i 0.598705 0.800970i \(-0.295682\pi\)
−0.993013 + 0.118009i \(0.962349\pi\)
\(752\) 4530.58 7847.20i 0.219699 0.380529i
\(753\) 5811.43 + 10089.0i 0.281248 + 0.488263i
\(754\) −1131.32 + 653.170i −0.0546424 + 0.0315478i
\(755\) 15754.7 0.759433
\(756\) −3313.60 723.383i −0.159411 0.0348005i
\(757\) −33345.7 −1.60102 −0.800508 0.599322i \(-0.795437\pi\)
−0.800508 + 0.599322i \(0.795437\pi\)
\(758\) −8340.45 + 4815.36i −0.399655 + 0.230741i
\(759\) 5117.55 + 8884.35i 0.244737 + 0.424877i
\(760\) 6824.19 11819.9i 0.325710 0.564146i
\(761\) −5394.02 9342.71i −0.256942 0.445037i 0.708479 0.705732i \(-0.249382\pi\)
−0.965421 + 0.260695i \(0.916048\pi\)
\(762\) 19151.6 + 11082.7i 0.910486 + 0.526884i
\(763\) 5135.72 + 1105.04i 0.243677 + 0.0524313i
\(764\) 4799.87i 0.227295i
\(765\) −6314.68 + 10887.0i −0.298441 + 0.514537i
\(766\) 15894.7 + 9176.84i 0.749740 + 0.432862i
\(767\) 621.503 + 358.825i 0.0292584 + 0.0168923i
\(768\) 10125.7 + 10.1234i 0.475754 + 0.000475646i
\(769\) 35799.6i 1.67876i 0.543543 + 0.839381i \(0.317082\pi\)
−0.543543 + 0.839381i \(0.682918\pi\)
\(770\)