Properties

Label 21.4.g.a.17.2
Level $21$
Weight $4$
Character 21.17
Analytic conductor $1.239$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 21.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.23904011012\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} - 29 x^{9} + 6 x^{8} - 49 x^{7} + 1564 x^{6} - 441 x^{5} + 486 x^{4} - 21141 x^{3} - 59049 x + 531441\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.2
Root \(0.00299931 + 3.00000i\) of defining polynomial
Character \(\chi\) \(=\) 21.17
Dual form 21.4.g.a.5.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.24076 + 1.29370i) q^{2} +(5.19615 - 0.00519496i) q^{3} +(-0.652660 + 1.13044i) q^{4} +(8.05907 + 13.9587i) q^{5} +(-11.6366 + 6.73392i) q^{6} +(-5.67909 - 17.6280i) q^{7} -24.0767i q^{8} +(26.9999 - 0.0539876i) q^{9} +O(q^{10})\) \(q+(-2.24076 + 1.29370i) q^{2} +(5.19615 - 0.00519496i) q^{3} +(-0.652660 + 1.13044i) q^{4} +(8.05907 + 13.9587i) q^{5} +(-11.6366 + 6.73392i) q^{6} +(-5.67909 - 17.6280i) q^{7} -24.0767i q^{8} +(26.9999 - 0.0539876i) q^{9} +(-36.1169 - 20.8521i) q^{10} +(-30.8296 - 17.7995i) q^{11} +(-3.38545 + 5.87733i) q^{12} -7.40831i q^{13} +(35.5309 + 32.1532i) q^{14} +(41.9486 + 72.4897i) q^{15} +(25.9268 + 44.9065i) q^{16} +(14.4601 - 25.0457i) q^{17} +(-60.4306 + 35.0509i) q^{18} +(30.4580 - 17.5849i) q^{19} -21.0393 q^{20} +(-29.6010 - 91.5685i) q^{21} +92.1090 q^{22} +(-48.0017 + 27.7138i) q^{23} +(-0.125077 - 125.106i) q^{24} +(-67.3971 + 116.735i) q^{25} +(9.58416 + 16.6003i) q^{26} +(140.295 - 0.420792i) q^{27} +(23.6340 + 5.08525i) q^{28} +68.1510i q^{29} +(-187.777 - 108.163i) q^{30} +(-154.734 - 89.3356i) q^{31} +(50.6165 + 29.2234i) q^{32} +(-160.288 - 92.3286i) q^{33} +74.8285i q^{34} +(200.297 - 221.338i) q^{35} +(-17.5608 + 30.5571i) q^{36} +(116.838 + 202.370i) q^{37} +(-45.4994 + 78.8072i) q^{38} +(-0.0384859 - 38.4947i) q^{39} +(336.079 - 194.035i) q^{40} -370.068 q^{41} +(184.791 + 166.888i) q^{42} -187.068 q^{43} +(40.2425 - 23.2340i) q^{44} +(218.348 + 376.449i) q^{45} +(71.7068 - 124.200i) q^{46} +(87.3726 + 151.334i) q^{47} +(134.953 + 233.206i) q^{48} +(-278.496 + 200.222i) q^{49} -348.768i q^{50} +(75.0068 - 130.216i) q^{51} +(8.37465 + 4.83511i) q^{52} +(235.715 + 136.090i) q^{53} +(-313.824 + 182.444i) q^{54} -573.789i q^{55} +(-424.424 + 136.733i) q^{56} +(158.173 - 91.5321i) q^{57} +(-88.1672 - 152.710i) q^{58} +(48.4354 - 83.8926i) q^{59} +(-109.323 + 0.109298i) q^{60} +(-333.882 + 192.767i) q^{61} +462.295 q^{62} +(-154.287 - 475.650i) q^{63} -566.055 q^{64} +(103.411 - 59.7041i) q^{65} +(478.612 - 0.478503i) q^{66} +(509.009 - 881.630i) q^{67} +(18.8751 + 32.6926i) q^{68} +(-249.280 + 144.254i) q^{69} +(-162.471 + 755.091i) q^{70} +125.333i q^{71} +(-1.29984 - 650.068i) q^{72} +(195.346 + 112.783i) q^{73} +(-523.613 - 302.308i) q^{74} +(-349.599 + 606.924i) q^{75} +45.9079i q^{76} +(-138.686 + 644.550i) q^{77} +(49.8870 + 86.2076i) q^{78} +(532.154 + 921.718i) q^{79} +(-417.891 + 723.809i) q^{80} +(728.994 - 2.91533i) q^{81} +(829.234 - 478.758i) q^{82} +601.040 q^{83} +(122.832 + 26.3009i) q^{84} +466.140 q^{85} +(419.175 - 242.011i) q^{86} +(0.354042 + 354.123i) q^{87} +(-428.552 + 742.274i) q^{88} +(-752.606 - 1303.55i) q^{89} +(-976.280 - 561.055i) q^{90} +(-130.594 + 42.0725i) q^{91} -72.3506i q^{92} +(-804.484 - 463.397i) q^{93} +(-391.562 - 226.069i) q^{94} +(490.926 + 283.436i) q^{95} +(263.163 + 151.586i) q^{96} +327.463i q^{97} +(365.014 - 808.942i) q^{98} +(-833.358 - 478.920i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} + 14 q^{4} - 56 q^{7} - 3 q^{9} + O(q^{10}) \) \( 12 q - 3 q^{3} + 14 q^{4} - 56 q^{7} - 3 q^{9} + 30 q^{10} - 192 q^{12} + 6 q^{15} + 134 q^{16} + 66 q^{18} + 300 q^{19} + 357 q^{21} - 268 q^{22} + 414 q^{24} - 42 q^{25} - 602 q^{28} - 822 q^{30} - 930 q^{31} - 855 q^{33} + 852 q^{36} + 764 q^{37} - 426 q^{39} + 2298 q^{40} + 966 q^{42} - 1012 q^{43} + 2367 q^{45} + 608 q^{46} - 336 q^{49} - 1341 q^{51} - 3000 q^{52} - 4158 q^{54} + 270 q^{57} + 2870 q^{58} - 918 q^{60} + 2358 q^{61} + 1071 q^{63} - 548 q^{64} + 2934 q^{66} + 792 q^{67} - 4242 q^{70} - 2712 q^{72} - 2904 q^{73} - 2418 q^{75} + 4296 q^{78} + 1674 q^{79} + 837 q^{81} + 5040 q^{82} + 3864 q^{84} + 348 q^{85} + 1638 q^{87} - 554 q^{88} - 1218 q^{91} - 1479 q^{93} - 1356 q^{94} - 4410 q^{96} - 3354 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).

\(n\) \(8\) \(10\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.24076 + 1.29370i −0.792229 + 0.457393i −0.840747 0.541429i \(-0.817884\pi\)
0.0485179 + 0.998822i \(0.484550\pi\)
\(3\) 5.19615 0.00519496i 1.00000 0.000999771i
\(4\) −0.652660 + 1.13044i −0.0815825 + 0.141305i
\(5\) 8.05907 + 13.9587i 0.720825 + 1.24851i 0.960670 + 0.277694i \(0.0895701\pi\)
−0.239845 + 0.970811i \(0.577097\pi\)
\(6\) −11.6366 + 6.73392i −0.791771 + 0.458185i
\(7\) −5.67909 17.6280i −0.306642 0.951825i
\(8\) 24.0767i 1.06405i
\(9\) 26.9999 0.0539876i 0.999998 0.00199954i
\(10\) −36.1169 20.8521i −1.14212 0.659401i
\(11\) −30.8296 17.7995i −0.845043 0.487886i 0.0139322 0.999903i \(-0.495565\pi\)
−0.858975 + 0.512017i \(0.828898\pi\)
\(12\) −3.38545 + 5.87733i −0.0814412 + 0.141386i
\(13\) 7.40831i 0.158054i −0.996872 0.0790268i \(-0.974819\pi\)
0.996872 0.0790268i \(-0.0251813\pi\)
\(14\) 35.5309 + 32.1532i 0.678289 + 0.613807i
\(15\) 41.9486 + 72.4897i 0.722073 + 1.24778i
\(16\) 25.9268 + 44.9065i 0.405106 + 0.701664i
\(17\) 14.4601 25.0457i 0.206300 0.357322i −0.744246 0.667905i \(-0.767191\pi\)
0.950546 + 0.310584i \(0.100524\pi\)
\(18\) −60.4306 + 35.0509i −0.791313 + 0.458977i
\(19\) 30.4580 17.5849i 0.367765 0.212329i −0.304716 0.952443i \(-0.598562\pi\)
0.672482 + 0.740114i \(0.265228\pi\)
\(20\) −21.0393 −0.235227
\(21\) −29.6010 91.5685i −0.307593 0.951518i
\(22\) 92.1090 0.892623
\(23\) −48.0017 + 27.7138i −0.435175 + 0.251249i −0.701549 0.712621i \(-0.747508\pi\)
0.266374 + 0.963870i \(0.414175\pi\)
\(24\) −0.125077 125.106i −0.00106380 1.06405i
\(25\) −67.3971 + 116.735i −0.539177 + 0.933881i
\(26\) 9.58416 + 16.6003i 0.0722927 + 0.125215i
\(27\) 140.295 0.420792i 0.999996 0.00299931i
\(28\) 23.6340 + 5.08525i 0.159514 + 0.0343222i
\(29\) 68.1510i 0.436390i 0.975905 + 0.218195i \(0.0700169\pi\)
−0.975905 + 0.218195i \(0.929983\pi\)
\(30\) −187.777 108.163i −1.14277 0.658259i
\(31\) −154.734 89.3356i −0.896484 0.517585i −0.0204262 0.999791i \(-0.506502\pi\)
−0.876058 + 0.482206i \(0.839836\pi\)
\(32\) 50.6165 + 29.2234i 0.279619 + 0.161438i
\(33\) −160.288 92.3286i −0.845530 0.487041i
\(34\) 74.8285i 0.377440i
\(35\) 200.297 221.338i 0.967323 1.06894i
\(36\) −17.5608 + 30.5571i −0.0812998 + 0.141468i
\(37\) 116.838 + 202.370i 0.519137 + 0.899172i 0.999753 + 0.0222405i \(0.00707996\pi\)
−0.480615 + 0.876931i \(0.659587\pi\)
\(38\) −45.4994 + 78.8072i −0.194236 + 0.336427i
\(39\) −0.0384859 38.4947i −0.000158017 0.158053i
\(40\) 336.079 194.035i 1.32847 0.766992i
\(41\) −370.068 −1.40963 −0.704816 0.709390i \(-0.748970\pi\)
−0.704816 + 0.709390i \(0.748970\pi\)
\(42\) 184.791 + 166.888i 0.678902 + 0.613129i
\(43\) −187.068 −0.663432 −0.331716 0.943379i \(-0.607628\pi\)
−0.331716 + 0.943379i \(0.607628\pi\)
\(44\) 40.2425 23.2340i 0.137881 0.0796059i
\(45\) 218.348 + 376.449i 0.723320 + 1.24706i
\(46\) 71.7068 124.200i 0.229839 0.398093i
\(47\) 87.3726 + 151.334i 0.271162 + 0.469666i 0.969160 0.246434i \(-0.0792588\pi\)
−0.697998 + 0.716100i \(0.745925\pi\)
\(48\) 134.953 + 233.206i 0.405807 + 0.701259i
\(49\) −278.496 + 200.222i −0.811942 + 0.583739i
\(50\) 348.768i 0.986464i
\(51\) 75.0068 130.216i 0.205942 0.357528i
\(52\) 8.37465 + 4.83511i 0.0223338 + 0.0128944i
\(53\) 235.715 + 136.090i 0.610905 + 0.352706i 0.773319 0.634017i \(-0.218595\pi\)
−0.162415 + 0.986723i \(0.551928\pi\)
\(54\) −313.824 + 182.444i −0.790853 + 0.459768i
\(55\) 573.789i 1.40672i
\(56\) −424.424 + 136.733i −1.01279 + 0.326282i
\(57\) 158.173 91.5321i 0.367553 0.212697i
\(58\) −88.1672 152.710i −0.199602 0.345721i
\(59\) 48.4354 83.8926i 0.106877 0.185117i −0.807626 0.589695i \(-0.799248\pi\)
0.914504 + 0.404578i \(0.132581\pi\)
\(60\) −109.323 + 0.109298i −0.235227 + 0.000235173i
\(61\) −333.882 + 192.767i −0.700807 + 0.404611i −0.807648 0.589665i \(-0.799260\pi\)
0.106841 + 0.994276i \(0.465927\pi\)
\(62\) 462.295 0.946960
\(63\) −154.287 475.650i −0.308544 0.951210i
\(64\) −566.055 −1.10558
\(65\) 103.411 59.7041i 0.197331 0.113929i
\(66\) 478.612 0.478503i 0.892623 0.000892419i
\(67\) 509.009 881.630i 0.928140 1.60759i 0.141708 0.989908i \(-0.454741\pi\)
0.786432 0.617677i \(-0.211926\pi\)
\(68\) 18.8751 + 32.6926i 0.0336609 + 0.0583023i
\(69\) −249.280 + 144.254i −0.434924 + 0.251684i
\(70\) −162.471 + 755.091i −0.277414 + 1.28929i
\(71\) 125.333i 0.209497i 0.994499 + 0.104749i \(0.0334038\pi\)
−0.994499 + 0.104749i \(0.966596\pi\)
\(72\) −1.29984 650.068i −0.00212761 1.06405i
\(73\) 195.346 + 112.783i 0.313199 + 0.180825i 0.648357 0.761337i \(-0.275456\pi\)
−0.335158 + 0.942162i \(0.608790\pi\)
\(74\) −523.613 302.308i −0.822551 0.474900i
\(75\) −349.599 + 606.924i −0.538243 + 0.934420i
\(76\) 45.9079i 0.0692894i
\(77\) −138.686 + 644.550i −0.205256 + 0.953939i
\(78\) 49.8870 + 86.2076i 0.0724178 + 0.125142i
\(79\) 532.154 + 921.718i 0.757874 + 1.31268i 0.943933 + 0.330138i \(0.107095\pi\)
−0.186059 + 0.982539i \(0.559572\pi\)
\(80\) −417.891 + 723.809i −0.584021 + 1.01155i
\(81\) 728.994 2.91533i 0.999992 0.00399908i
\(82\) 829.234 478.758i 1.11675 0.644756i
\(83\) 601.040 0.794852 0.397426 0.917634i \(-0.369904\pi\)
0.397426 + 0.917634i \(0.369904\pi\)
\(84\) 122.832 + 26.3009i 0.159548 + 0.0341627i
\(85\) 466.140 0.594824
\(86\) 419.175 242.011i 0.525590 0.303450i
\(87\) 0.354042 + 354.123i 0.000436290 + 0.436390i
\(88\) −428.552 + 742.274i −0.519134 + 0.899166i
\(89\) −752.606 1303.55i −0.896360 1.55254i −0.832112 0.554607i \(-0.812869\pi\)
−0.0642474 0.997934i \(-0.520465\pi\)
\(90\) −976.280 561.055i −1.14343 0.657116i
\(91\) −130.594 + 42.0725i −0.150439 + 0.0484658i
\(92\) 72.3506i 0.0819900i
\(93\) −804.484 463.397i −0.897001 0.516689i
\(94\) −391.562 226.069i −0.429645 0.248055i
\(95\) 490.926 + 283.436i 0.530189 + 0.306105i
\(96\) 263.163 + 151.586i 0.279781 + 0.161159i
\(97\) 327.463i 0.342771i 0.985204 + 0.171386i \(0.0548244\pi\)
−0.985204 + 0.171386i \(0.945176\pi\)
\(98\) 365.014 808.942i 0.376245 0.833831i
\(99\) −833.358 478.920i −0.846017 0.486195i
\(100\) −87.9747 152.377i −0.0879747 0.152377i
\(101\) 547.845 948.895i 0.539729 0.934837i −0.459190 0.888338i \(-0.651860\pi\)
0.998918 0.0464990i \(-0.0148064\pi\)
\(102\) 0.388731 + 388.820i 0.000377354 + 0.377440i
\(103\) 179.848 103.835i 0.172048 0.0993318i −0.411503 0.911408i \(-0.634996\pi\)
0.583551 + 0.812076i \(0.301663\pi\)
\(104\) −178.367 −0.168177
\(105\) 1039.62 1151.15i 0.966254 1.06991i
\(106\) −704.242 −0.645302
\(107\) −1561.25 + 901.391i −1.41058 + 0.814399i −0.995443 0.0953593i \(-0.969600\pi\)
−0.415138 + 0.909759i \(0.636267\pi\)
\(108\) −91.0895 + 158.870i −0.0811583 + 0.141549i
\(109\) −141.825 + 245.647i −0.124627 + 0.215860i −0.921587 0.388172i \(-0.873107\pi\)
0.796960 + 0.604032i \(0.206440\pi\)
\(110\) 742.313 + 1285.72i 0.643425 + 1.11444i
\(111\) 608.160 + 1050.94i 0.520036 + 0.898652i
\(112\) 644.374 712.067i 0.543639 0.600750i
\(113\) 1037.39i 0.863627i 0.901963 + 0.431814i \(0.142126\pi\)
−0.901963 + 0.431814i \(0.857874\pi\)
\(114\) −236.012 + 409.730i −0.193900 + 0.336621i
\(115\) −773.697 446.694i −0.627371 0.362213i
\(116\) −77.0406 44.4794i −0.0616641 0.0356018i
\(117\) −0.399957 200.024i −0.000316035 0.158053i
\(118\) 250.644i 0.195540i
\(119\) −523.626 112.667i −0.403368 0.0867915i
\(120\) 1745.31 1009.98i 1.32770 0.768320i
\(121\) −31.8573 55.1785i −0.0239349 0.0414564i
\(122\) 498.767 863.890i 0.370133 0.641090i
\(123\) −1922.93 + 1.92249i −1.40963 + 0.00140931i
\(124\) 201.977 116.611i 0.146275 0.0844518i
\(125\) −157.864 −0.112958
\(126\) 961.070 + 866.216i 0.679515 + 0.612450i
\(127\) 1645.81 1.14994 0.574968 0.818176i \(-0.305015\pi\)
0.574968 + 0.818176i \(0.305015\pi\)
\(128\) 863.461 498.520i 0.596249 0.344245i
\(129\) −972.033 + 0.971811i −0.663432 + 0.000663281i
\(130\) −154.479 + 267.565i −0.104221 + 0.180516i
\(131\) −314.185 544.184i −0.209545 0.362943i 0.742026 0.670371i \(-0.233865\pi\)
−0.951571 + 0.307428i \(0.900532\pi\)
\(132\) 208.985 120.936i 0.137802 0.0797437i
\(133\) −482.961 437.048i −0.314873 0.284939i
\(134\) 2634.03i 1.69810i
\(135\) 1136.52 + 1954.95i 0.724566 + 1.24634i
\(136\) −603.016 348.151i −0.380207 0.219513i
\(137\) −432.079 249.461i −0.269453 0.155569i 0.359186 0.933266i \(-0.383054\pi\)
−0.628639 + 0.777697i \(0.716388\pi\)
\(138\) 371.954 645.734i 0.229441 0.398322i
\(139\) 1216.65i 0.742410i −0.928551 0.371205i \(-0.878945\pi\)
0.928551 0.371205i \(-0.121055\pi\)
\(140\) 119.484 + 370.882i 0.0721303 + 0.223895i
\(141\) 454.788 + 785.900i 0.271631 + 0.469395i
\(142\) −162.144 280.841i −0.0958226 0.165970i
\(143\) −131.864 + 228.395i −0.0771121 + 0.133562i
\(144\) 702.446 + 1211.07i 0.406508 + 0.700853i
\(145\) −951.300 + 549.233i −0.544835 + 0.314561i
\(146\) −583.631 −0.330833
\(147\) −1446.07 + 1041.83i −0.811358 + 0.584550i
\(148\) −305.022 −0.169410
\(149\) 2010.18 1160.58i 1.10524 0.638111i 0.167648 0.985847i \(-0.446383\pi\)
0.937592 + 0.347736i \(0.113050\pi\)
\(150\) −1.81183 1812.25i −0.000986238 0.986463i
\(151\) −488.726 + 846.497i −0.263390 + 0.456205i −0.967141 0.254242i \(-0.918174\pi\)
0.703750 + 0.710447i \(0.251507\pi\)
\(152\) −423.386 733.326i −0.225929 0.391320i
\(153\) 389.070 677.012i 0.205585 0.357733i
\(154\) −523.095 1623.70i −0.273716 0.849621i
\(155\) 2879.85i 1.49235i
\(156\) 43.5411 + 25.0804i 0.0223466 + 0.0128721i
\(157\) −143.752 82.9950i −0.0730740 0.0421893i 0.463018 0.886349i \(-0.346767\pi\)
−0.536092 + 0.844160i \(0.680100\pi\)
\(158\) −2384.86 1376.90i −1.20082 0.693293i
\(159\) 1225.52 + 705.920i 0.611257 + 0.352095i
\(160\) 942.055i 0.465475i
\(161\) 761.145 + 688.786i 0.372588 + 0.337168i
\(162\) −1629.73 + 949.635i −0.790393 + 0.460558i
\(163\) −488.511 846.127i −0.234743 0.406587i 0.724455 0.689322i \(-0.242092\pi\)
−0.959198 + 0.282735i \(0.908758\pi\)
\(164\) 241.528 418.340i 0.115001 0.199188i
\(165\) −2.98081 2981.49i −0.00140640 1.40672i
\(166\) −1346.79 + 777.568i −0.629704 + 0.363560i
\(167\) −1.00709 −0.000466651 −0.000233326 1.00000i \(-0.500074\pi\)
−0.000233326 1.00000i \(0.500074\pi\)
\(168\) −2204.66 + 712.692i −1.01246 + 0.327294i
\(169\) 2142.12 0.975019
\(170\) −1044.51 + 603.048i −0.471236 + 0.272068i
\(171\) 821.414 476.436i 0.367340 0.213064i
\(172\) 122.092 211.469i 0.0541245 0.0937463i
\(173\) 1978.27 + 3426.47i 0.869395 + 1.50584i 0.862616 + 0.505860i \(0.168825\pi\)
0.00677983 + 0.999977i \(0.497842\pi\)
\(174\) −458.923 793.046i −0.199948 0.345521i
\(175\) 2440.57 + 525.130i 1.05423 + 0.226835i
\(176\) 1845.93i 0.790582i
\(177\) 251.242 436.170i 0.106692 0.185224i
\(178\) 3372.82 + 1947.30i 1.42024 + 0.819978i
\(179\) 2423.54 + 1399.23i 1.01198 + 0.584266i 0.911770 0.410701i \(-0.134716\pi\)
0.100208 + 0.994967i \(0.468049\pi\)
\(180\) −568.060 + 1.13586i −0.235226 + 0.000470346i
\(181\) 1506.74i 0.618758i 0.950939 + 0.309379i \(0.100121\pi\)
−0.950939 + 0.309379i \(0.899879\pi\)
\(182\) 238.201 263.224i 0.0970144 0.107206i
\(183\) −1733.90 + 1003.38i −0.700403 + 0.405312i
\(184\) 667.255 + 1155.72i 0.267341 + 0.463048i
\(185\) −1883.21 + 3261.82i −0.748414 + 1.29629i
\(186\) 2402.16 2.40161i 0.946960 0.000946744i
\(187\) −891.599 + 514.765i −0.348664 + 0.201301i
\(188\) −228.098 −0.0884882
\(189\) −804.168 2470.75i −0.309495 0.950901i
\(190\) −1466.73 −0.560041
\(191\) −3184.51 + 1838.58i −1.20640 + 0.696518i −0.961972 0.273148i \(-0.911935\pi\)
−0.244433 + 0.969666i \(0.578602\pi\)
\(192\) −2941.30 + 2.94063i −1.10557 + 0.00110532i
\(193\) 64.7335 112.122i 0.0241431 0.0418171i −0.853701 0.520763i \(-0.825648\pi\)
0.877845 + 0.478946i \(0.158981\pi\)
\(194\) −423.640 733.766i −0.156781 0.271553i
\(195\) 537.026 310.769i 0.197217 0.114126i
\(196\) −44.5763 445.500i −0.0162450 0.162354i
\(197\) 3044.81i 1.10119i −0.834774 0.550593i \(-0.814402\pi\)
0.834774 0.550593i \(-0.185598\pi\)
\(198\) 2486.94 4.97275i 0.892621 0.00178484i
\(199\) 3458.29 + 1996.64i 1.23192 + 0.711248i 0.967429 0.253141i \(-0.0814637\pi\)
0.264488 + 0.964389i \(0.414797\pi\)
\(200\) 2810.59 + 1622.70i 0.993695 + 0.573710i
\(201\) 2640.31 4583.73i 0.926532 1.60851i
\(202\) 2835.00i 0.987473i
\(203\) 1201.37 387.035i 0.415367 0.133815i
\(204\) 98.2476 + 169.778i 0.0337191 + 0.0582687i
\(205\) −2982.40 5165.67i −1.01610 1.75993i
\(206\) −268.664 + 465.339i −0.0908674 + 0.157387i
\(207\) −1294.55 + 750.862i −0.434672 + 0.252118i
\(208\) 332.682 192.074i 0.110901 0.0640285i
\(209\) −1252.01 −0.414370
\(210\) −840.300 + 3924.41i −0.276125 + 1.28957i
\(211\) −4383.67 −1.43026 −0.715129 0.698992i \(-0.753632\pi\)
−0.715129 + 0.698992i \(0.753632\pi\)
\(212\) −307.683 + 177.641i −0.0996783 + 0.0575493i
\(213\) 0.651100 + 651.249i 0.000209449 + 0.209497i
\(214\) 2332.27 4039.60i 0.745002 1.29038i
\(215\) −1507.59 2611.23i −0.478219 0.828299i
\(216\) −10.1313 3377.85i −0.00319141 1.06404i
\(217\) −696.065 + 3235.00i −0.217751 + 1.01201i
\(218\) 733.916i 0.228014i
\(219\) 1015.63 + 585.022i 0.313379 + 0.180512i
\(220\) 648.634 + 374.489i 0.198777 + 0.114764i
\(221\) −185.546 107.125i −0.0564759 0.0326064i
\(222\) −2722.34 1568.12i −0.823025 0.474077i
\(223\) 4851.53i 1.45687i −0.685114 0.728436i \(-0.740247\pi\)
0.685114 0.728436i \(-0.259753\pi\)
\(224\) 227.697 1058.23i 0.0679180 0.315652i
\(225\) −1813.42 + 3155.48i −0.537308 + 0.934958i
\(226\) −1342.08 2324.55i −0.395017 0.684190i
\(227\) 1184.05 2050.83i 0.346203 0.599642i −0.639368 0.768901i \(-0.720804\pi\)
0.985572 + 0.169259i \(0.0541374\pi\)
\(228\) 0.238490 + 238.544i 6.92736e−5 + 0.0692894i
\(229\) −3737.27 + 2157.72i −1.07845 + 0.622646i −0.930479 0.366345i \(-0.880609\pi\)
−0.147975 + 0.988991i \(0.547276\pi\)
\(230\) 2311.56 0.662695
\(231\) −717.285 + 3349.90i −0.204303 + 0.954144i
\(232\) 1640.85 0.464340
\(233\) 4826.98 2786.86i 1.35719 0.783576i 0.367949 0.929846i \(-0.380060\pi\)
0.989245 + 0.146270i \(0.0467267\pi\)
\(234\) 259.668 + 447.689i 0.0725429 + 0.125070i
\(235\) −1408.28 + 2439.22i −0.390920 + 0.677094i
\(236\) 63.2237 + 109.507i 0.0174386 + 0.0302046i
\(237\) 2769.94 + 4786.62i 0.759186 + 1.31192i
\(238\) 1319.08 424.957i 0.359257 0.115739i
\(239\) 4683.70i 1.26763i 0.773485 + 0.633814i \(0.218512\pi\)
−0.773485 + 0.633814i \(0.781488\pi\)
\(240\) −2167.67 + 3763.19i −0.583009 + 1.01214i
\(241\) −1896.77 1095.10i −0.506977 0.292703i 0.224613 0.974448i \(-0.427888\pi\)
−0.731590 + 0.681745i \(0.761222\pi\)
\(242\) 142.769 + 82.4279i 0.0379238 + 0.0218953i
\(243\) 3787.95 18.9356i 0.999988 0.00499884i
\(244\) 503.245i 0.132037i
\(245\) −5039.26 2273.84i −1.31407 0.592940i
\(246\) 4306.34 2492.01i 1.11611 0.645872i
\(247\) −130.275 225.642i −0.0335594 0.0581266i
\(248\) −2150.90 + 3725.47i −0.550736 + 0.953902i
\(249\) 3123.09 3.12238i 0.794851 0.000794670i
\(250\) 353.735 204.229i 0.0894887 0.0516663i
\(251\) −2240.70 −0.563473 −0.281736 0.959492i \(-0.590910\pi\)
−0.281736 + 0.959492i \(0.590910\pi\)
\(252\) 638.390 + 136.026i 0.159583 + 0.0340032i
\(253\) 1973.16 0.490323
\(254\) −3687.86 + 2129.19i −0.911012 + 0.525973i
\(255\) 2422.13 2.42158i 0.594823 0.000594688i
\(256\) 974.345 1687.61i 0.237877 0.412015i
\(257\) 555.785 + 962.648i 0.134898 + 0.233651i 0.925559 0.378604i \(-0.123596\pi\)
−0.790660 + 0.612255i \(0.790263\pi\)
\(258\) 2176.84 1259.70i 0.525287 0.303975i
\(259\) 2903.85 3208.90i 0.696665 0.769851i
\(260\) 155.866i 0.0371784i
\(261\) 3.67931 + 1840.07i 0.000872580 + 0.436389i
\(262\) 1408.03 + 812.924i 0.332016 + 0.191689i
\(263\) −1782.86 1029.34i −0.418007 0.241337i 0.276217 0.961095i \(-0.410919\pi\)
−0.694224 + 0.719759i \(0.744252\pi\)
\(264\) −2222.96 + 3859.19i −0.518235 + 0.899685i
\(265\) 4387.04i 1.01696i
\(266\) 1647.61 + 354.512i 0.379780 + 0.0817162i
\(267\) −3917.42 6769.54i −0.897912 1.55164i
\(268\) 664.420 + 1150.81i 0.151440 + 0.262302i
\(269\) 2414.62 4182.24i 0.547294 0.947940i −0.451165 0.892441i \(-0.648991\pi\)
0.998459 0.0554999i \(-0.0176752\pi\)
\(270\) −5075.81 2910.26i −1.14409 0.655973i
\(271\) −191.772 + 110.720i −0.0429865 + 0.0248183i −0.521339 0.853350i \(-0.674567\pi\)
0.478353 + 0.878168i \(0.341234\pi\)
\(272\) 1499.62 0.334293
\(273\) −678.368 + 219.293i −0.150391 + 0.0486162i
\(274\) 1290.91 0.284624
\(275\) 4155.65 2399.27i 0.911255 0.526113i
\(276\) −0.375859 375.945i −8.19712e−5 0.0819899i
\(277\) −1233.58 + 2136.62i −0.267576 + 0.463455i −0.968235 0.250041i \(-0.919556\pi\)
0.700660 + 0.713496i \(0.252889\pi\)
\(278\) 1573.99 + 2726.22i 0.339573 + 0.588158i
\(279\) −4182.63 2403.70i −0.897517 0.515792i
\(280\) −5329.09 4822.47i −1.13741 1.02928i
\(281\) 4174.76i 0.886282i 0.896452 + 0.443141i \(0.146136\pi\)
−0.896452 + 0.443141i \(0.853864\pi\)
\(282\) −2035.79 1172.65i −0.429892 0.247626i
\(283\) −5628.39 3249.55i −1.18224 0.682565i −0.225706 0.974195i \(-0.572469\pi\)
−0.956531 + 0.291630i \(0.905802\pi\)
\(284\) −141.681 81.7998i −0.0296030 0.0170913i
\(285\) 2552.40 + 1470.23i 0.530494 + 0.305574i
\(286\) 682.372i 0.141082i
\(287\) 2101.65 + 6523.57i 0.432252 + 1.34172i
\(288\) 1368.22 + 786.299i 0.279942 + 0.160879i
\(289\) 2038.31 + 3530.46i 0.414881 + 0.718595i
\(290\) 1421.09 2461.40i 0.287756 0.498408i
\(291\) 1.70116 + 1701.55i 0.000342693 + 0.342771i
\(292\) −254.989 + 147.218i −0.0511030 + 0.0295043i
\(293\) −5637.32 −1.12401 −0.562007 0.827133i \(-0.689970\pi\)
−0.562007 + 0.827133i \(0.689970\pi\)
\(294\) 1892.47 4205.28i 0.375411 0.834207i
\(295\) 1561.38 0.308159
\(296\) 4872.38 2813.07i 0.956762 0.552387i
\(297\) −4332.74 2484.21i −0.846503 0.485349i
\(298\) −3002.90 + 5201.17i −0.583735 + 1.01106i
\(299\) 205.312 + 355.611i 0.0397108 + 0.0687810i
\(300\) −457.922 791.315i −0.0881270 0.152289i
\(301\) 1062.38 + 3297.64i 0.203436 + 0.631472i
\(302\) 2529.06i 0.481892i
\(303\) 2841.75 4933.45i 0.538794 0.935376i
\(304\) 1579.36 + 911.841i 0.297968 + 0.172032i
\(305\) −5381.56 3107.05i −1.01032 0.583308i
\(306\) 4.03981 + 2020.36i 0.000754708 + 0.377440i
\(307\) 3442.95i 0.640064i −0.947407 0.320032i \(-0.896306\pi\)
0.947407 0.320032i \(-0.103694\pi\)
\(308\) −638.111 577.448i −0.118051 0.106828i
\(309\) 933.976 540.477i 0.171948 0.0995037i
\(310\) 3725.67 + 6453.05i 0.682593 + 1.18228i
\(311\) 75.7324 131.172i 0.0138083 0.0239167i −0.859039 0.511911i \(-0.828938\pi\)
0.872847 + 0.487994i \(0.162271\pi\)
\(312\) −926.824 + 0.926612i −0.168177 + 0.000168138i
\(313\) 8335.31 4812.40i 1.50524 0.869050i 0.505257 0.862969i \(-0.331398\pi\)
0.999982 0.00608123i \(-0.00193573\pi\)
\(314\) 429.484 0.0771885
\(315\) 5396.05 5986.94i 0.965184 1.07087i
\(316\) −1389.26 −0.247317
\(317\) −7866.93 + 4541.98i −1.39385 + 0.804741i −0.993739 0.111726i \(-0.964362\pi\)
−0.400112 + 0.916466i \(0.631029\pi\)
\(318\) −3659.34 + 3.65851i −0.645301 + 0.000645154i
\(319\) 1213.05 2101.07i 0.212909 0.368768i
\(320\) −4561.87 7901.39i −0.796926 1.38032i
\(321\) −8107.83 + 4691.87i −1.40977 + 0.815809i
\(322\) −2596.63 558.709i −0.449393 0.0966946i
\(323\) 1017.12i 0.175214i
\(324\) −472.490 + 825.987i −0.0810167 + 0.141630i
\(325\) 864.811 + 499.299i 0.147603 + 0.0852188i
\(326\) 2189.27 + 1263.98i 0.371941 + 0.214740i
\(327\) −735.666 + 1277.16i −0.124411 + 0.215985i
\(328\) 8910.00i 1.49992i
\(329\) 2171.52 2399.65i 0.363890 0.402118i
\(330\) 3863.85 + 6676.95i 0.644539 + 1.11380i
\(331\) 702.788 + 1217.26i 0.116703 + 0.202136i 0.918459 0.395516i \(-0.129434\pi\)
−0.801756 + 0.597651i \(0.796101\pi\)
\(332\) −392.275 + 679.440i −0.0648460 + 0.112317i
\(333\) 3165.55 + 5457.66i 0.520934 + 0.898132i
\(334\) 2.25664 1.30287i 0.000369695 0.000213443i
\(335\) 16408.6 2.67611
\(336\) 3344.56 3703.35i 0.543038 0.601293i
\(337\) 7983.35 1.29045 0.645223 0.763994i \(-0.276764\pi\)
0.645223 + 0.763994i \(0.276764\pi\)
\(338\) −4799.97 + 2771.27i −0.772438 + 0.445967i
\(339\) 5.38923 + 5390.46i 0.000863430 + 0.863627i
\(340\) −304.231 + 526.944i −0.0485272 + 0.0840516i
\(341\) 3180.25 + 5508.36i 0.505045 + 0.874764i
\(342\) −1224.23 + 2130.25i −0.193563 + 0.336815i
\(343\) 5111.13 + 3772.26i 0.804592 + 0.593828i
\(344\) 4503.97i 0.705924i
\(345\) −4022.57 2317.07i −0.627732 0.361585i
\(346\) −8865.68 5118.60i −1.37752 0.795312i
\(347\) −2268.41 1309.67i −0.350935 0.202612i 0.314162 0.949369i \(-0.398276\pi\)
−0.665097 + 0.746757i \(0.731610\pi\)
\(348\) −400.545 230.721i −0.0616997 0.0355401i
\(349\) 6032.33i 0.925224i −0.886561 0.462612i \(-0.846912\pi\)
0.886561 0.462612i \(-0.153088\pi\)
\(350\) −6148.09 + 1980.68i −0.938941 + 0.302491i
\(351\) −3.11736 1039.35i −0.000474052 0.158053i
\(352\) −1040.32 1801.89i −0.157527 0.272845i
\(353\) 2658.15 4604.06i 0.400791 0.694190i −0.593031 0.805180i \(-0.702069\pi\)
0.993822 + 0.110990i \(0.0354020\pi\)
\(354\) 1.30209 + 1302.39i 0.000195495 + 0.195540i
\(355\) −1749.49 + 1010.07i −0.261558 + 0.151011i
\(356\) 1964.78 0.292509
\(357\) −2721.43 582.715i −0.403454 0.0863881i
\(358\) −7240.77 −1.06896
\(359\) −1612.51 + 930.982i −0.237061 + 0.136867i −0.613825 0.789442i \(-0.710370\pi\)
0.376764 + 0.926309i \(0.377037\pi\)
\(360\) 9063.64 5257.09i 1.32693 0.769647i
\(361\) −2811.04 + 4868.87i −0.409832 + 0.709851i
\(362\) −1949.28 3376.25i −0.283016 0.490198i
\(363\) −165.822 286.550i −0.0239763 0.0414325i
\(364\) 37.6731 175.088i 0.00542475 0.0252118i
\(365\) 3635.70i 0.521373i
\(366\) 2587.18 4491.49i 0.369492 0.641459i
\(367\) −1675.89 967.574i −0.238367 0.137621i 0.376059 0.926596i \(-0.377279\pi\)
−0.614426 + 0.788975i \(0.710612\pi\)
\(368\) −2489.06 1437.06i −0.352585 0.203565i
\(369\) −9991.81 + 19.9791i −1.40963 + 0.00281862i
\(370\) 9745.28i 1.36928i
\(371\) 1060.36 4928.06i 0.148385 0.689629i
\(372\) 1048.90 606.980i 0.146190 0.0845980i
\(373\) −3871.04 6704.83i −0.537359 0.930732i −0.999045 0.0436892i \(-0.986089\pi\)
0.461687 0.887043i \(-0.347244\pi\)
\(374\) 1331.91 2306.93i 0.184148 0.318953i
\(375\) −820.284 + 0.820097i −0.112958 + 0.000112932i
\(376\) 3643.61 2103.64i 0.499747 0.288529i
\(377\) 504.884 0.0689730
\(378\) 4998.36 + 4495.99i 0.680127 + 0.611770i
\(379\) −3722.15 −0.504470 −0.252235 0.967666i \(-0.581166\pi\)
−0.252235 + 0.967666i \(0.581166\pi\)
\(380\) −640.815 + 369.975i −0.0865082 + 0.0499455i
\(381\) 8551.86 8.54991i 1.14994 0.00114967i
\(382\) 4757.15 8239.63i 0.637165 1.10360i
\(383\) −3546.73 6143.12i −0.473184 0.819578i 0.526345 0.850271i \(-0.323562\pi\)
−0.999529 + 0.0306926i \(0.990229\pi\)
\(384\) 4484.08 2594.87i 0.595905 0.344841i
\(385\) −10114.8 + 3258.60i −1.33895 + 0.431359i
\(386\) 334.984i 0.0441716i
\(387\) −5050.82 + 10.0994i −0.663431 + 0.00132656i
\(388\) −370.177 213.722i −0.0484353 0.0279641i
\(389\) 6173.12 + 3564.05i 0.804601 + 0.464537i 0.845077 0.534644i \(-0.179554\pi\)
−0.0404765 + 0.999180i \(0.512888\pi\)
\(390\) −801.305 + 1391.11i −0.104040 + 0.180620i
\(391\) 1602.98i 0.207330i
\(392\) 4820.69 + 6705.25i 0.621126 + 0.863945i
\(393\) −1635.38 2826.03i −0.209908 0.362733i
\(394\) 3939.08 + 6822.69i 0.503675 + 0.872391i
\(395\) −8577.33 + 14856.4i −1.09259 + 1.89242i
\(396\) 1085.29 629.489i 0.137722 0.0798814i
\(397\) 7738.99 4468.11i 0.978360 0.564857i 0.0765855 0.997063i \(-0.475598\pi\)
0.901775 + 0.432206i \(0.142265\pi\)
\(398\) −10332.3 −1.30128
\(399\) −2511.81 2268.46i −0.315157 0.284624i
\(400\) −6989.56 −0.873695
\(401\) 7719.60 4456.91i 0.961343 0.555032i 0.0647568 0.997901i \(-0.479373\pi\)
0.896586 + 0.442869i \(0.146039\pi\)
\(402\) 13.6837 + 13686.8i 0.00169771 + 1.69810i
\(403\) −661.826 + 1146.32i −0.0818062 + 0.141692i
\(404\) 715.112 + 1238.61i 0.0880648 + 0.152533i
\(405\) 5915.71 + 10152.3i 0.725812 + 1.24561i
\(406\) −2191.27 + 2421.47i −0.267859 + 0.295999i
\(407\) 8318.63i 1.01312i
\(408\) −3135.17 1805.91i −0.380427 0.219133i
\(409\) −2680.13 1547.37i −0.324019 0.187073i 0.329163 0.944273i \(-0.393233\pi\)
−0.653183 + 0.757200i \(0.726567\pi\)
\(410\) 13365.7 + 7716.69i 1.60996 + 0.929513i
\(411\) −2246.44 1293.99i −0.269608 0.155299i
\(412\) 271.076i 0.0324149i
\(413\) −1753.93 377.389i −0.208972 0.0449639i
\(414\) 1929.38 3357.26i 0.229043 0.398552i
\(415\) 4843.82 + 8389.74i 0.572949 + 0.992377i
\(416\) 216.496 374.983i 0.0255159 0.0441948i
\(417\) −6.32046 6321.90i −0.000742240 0.742409i
\(418\) 2805.45 1619.73i 0.328276 0.189530i
\(419\) −7234.25 −0.843476 −0.421738 0.906718i \(-0.638580\pi\)
−0.421738 + 0.906718i \(0.638580\pi\)
\(420\) 622.784 + 1926.54i 0.0723542 + 0.223822i
\(421\) 406.124 0.0470148 0.0235074 0.999724i \(-0.492517\pi\)
0.0235074 + 0.999724i \(0.492517\pi\)
\(422\) 9822.77 5671.18i 1.13309 0.654191i
\(423\) 2367.23 + 4081.29i 0.272101 + 0.469123i
\(424\) 3276.60 5675.23i 0.375296 0.650032i
\(425\) 1949.14 + 3376.01i 0.222464 + 0.385319i
\(426\) −843.982 1458.45i −0.0959885 0.165874i
\(427\) 5294.25 + 4790.95i 0.600016 + 0.542975i
\(428\) 2353.21i 0.265763i
\(429\) −683.999 + 1187.46i −0.0769785 + 0.133639i
\(430\) 6756.31 + 3900.76i 0.757717 + 0.437468i
\(431\) −10590.4 6114.37i −1.18358 0.683338i −0.226737 0.973956i \(-0.572806\pi\)
−0.956839 + 0.290618i \(0.906139\pi\)
\(432\) 3656.31 + 6289.27i 0.407209 + 0.700446i
\(433\) 3252.79i 0.361014i −0.983574 0.180507i \(-0.942226\pi\)
0.983574 0.180507i \(-0.0577738\pi\)
\(434\) −2625.41 8149.36i −0.290378 0.901341i
\(435\) −4940.24 + 2858.84i −0.544521 + 0.315105i
\(436\) −185.126 320.648i −0.0203348 0.0352208i
\(437\) −974.689 + 1688.21i −0.106695 + 0.184801i
\(438\) −3032.63 + 3.03194i −0.330833 + 0.000330758i
\(439\) −13036.8 + 7526.81i −1.41734 + 0.818303i −0.996065 0.0886287i \(-0.971752\pi\)
−0.421278 + 0.906932i \(0.638418\pi\)
\(440\) −13814.9 −1.49682
\(441\) −7508.57 + 5421.03i −0.810773 + 0.585361i
\(442\) 554.353 0.0596558
\(443\) −204.373 + 117.995i −0.0219189 + 0.0126549i −0.510919 0.859629i \(-0.670695\pi\)
0.489001 + 0.872283i \(0.337362\pi\)
\(444\) −1584.94 + 1.58458i −0.169410 + 0.000169371i
\(445\) 12130.6 21010.8i 1.29224 2.23822i
\(446\) 6276.44 + 10871.1i 0.666364 + 1.15418i
\(447\) 10439.2 6040.99i 1.10460 0.639215i
\(448\) 3214.67 + 9978.44i 0.339016 + 1.05231i
\(449\) 5874.66i 0.617466i −0.951149 0.308733i \(-0.900095\pi\)
0.951149 0.308733i \(-0.0999049\pi\)
\(450\) −18.8291 9416.70i −0.00197248 0.986462i
\(451\) 11409.0 + 6587.02i 1.19120 + 0.687739i
\(452\) −1172.71 677.066i −0.122035 0.0704568i
\(453\) −2535.09 + 4401.07i −0.262934 + 0.456468i
\(454\) 6127.24i 0.633405i
\(455\) −1639.74 1483.86i −0.168950 0.152889i
\(456\) −2203.79 3808.27i −0.226320 0.391094i
\(457\) −153.883 266.533i −0.0157513 0.0272821i 0.858042 0.513579i \(-0.171681\pi\)
−0.873794 + 0.486297i \(0.838347\pi\)
\(458\) 5582.89 9669.85i 0.569588 0.986556i
\(459\) 2018.15 3519.88i 0.205227 0.357939i
\(460\) 1009.92 583.079i 0.102365 0.0591004i
\(461\) 4752.26 0.480119 0.240060 0.970758i \(-0.422833\pi\)
0.240060 + 0.970758i \(0.422833\pi\)
\(462\) −2726.52 8434.28i −0.274565 0.849347i
\(463\) −9529.43 −0.956523 −0.478261 0.878218i \(-0.658733\pi\)
−0.478261 + 0.878218i \(0.658733\pi\)
\(464\) −3060.42 + 1766.94i −0.306199 + 0.176784i
\(465\) −14.9607 14964.1i −0.00149201 1.49235i
\(466\) −7210.74 + 12489.4i −0.716805 + 1.24154i
\(467\) 3269.28 + 5662.56i 0.323949 + 0.561097i 0.981299 0.192489i \(-0.0616559\pi\)
−0.657350 + 0.753586i \(0.728323\pi\)
\(468\) 226.376 + 130.096i 0.0223595 + 0.0128497i
\(469\) −18432.1 3965.99i −1.81475 0.390474i
\(470\) 7287.61i 0.715218i
\(471\) −747.386 430.508i −0.0731162 0.0421162i
\(472\) −2019.85 1166.16i −0.196973 0.113723i
\(473\) 5767.23 + 3329.71i 0.560629 + 0.323679i
\(474\) −12399.3 7142.19i −1.20151 0.692092i
\(475\) 4740.69i 0.457932i
\(476\) 469.113 518.395i 0.0451718 0.0499172i
\(477\) 6371.64 + 3661.70i 0.611609 + 0.351484i
\(478\) −6059.32 10495.0i −0.579805 1.00425i
\(479\) −3671.28 + 6358.85i −0.350199 + 0.606562i −0.986284 0.165057i \(-0.947219\pi\)
0.636085 + 0.771619i \(0.280553\pi\)
\(480\) 4.89394 + 4895.06i 0.000465368 + 0.465475i
\(481\) 1499.22 865.574i 0.142117 0.0820515i
\(482\) 5666.94 0.535523
\(483\) 3958.60 + 3575.08i 0.372925 + 0.336795i
\(484\) 83.1680 0.00781066
\(485\) −4570.96 + 2639.05i −0.427952 + 0.247078i
\(486\) −8463.39 + 4942.91i −0.789932 + 0.461348i
\(487\) −3508.78 + 6077.39i −0.326485 + 0.565489i −0.981812 0.189857i \(-0.939198\pi\)
0.655327 + 0.755345i \(0.272531\pi\)
\(488\) 4641.19 + 8038.77i 0.430526 + 0.745693i
\(489\) −2542.77 4394.06i −0.235150 0.406352i
\(490\) 14233.5 1424.19i 1.31225 0.131302i
\(491\) 224.222i 0.0206089i −0.999947 0.0103045i \(-0.996720\pi\)
0.999947 0.0103045i \(-0.00328007\pi\)
\(492\) 1252.84 2175.01i 0.114802 0.199303i
\(493\) 1706.89 + 985.471i 0.155932 + 0.0900272i
\(494\) 583.829 + 337.074i 0.0531735 + 0.0306997i
\(495\) −30.9775 15492.3i −0.00281280 1.40672i
\(496\) 9264.74i 0.838708i
\(497\) 2209.38 711.777i 0.199405 0.0642406i
\(498\) −6994.07 + 4047.36i −0.629341 + 0.364189i
\(499\) 10396.1 + 18006.6i 0.932651 + 1.61540i 0.778770 + 0.627309i \(0.215844\pi\)
0.153881 + 0.988089i \(0.450823\pi\)
\(500\) 103.031 178.456i 0.00921540 0.0159615i
\(501\) −5.23298 + 0.00523178i −0.000466651 + 4.66545e-7i
\(502\) 5020.87 2898.80i 0.446399 0.257729i
\(503\) 7341.52 0.650780 0.325390 0.945580i \(-0.394504\pi\)
0.325390 + 0.945580i \(0.394504\pi\)
\(504\) −11452.1 + 3714.71i −1.01213 + 0.328306i
\(505\) 17660.5 1.55620
\(506\) −4421.38 + 2552.69i −0.388448 + 0.224270i
\(507\) 11130.8 11.1282i 0.975019 0.000974796i
\(508\) −1074.15 + 1860.49i −0.0938146 + 0.162492i
\(509\) −9956.11 17244.5i −0.866988 1.50167i −0.865060 0.501669i \(-0.832720\pi\)
−0.00192778 0.999998i \(-0.500614\pi\)
\(510\) −5424.29 + 3138.95i −0.470964 + 0.272539i
\(511\) 878.757 4084.07i 0.0760742 0.353559i
\(512\) 13018.4i 1.12370i
\(513\) 4265.72 2479.90i 0.367127 0.213431i
\(514\) −2490.76 1438.04i −0.213741 0.123403i
\(515\) 2898.81 + 1673.63i 0.248032 + 0.143202i
\(516\) 633.308 1099.46i 0.0540307 0.0938004i
\(517\) 6220.75i 0.529184i
\(518\) −2355.46 + 10947.1i −0.199793 + 0.928548i
\(519\) 10297.2 + 17794.2i 0.870900 + 1.50497i
\(520\) −1437.47 2489.78i −0.121226 0.209969i
\(521\) −3745.90 + 6488.08i −0.314992 + 0.545582i −0.979436 0.201756i \(-0.935335\pi\)
0.664444 + 0.747338i \(0.268668\pi\)
\(522\) −2388.75 4118.40i −0.200293 0.345321i
\(523\) 249.515 144.058i 0.0208614 0.0120444i −0.489533 0.871985i \(-0.662833\pi\)
0.510394 + 0.859940i \(0.329499\pi\)
\(524\) 820.223 0.0683809
\(525\) 12684.3 + 2715.97i 1.05445 + 0.225781i
\(526\) 5326.62 0.441543
\(527\) −4474.94 + 2583.61i −0.369889 + 0.213555i
\(528\) −9.58956 9591.75i −0.000790401 0.790582i
\(529\) −4547.39 + 7876.32i −0.373748 + 0.647351i
\(530\) −5675.53 9830.30i −0.465149 0.805662i
\(531\) 1303.23 2267.71i 0.106507 0.185330i
\(532\) 809.266 260.715i 0.0659514 0.0212470i
\(533\) 2741.58i 0.222797i
\(534\) 17535.8 + 10100.9i 1.42106 + 0.818558i
\(535\) −25164.5 14528.7i −2.03356 1.17408i
\(536\) −21226.7 12255.2i −1.71055 0.987586i
\(537\) 12600.4 + 7258.03i 1.01256 + 0.583254i
\(538\) 12495.2i 1.00131i
\(539\) 12149.8 1215.69i 0.970923 0.0971496i
\(540\) −2951.72 + 8.85317i −0.235226 + 0.000705518i
\(541\) −7400.87 12818.7i −0.588149 1.01870i −0.994475 0.104975i \(-0.966524\pi\)
0.406326 0.913728i \(-0.366810\pi\)
\(542\) 286.478 496.194i 0.0227034 0.0393235i
\(543\) 7.82747 + 7829.25i 0.000618616 + 0.618758i
\(544\) 1463.84 845.149i 0.115371 0.0666093i
\(545\) −4571.90 −0.359337
\(546\) 1236.36 1368.99i 0.0969072 0.107303i
\(547\) −4036.80 −0.315541 −0.157771 0.987476i \(-0.550431\pi\)
−0.157771 + 0.987476i \(0.550431\pi\)
\(548\) 564.001 325.626i 0.0439652 0.0253833i
\(549\) −9004.40 + 5222.73i −0.699997 + 0.406012i
\(550\) −6207.88 + 10752.4i −0.481282 + 0.833604i
\(551\) 1198.43 + 2075.74i 0.0926585 + 0.160489i
\(552\) 3473.16 + 6001.82i 0.267803 + 0.462780i
\(553\) 13225.9 14615.4i 1.01704 1.12388i
\(554\) 6383.53i 0.489549i
\(555\) −9768.51 + 16958.7i −0.747117 + 1.29704i
\(556\) 1375.35 + 794.059i 0.104906 + 0.0605676i
\(557\) 14891.1 + 8597.36i 1.13277 + 0.654007i 0.944631 0.328135i \(-0.106420\pi\)
0.188142 + 0.982142i \(0.439754\pi\)
\(558\) 12481.9 24.9582i 0.946959 0.00189349i
\(559\) 1385.86i 0.104858i
\(560\) 15132.6 + 3256.03i 1.14191 + 0.245701i
\(561\) −4630.21 + 2679.43i −0.348463 + 0.201650i
\(562\) −5400.90 9354.64i −0.405380 0.702138i
\(563\) 9453.63 16374.2i 0.707678 1.22573i −0.258038 0.966135i \(-0.583076\pi\)
0.965716 0.259600i \(-0.0835907\pi\)
\(564\) −1185.23 + 1.18496i −0.0884882 + 8.84680e-5i
\(565\) −14480.7 + 8360.43i −1.07824 + 0.622524i
\(566\) 16815.8 1.24880
\(567\) −4191.41 12834.2i −0.310446 0.950591i
\(568\) 3017.60 0.222915
\(569\) −6255.57 + 3611.66i −0.460891 + 0.266096i −0.712419 0.701754i \(-0.752400\pi\)
0.251528 + 0.967850i \(0.419067\pi\)
\(570\) −7621.35 + 7.61961i −0.560041 + 0.000559913i
\(571\) 4965.17 8599.93i 0.363898 0.630290i −0.624700 0.780865i \(-0.714779\pi\)
0.988599 + 0.150574i \(0.0481122\pi\)
\(572\) −172.125 298.129i −0.0125820 0.0217926i
\(573\) −16537.7 + 9570.08i −1.20571 + 0.697724i
\(574\) −13148.9 11898.9i −0.956138 0.865242i
\(575\) 7471.31i 0.541870i
\(576\) −15283.4 + 30.5599i −1.10557 + 0.00221064i
\(577\) 7254.16 + 4188.19i 0.523388 + 0.302178i 0.738320 0.674451i \(-0.235620\pi\)
−0.214932 + 0.976629i \(0.568953\pi\)
\(578\) −9134.73 5273.94i −0.657361 0.379528i
\(579\) 335.782 582.937i 0.0241013 0.0418412i
\(580\) 1433.85i 0.102651i
\(581\) −3413.36 10595.2i −0.243735 0.756560i
\(582\) −2205.11 3810.56i −0.157053 0.271397i
\(583\) −4844.67 8391.21i −0.344161 0.596104i
\(584\) 2715.44 4703.27i 0.192407 0.333258i
\(585\) 2788.85 1617.59i 0.197102 0.114323i
\(586\) 12631.9 7293.03i 0.890476 0.514116i
\(587\) −21277.2 −1.49609 −0.748043 0.663650i \(-0.769006\pi\)
−0.748043 + 0.663650i \(0.769006\pi\)
\(588\) −233.939 2314.65i −0.0164073 0.162338i
\(589\) −6283.84 −0.439594
\(590\) −3498.67 + 2019.96i −0.244132 + 0.140950i
\(591\) −15.8177 15821.3i −0.00110093 1.10118i
\(592\) −6058.48 + 10493.6i −0.420611 + 0.728520i
\(593\) −1424.49 2467.29i −0.0986454 0.170859i 0.812479 0.582991i \(-0.198118\pi\)
−0.911124 + 0.412132i \(0.864784\pi\)
\(594\) 12922.5 38.7587i 0.892619 0.00267725i
\(595\) −2647.25 8217.14i −0.182398 0.566168i
\(596\) 3029.86i 0.208235i
\(597\) 17980.2 + 10356.9i 1.23263 + 0.710016i
\(598\) −920.111 531.227i −0.0629200 0.0363269i
\(599\) 3844.40 + 2219.57i 0.262234 + 0.151401i 0.625353 0.780342i \(-0.284955\pi\)
−0.363119 + 0.931743i \(0.618288\pi\)
\(600\) 14612.7 + 8417.17i 0.994268 + 0.572716i
\(601\) 7868.29i 0.534033i 0.963692 + 0.267017i \(0.0860379\pi\)
−0.963692 + 0.267017i \(0.913962\pi\)
\(602\) −6646.70 6014.83i −0.449999 0.407220i
\(603\) 13695.6 23831.4i 0.924924 1.60944i
\(604\) −637.943 1104.95i −0.0429761 0.0744367i
\(605\) 513.480 889.374i 0.0345057 0.0597656i
\(606\) 14.7277 + 14731.1i 0.000987247 + 0.987473i
\(607\) −15144.9 + 8743.92i −1.01271 + 0.584686i −0.911983 0.410228i \(-0.865449\pi\)
−0.100724 + 0.994914i \(0.532116\pi\)
\(608\) 2055.57 0.137112
\(609\) 6240.48 2017.33i 0.415233 0.134231i
\(610\) 16078.4 1.06720
\(611\) 1121.13 647.284i 0.0742324 0.0428581i
\(612\) 511.391 + 881.679i 0.0337774 + 0.0582349i
\(613\) −6422.07 + 11123.3i −0.423140 + 0.732900i −0.996245 0.0865820i \(-0.972406\pi\)
0.573105 + 0.819482i \(0.305739\pi\)
\(614\) 4454.16 + 7714.83i 0.292761 + 0.507077i
\(615\) −15523.8 26826.1i −1.01786 1.75892i
\(616\) 15518.6 + 3339.10i 1.01504 + 0.218403i
\(617\) 23625.5i 1.54153i 0.637117 + 0.770767i \(0.280127\pi\)
−0.637117 + 0.770767i \(0.719873\pi\)
\(618\) −1393.60 + 2419.37i −0.0907100 + 0.157478i
\(619\) 16529.1 + 9543.05i 1.07328 + 0.619657i 0.929075 0.369891i \(-0.120605\pi\)
0.144202 + 0.989548i \(0.453938\pi\)
\(620\) 3255.49 + 1879.56i 0.210877 + 0.121750i
\(621\) −6722.75 + 3908.32i −0.434420 + 0.252553i
\(622\) 391.901i 0.0252633i
\(623\) −18704.9 + 20669.9i −1.20289 + 1.32925i
\(624\) 1727.67 999.772i 0.110836 0.0641393i
\(625\) 7152.40 + 12388.3i 0.457754 + 0.792853i
\(626\) −12451.6 + 21566.9i −0.794996 + 1.37697i
\(627\) −6505.63 + 6.50415i −0.414370 + 0.000414275i
\(628\) 187.642 108.335i 0.0119231 0.00688382i
\(629\) 6757.98 0.428391
\(630\) −4345.94 + 20396.2i −0.274835 + 1.28985i
\(631\) 32.3893 0.00204342 0.00102171 0.999999i \(-0.499675\pi\)
0.00102171 + 0.999999i \(0.499675\pi\)
\(632\) 22191.9 12812.5i 1.39675 0.806414i
\(633\) −22778.2 + 22.7730i −1.43026 + 0.00142993i
\(634\) 11751.9 20355.0i 0.736166 1.27508i
\(635\) 13263.7 + 22973.4i 0.828902 + 1.43570i
\(636\) −1597.85 + 924.648i −0.0996207 + 0.0576489i
\(637\) 1483.31 + 2063.19i 0.0922620 + 0.128330i
\(638\) 6277.32i 0.389532i
\(639\) 6.76643 + 3383.98i 0.000418898 + 0.209497i
\(640\) 13917.4 + 8035.20i 0.859583 + 0.496280i
\(641\) −18742.7 10821.1i −1.15490 0.666784i −0.204827 0.978798i \(-0.565663\pi\)
−0.950078 + 0.312014i \(0.898996\pi\)
\(642\) 12097.8 21002.5i 0.743711 1.29112i
\(643\) 19867.3i 1.21849i 0.792982 + 0.609246i \(0.208528\pi\)
−0.792982 + 0.609246i \(0.791472\pi\)
\(644\) −1275.40 + 410.886i −0.0780401 + 0.0251416i
\(645\) −7847.24 13560.5i −0.479046 0.827820i
\(646\) 1315.85 + 2279.12i 0.0801417 + 0.138809i
\(647\) 11212.2 19420.1i 0.681294 1.18004i −0.293293 0.956023i \(-0.594751\pi\)
0.974586 0.224012i \(-0.0719156\pi\)
\(648\) −70.1913 17551.7i −0.00425521 1.06404i
\(649\) −2986.49 + 1724.25i −0.180632 + 0.104288i
\(650\) −2583.78 −0.155914
\(651\) −3600.05 + 16813.2i −0.216739 + 1.01223i
\(652\) 1275.33 0.0766038
\(653\) 17358.5 10021.9i 1.04026 0.600594i 0.120353 0.992731i \(-0.461597\pi\)
0.919907 + 0.392137i \(0.128264\pi\)
\(654\) −3.81267 3813.54i −0.000227962 0.228014i
\(655\) 5064.07 8771.22i 0.302091 0.523237i
\(656\) −9594.67 16618.5i −0.571050 0.989088i
\(657\) 5280.41 + 3034.59i 0.313559 + 0.180199i
\(658\) −1761.43 + 8186.34i −0.104358 + 0.485011i
\(659\) 13217.9i 0.781327i 0.920533 + 0.390664i \(0.127754\pi\)
−0.920533 + 0.390664i \(0.872246\pi\)
\(660\) 3372.34 + 1942.53i 0.198891 + 0.114565i
\(661\) 8470.90 + 4890.68i 0.498457 + 0.287784i 0.728076 0.685496i \(-0.240415\pi\)
−0.229619 + 0.973281i \(0.573748\pi\)
\(662\) −3149.56 1818.40i −0.184911 0.106758i
\(663\) −964.682 555.674i −0.0565085 0.0325499i
\(664\) 14471.0i 0.845761i
\(665\) 2208.41 10263.7i 0.128780 0.598511i
\(666\) −14153.8 8134.03i −0.823499 0.473254i
\(667\) −1888.72 3271.36i −0.109642 0.189906i
\(668\) 0.657286 1.13845i 3.80706e−5 6.59402e-5i
\(669\) −25.2035 25209.3i −0.00145654 1.45687i
\(670\) −36767.7 + 21227.8i −2.12009 + 1.22403i
\(671\) 13724.6 0.789617
\(672\) 1177.65 5499.92i 0.0676024 0.315720i
\(673\) −4670.73 −0.267524 −0.133762 0.991014i \(-0.542706\pi\)
−0.133762 + 0.991014i \(0.542706\pi\)
\(674\) −17888.8 + 10328.1i −1.02233 + 0.590242i
\(675\) −9406.39 + 16405.8i −0.536373 + 0.935494i
\(676\) −1398.07 + 2421.53i −0.0795445 + 0.137775i
\(677\) −13521.0 23419.1i −0.767584 1.32949i −0.938870 0.344273i \(-0.888125\pi\)
0.171286 0.985221i \(-0.445208\pi\)
\(678\) −6985.73 12071.8i −0.395701 0.683795i
\(679\) 5772.53 1859.69i 0.326258 0.105108i
\(680\) 11223.1i 0.632921i
\(681\) 6141.85 10662.6i 0.345604 0.599988i
\(682\) −14252.4 8228.61i −0.800222 0.462009i
\(683\) 11596.9 + 6695.45i 0.649694 + 0.375101i 0.788339 0.615241i \(-0.210941\pi\)
−0.138645 + 0.990342i \(0.544275\pi\)
\(684\) 2.47846 + 1239.51i 0.000138547 + 0.0692893i
\(685\) 8041.69i 0.448551i
\(686\) −16333.0 1840.44i −0.909034 0.102432i
\(687\) −19408.2 + 11231.2i −1.07783 + 0.623724i
\(688\) −4850.07 8400.57i −0.268761 0.465507i
\(689\) 1008.20 1746.25i 0.0557464 0.0965557i
\(690\) 12011.2 12.0085i 0.662694 0.000662543i
\(691\) 26837.3 15494.6i 1.47748 0.853025i 0.477807 0.878465i \(-0.341432\pi\)
0.999676 + 0.0254396i \(0.00809856\pi\)
\(692\) −5164.56 −0.283710
\(693\) −3709.72 + 17410.3i −0.203348 + 0.954348i
\(694\) 6777.28 0.370694
\(695\) 16982.9 9805.07i 0.926903 0.535147i
\(696\) 8526.09 8.52414i 0.464340 0.000464234i
\(697\) −5351.23 + 9268.60i −0.290807 + 0.503692i
\(698\) 7804.05 + 13517.0i 0.423191 + 0.732989i
\(699\) 25067.3 14506.0i 1.35641 0.784933i
\(700\) −2186.49 + 2416.18i −0.118059 + 0.130462i
\(701\) 2892.67i 0.155855i 0.996959 + 0.0779277i \(0.0248303\pi\)
−0.996959 + 0.0779277i \(0.975170\pi\)
\(702\) 1351.60 + 2324.91i 0.0726679 + 0.124997i
\(703\) 7117.31 + 4109.18i 0.381841 + 0.220456i
\(704\) 17451.2 + 10075.5i 0.934259 + 0.539395i
\(705\) −7304.98 + 12681.9i −0.390243 + 0.677485i
\(706\) 13755.5i 0.733277i
\(707\) −19838.4 4268.57i −1.05530 0.227067i
\(708\) 329.089 + 568.685i 0.0174688 + 0.0301871i
\(709\) −7965.19 13796.1i −0.421917 0.730781i 0.574210 0.818708i \(-0.305309\pi\)
−0.996127 + 0.0879267i \(0.971976\pi\)
\(710\) 2613.46 4526.64i 0.138143 0.239270i
\(711\) 14417.9 + 24857.6i 0.760497 + 1.31116i
\(712\) −31385.2 + 18120.2i −1.65198 + 0.953770i
\(713\) 9903.30 0.520171
\(714\) 6851.93 2214.99i 0.359141 0.116098i
\(715\) −4250.81 −0.222337
\(716\) −3163.50 + 1826.45i −0.165119 + 0.0953317i
\(717\) 24.3316 + 24337.2i 0.00126734 + 1.26763i
\(718\) 2408.83 4172.22i 0.125204 0.216860i
\(719\) −5938.87 10286.4i −0.308042 0.533545i 0.669892 0.742459i \(-0.266341\pi\)
−0.977934 + 0.208914i \(0.933007\pi\)
\(720\) −11244.0 + 19565.4i −0.581997 + 1.01272i
\(721\) −2851.78 2580.67i −0.147303 0.133300i
\(722\) 14546.6i 0.749819i
\(723\) −9861.57 5680.44i −0.507270 0.292196i
\(724\) −1703.28 983.389i −0.0874336 0.0504798i
\(725\) −7955.61 4593.18i −0.407537 0.235291i
\(726\) 742.279 + 427.566i 0.0379457 + 0.0218574i
\(727\) 16795.8i 0.856839i −0.903580 0.428419i \(-0.859071\pi\)
0.903580 0.428419i \(-0.140929\pi\)
\(728\) 1012.96 + 3144.27i 0.0515700 + 0.160075i
\(729\) 19682.6 118.070i 0.999982 0.00599859i
\(730\) −4703.52 8146.74i −0.238473 0.413047i
\(731\) −2705.03 + 4685.24i −0.136866 + 0.237059i
\(732\) −2.61434 2614.94i −0.000132007 0.132037i
\(733\) 22048.4 12729.7i 1.11102 0.641447i 0.171926 0.985110i \(-0.445001\pi\)
0.939093 + 0.343663i \(0.111668\pi\)
\(734\) 5007.02 0.251788
\(735\) −26196.6 11789.0i −1.31466 0.591626i
\(736\) −3239.57 −0.162245
\(737\) −31385.1 + 18120.2i −1.56864 + 0.905653i
\(738\) 22363.4 12971.2i 1.11546 0.646988i
\(739\) 9319.48 16141.8i 0.463901 0.803499i −0.535251 0.844693i \(-0.679783\pi\)
0.999151 + 0.0411940i \(0.0131162\pi\)
\(740\) −2458.19 4257.72i −0.122115 0.211509i
\(741\) −678.099 1171.79i −0.0336175 0.0580930i
\(742\) 3999.45 + 12414.4i 0.197877 + 0.614214i
\(743\) 14043.3i 0.693401i −0.937976 0.346700i \(-0.887302\pi\)
0.937976 0.346700i \(-0.112698\pi\)
\(744\) −11157.1 + 19369.3i −0.549782 + 0.954452i
\(745\) 32400.4 + 18706.4i 1.59337 + 0.919932i
\(746\) 17348.1 + 10016.0i 0.851422 + 0.491569i
\(747\) 16228.0 32.4487i 0.794850 0.00158934i
\(748\) 1343.87i 0.0656907i
\(749\) 24756.3 + 22402.8i 1.20771 + 1.09290i
\(750\) 1837.00 1063.04i 0.0894370 0.0517557i
\(751\) −8115.13 14055.8i −0.394308 0.682961i 0.598705 0.800970i \(-0.295682\pi\)
−0.993013 + 0.118009i \(0.962349\pi\)
\(752\) −4530.58 + 7847.20i −0.219699 + 0.380529i
\(753\) −11643.0 + 11.6404i −0.563473 + 0.000563344i
\(754\) −1131.32 + 653.170i −0.0546424 + 0.0315478i
\(755\) −15754.7 −0.759433
\(756\) 3317.88 + 703.493i 0.159616 + 0.0338436i
\(757\) −33345.7 −1.60102 −0.800508 0.599322i \(-0.795437\pi\)
−0.800508 + 0.599322i \(0.795437\pi\)
\(758\) 8340.45 4815.36i 0.399655 0.230741i
\(759\) 10252.8 10.2505i 0.490322 0.000490211i
\(760\) 6824.19 11819.9i 0.325710 0.564146i
\(761\) 5394.02 + 9342.71i 0.256942 + 0.445037i 0.965421 0.260695i \(-0.0839517\pi\)
−0.708479 + 0.705732i \(0.750618\pi\)
\(762\) −19151.6 + 11082.7i −0.910486 + 0.526884i
\(763\) 5135.72 + 1105.04i 0.243677 + 0.0524313i
\(764\) 4799.87i 0.227295i
\(765\) 12585.8 25.1658i 0.594822 0.00118937i
\(766\) 15894.7 + 9176.84i 0.749740 + 0.432862i
\(767\) −621.503 358.825i −0.0292584 0.0168923i
\(768\) 5054.08 8774.16i 0.237465 0.412253i
\(769\) 35799.6i 1.67876i 0.543543 + 0.839381i \(0.317082\pi\)
−0.543543 + 0.839381i \(0.682918\pi\)