# Properties

 Label 21.4.e.b.16.3 Level $21$ Weight $4$ Character 21.16 Analytic conductor $1.239$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$21 = 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 21.e (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.23904011012$$ Analytic rank: $$0$$ Dimension: $$6$$ Relative dimension: $$3$$ over $$\Q(\zeta_{3})$$ Coefficient field: 6.0.9924270768.1 Defining polynomial: $$x^{6} - x^{5} + 25 x^{4} + 12 x^{3} + 582 x^{2} - 144 x + 36$$ Coefficient ring: $$\Z[a_1, \ldots, a_{4}]$$ Coefficient ring index: $$3$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 16.3 Root $$-2.27818 + 3.94593i$$ of defining polynomial Character $$\chi$$ $$=$$ 21.16 Dual form 21.4.e.b.4.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(2.27818 - 3.94593i) q^{2} +(1.50000 + 2.59808i) q^{3} +(-6.38024 - 11.0509i) q^{4} +(-8.93660 + 15.4786i) q^{5} +13.6691 q^{6} +(2.26047 - 18.3818i) q^{7} -21.6905 q^{8} +(-4.50000 + 7.79423i) q^{9} +O(q^{10})$$ $$q+(2.27818 - 3.94593i) q^{2} +(1.50000 + 2.59808i) q^{3} +(-6.38024 - 11.0509i) q^{4} +(-8.93660 + 15.4786i) q^{5} +13.6691 q^{6} +(2.26047 - 18.3818i) q^{7} -21.6905 q^{8} +(-4.50000 + 7.79423i) q^{9} +(40.7184 + 70.5264i) q^{10} +(5.69708 + 9.86762i) q^{11} +(19.1407 - 33.1527i) q^{12} -13.0987 q^{13} +(-67.3835 - 50.7968i) q^{14} -53.6196 q^{15} +(1.62706 - 2.81815i) q^{16} +(-26.6337 - 46.1309i) q^{17} +(20.5036 + 35.5134i) q^{18} +(21.2111 - 36.7388i) q^{19} +228.071 q^{20} +(51.1480 - 21.6998i) q^{21} +51.9159 q^{22} +(-76.0427 + 131.710i) q^{23} +(-32.5357 - 56.3535i) q^{24} +(-97.2257 - 168.400i) q^{25} +(-29.8412 + 51.6864i) q^{26} -27.0000 q^{27} +(-217.558 + 92.2999i) q^{28} +186.493 q^{29} +(-122.155 + 211.579i) q^{30} +(78.9369 + 136.723i) q^{31} +(-94.1753 - 163.116i) q^{32} +(-17.0912 + 29.6029i) q^{33} -242.706 q^{34} +(264.324 + 199.260i) q^{35} +114.844 q^{36} +(-1.87294 + 3.24403i) q^{37} +(-96.6457 - 167.395i) q^{38} +(-19.6480 - 34.0313i) q^{39} +(193.839 - 335.739i) q^{40} -39.3230 q^{41} +(30.8986 - 251.263i) q^{42} +429.439 q^{43} +(72.6974 - 125.916i) q^{44} +(-80.4294 - 139.308i) q^{45} +(346.478 + 600.118i) q^{46} +(-10.5934 + 18.3484i) q^{47} +9.76236 q^{48} +(-332.781 - 83.1031i) q^{49} -885.992 q^{50} +(79.9010 - 138.393i) q^{51} +(83.5726 + 144.752i) q^{52} +(-182.952 - 316.882i) q^{53} +(-61.5109 + 106.540i) q^{54} -203.650 q^{55} +(-49.0307 + 398.709i) q^{56} +127.267 q^{57} +(424.866 - 735.889i) q^{58} +(113.289 + 196.222i) q^{59} +(342.106 + 592.545i) q^{60} +(-325.987 + 564.626i) q^{61} +719.331 q^{62} +(133.100 + 100.337i) q^{63} -832.161 q^{64} +(117.058 - 202.750i) q^{65} +(77.8739 + 134.882i) q^{66} +(-72.7166 - 125.949i) q^{67} +(-339.858 + 588.652i) q^{68} -456.256 q^{69} +(1388.44 - 589.055i) q^{70} -368.962 q^{71} +(97.6071 - 169.060i) q^{72} +(-304.453 - 527.328i) q^{73} +(8.53380 + 14.7810i) q^{74} +(291.677 - 505.200i) q^{75} -541.328 q^{76} +(194.263 - 82.4170i) q^{77} -179.047 q^{78} +(-455.119 + 788.289i) q^{79} +(29.0808 + 50.3694i) q^{80} +(-40.5000 - 70.1481i) q^{81} +(-89.5850 + 155.166i) q^{82} -327.929 q^{83} +(-566.139 - 426.781i) q^{84} +952.058 q^{85} +(978.340 - 1694.53i) q^{86} +(279.740 + 484.524i) q^{87} +(-123.572 - 214.033i) q^{88} +(18.8059 - 32.5728i) q^{89} -732.932 q^{90} +(-29.6092 + 240.777i) q^{91} +1940.68 q^{92} +(-236.811 + 410.168i) q^{93} +(48.2676 + 83.6019i) q^{94} +(379.111 + 656.640i) q^{95} +(282.526 - 489.349i) q^{96} +722.013 q^{97} +(-1086.05 + 1123.80i) q^{98} -102.547 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6q - q^{2} + 9q^{3} - 25q^{4} - 11q^{5} - 6q^{6} - 13q^{7} + 78q^{8} - 27q^{9} + O(q^{10})$$ $$6q - q^{2} + 9q^{3} - 25q^{4} - 11q^{5} - 6q^{6} - 13q^{7} + 78q^{8} - 27q^{9} + 55q^{10} - 35q^{11} + 75q^{12} + 124q^{13} - 326q^{14} - 66q^{15} - 241q^{16} - 48q^{17} - 9q^{18} + 202q^{19} + 878q^{20} + 3q^{21} - 14q^{22} - 216q^{23} + 117q^{24} - 130q^{25} - 274q^{26} - 162q^{27} - 201q^{28} + 106q^{29} - 165q^{30} + 95q^{31} - 683q^{32} + 105q^{33} - 48q^{34} + 56q^{35} + 450q^{36} - 262q^{37} + 398q^{38} + 186q^{39} - 21q^{40} + 488q^{41} - 219q^{42} + 720q^{43} + 905q^{44} - 99q^{45} + 1056q^{46} + 210q^{47} - 1446q^{48} - 303q^{49} - 2756q^{50} + 144q^{51} - 324q^{52} - 393q^{53} + 27q^{54} - 2062q^{55} + 1299q^{56} + 1212q^{57} + 1249q^{58} - 1143q^{59} + 1317q^{60} + 70q^{61} + 2118q^{62} + 126q^{63} - 798q^{64} + 472q^{65} - 21q^{66} + 628q^{67} - 1944q^{68} - 1296q^{69} + 3251q^{70} + 636q^{71} - 351q^{72} - 988q^{73} - 1002q^{74} + 390q^{75} - 4680q^{76} + 1073q^{77} - 1644q^{78} - 861q^{79} - 175q^{80} - 243q^{81} - 124q^{82} + 1038q^{83} + 1620q^{84} + 3600q^{85} + 3208q^{86} + 159q^{87} + 891q^{88} - 1766q^{89} - 990q^{90} - 654q^{91} - 1344q^{92} - 285q^{93} + 3294q^{94} + 736q^{95} + 2049q^{96} + 38q^{97} - 4267q^{98} + 630q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/21\mathbb{Z}\right)^\times$$.

 $$n$$ $$8$$ $$10$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 2.27818 3.94593i 0.805459 1.39510i −0.110521 0.993874i $$-0.535252\pi$$
0.915981 0.401223i $$-0.131415\pi$$
$$3$$ 1.50000 + 2.59808i 0.288675 + 0.500000i
$$4$$ −6.38024 11.0509i −0.797530 1.38136i
$$5$$ −8.93660 + 15.4786i −0.799314 + 1.38445i 0.120749 + 0.992683i $$0.461470\pi$$
−0.920063 + 0.391769i $$0.871863\pi$$
$$6$$ 13.6691 0.930064
$$7$$ 2.26047 18.3818i 0.122054 0.992523i
$$8$$ −21.6905 −0.958592
$$9$$ −4.50000 + 7.79423i −0.166667 + 0.288675i
$$10$$ 40.7184 + 70.5264i 1.28763 + 2.23024i
$$11$$ 5.69708 + 9.86762i 0.156158 + 0.270473i 0.933480 0.358630i $$-0.116756\pi$$
−0.777322 + 0.629102i $$0.783423\pi$$
$$12$$ 19.1407 33.1527i 0.460454 0.797530i
$$13$$ −13.0987 −0.279455 −0.139728 0.990190i $$-0.544623\pi$$
−0.139728 + 0.990190i $$0.544623\pi$$
$$14$$ −67.3835 50.7968i −1.28636 0.969714i
$$15$$ −53.6196 −0.922968
$$16$$ 1.62706 2.81815i 0.0254228 0.0440336i
$$17$$ −26.6337 46.1309i −0.379977 0.658140i 0.611081 0.791568i $$-0.290735\pi$$
−0.991059 + 0.133428i $$0.957402\pi$$
$$18$$ 20.5036 + 35.5134i 0.268486 + 0.465032i
$$19$$ 21.2111 36.7388i 0.256114 0.443603i −0.709083 0.705125i $$-0.750891\pi$$
0.965198 + 0.261522i $$0.0842244\pi$$
$$20$$ 228.071 2.54991
$$21$$ 51.1480 21.6998i 0.531496 0.225490i
$$22$$ 51.9159 0.503114
$$23$$ −76.0427 + 131.710i −0.689391 + 1.19406i 0.282644 + 0.959225i $$0.408789\pi$$
−0.972035 + 0.234836i $$0.924545\pi$$
$$24$$ −32.5357 56.3535i −0.276722 0.479296i
$$25$$ −97.2257 168.400i −0.777806 1.34720i
$$26$$ −29.8412 + 51.6864i −0.225090 + 0.389867i
$$27$$ −27.0000 −0.192450
$$28$$ −217.558 + 92.2999i −1.46838 + 0.622966i
$$29$$ 186.493 1.19417 0.597085 0.802178i $$-0.296325\pi$$
0.597085 + 0.802178i $$0.296325\pi$$
$$30$$ −122.155 + 211.579i −0.743413 + 1.28763i
$$31$$ 78.9369 + 136.723i 0.457338 + 0.792133i 0.998819 0.0485801i $$-0.0154696\pi$$
−0.541481 + 0.840713i $$0.682136\pi$$
$$32$$ −94.1753 163.116i −0.520250 0.901099i
$$33$$ −17.0912 + 29.6029i −0.0901576 + 0.156158i
$$34$$ −242.706 −1.22423
$$35$$ 264.324 + 199.260i 1.27654 + 0.962316i
$$36$$ 114.844 0.531686
$$37$$ −1.87294 + 3.24403i −0.00832188 + 0.0144139i −0.870156 0.492776i $$-0.835982\pi$$
0.861834 + 0.507190i $$0.169316\pi$$
$$38$$ −96.6457 167.395i −0.412579 0.714608i
$$39$$ −19.6480 34.0313i −0.0806718 0.139728i
$$40$$ 193.839 335.739i 0.766216 1.32712i
$$41$$ −39.3230 −0.149786 −0.0748930 0.997192i $$-0.523862\pi$$
−0.0748930 + 0.997192i $$0.523862\pi$$
$$42$$ 30.8986 251.263i 0.113518 0.923111i
$$43$$ 429.439 1.52300 0.761498 0.648168i $$-0.224464\pi$$
0.761498 + 0.648168i $$0.224464\pi$$
$$44$$ 72.6974 125.916i 0.249080 0.431420i
$$45$$ −80.4294 139.308i −0.266438 0.461484i
$$46$$ 346.478 + 600.118i 1.11055 + 1.92354i
$$47$$ −10.5934 + 18.3484i −0.0328768 + 0.0569444i −0.881996 0.471258i $$-0.843800\pi$$
0.849119 + 0.528202i $$0.177134\pi$$
$$48$$ 9.76236 0.0293557
$$49$$ −332.781 83.1031i −0.970206 0.242283i
$$50$$ −885.992 −2.50596
$$51$$ 79.9010 138.393i 0.219380 0.379977i
$$52$$ 83.5726 + 144.752i 0.222874 + 0.386029i
$$53$$ −182.952 316.882i −0.474158 0.821266i 0.525404 0.850853i $$-0.323914\pi$$
−0.999562 + 0.0295866i $$0.990581\pi$$
$$54$$ −61.5109 + 106.540i −0.155011 + 0.268486i
$$55$$ −203.650 −0.499276
$$56$$ −49.0307 + 398.709i −0.117000 + 0.951425i
$$57$$ 127.267 0.295735
$$58$$ 424.866 735.889i 0.961856 1.66598i
$$59$$ 113.289 + 196.222i 0.249982 + 0.432982i 0.963521 0.267634i $$-0.0862419\pi$$
−0.713538 + 0.700616i $$0.752909\pi$$
$$60$$ 342.106 + 592.545i 0.736095 + 1.27495i
$$61$$ −325.987 + 564.626i −0.684235 + 1.18513i 0.289442 + 0.957196i $$0.406530\pi$$
−0.973677 + 0.227934i $$0.926803\pi$$
$$62$$ 719.331 1.47347
$$63$$ 133.100 + 100.337i 0.266174 + 0.200655i
$$64$$ −832.161 −1.62532
$$65$$ 117.058 202.750i 0.223372 0.386892i
$$66$$ 77.8739 + 134.882i 0.145237 + 0.251557i
$$67$$ −72.7166 125.949i −0.132593 0.229658i 0.792082 0.610414i $$-0.208997\pi$$
−0.924675 + 0.380756i $$0.875664\pi$$
$$68$$ −339.858 + 588.652i −0.606086 + 1.04977i
$$69$$ −456.256 −0.796041
$$70$$ 1388.44 589.055i 2.37073 1.00579i
$$71$$ −368.962 −0.616728 −0.308364 0.951268i $$-0.599782\pi$$
−0.308364 + 0.951268i $$0.599782\pi$$
$$72$$ 97.6071 169.060i 0.159765 0.276722i
$$73$$ −304.453 527.328i −0.488130 0.845466i 0.511777 0.859119i $$-0.328988\pi$$
−0.999907 + 0.0136522i $$0.995654\pi$$
$$74$$ 8.53380 + 14.7810i 0.0134059 + 0.0232197i
$$75$$ 291.677 505.200i 0.449066 0.777806i
$$76$$ −541.328 −0.817034
$$77$$ 194.263 82.4170i 0.287510 0.121978i
$$78$$ −179.047 −0.259911
$$79$$ −455.119 + 788.289i −0.648163 + 1.12265i 0.335399 + 0.942076i $$0.391129\pi$$
−0.983561 + 0.180574i $$0.942204\pi$$
$$80$$ 29.0808 + 50.3694i 0.0406416 + 0.0703933i
$$81$$ −40.5000 70.1481i −0.0555556 0.0962250i
$$82$$ −89.5850 + 155.166i −0.120646 + 0.208966i
$$83$$ −327.929 −0.433674 −0.216837 0.976208i $$-0.569574\pi$$
−0.216837 + 0.976208i $$0.569574\pi$$
$$84$$ −566.139 426.781i −0.735367 0.554353i
$$85$$ 952.058 1.21489
$$86$$ 978.340 1694.53i 1.22671 2.12473i
$$87$$ 279.740 + 484.524i 0.344727 + 0.597085i
$$88$$ −123.572 214.033i −0.149691 0.259273i
$$89$$ 18.8059 32.5728i 0.0223980 0.0387945i −0.854609 0.519272i $$-0.826203\pi$$
0.877007 + 0.480477i $$0.159537\pi$$
$$90$$ −732.932 −0.858420
$$91$$ −29.6092 + 240.777i −0.0341086 + 0.277366i
$$92$$ 1940.68 2.19924
$$93$$ −236.811 + 410.168i −0.264044 + 0.457338i
$$94$$ 48.2676 + 83.6019i 0.0529619 + 0.0917327i
$$95$$ 379.111 + 656.640i 0.409431 + 0.709156i
$$96$$ 282.526 489.349i 0.300366 0.520250i
$$97$$ 722.013 0.755766 0.377883 0.925853i $$-0.376652\pi$$
0.377883 + 0.925853i $$0.376652\pi$$
$$98$$ −1086.05 + 1123.80i −1.11947 + 1.15838i
$$99$$ −102.547 −0.104105
$$100$$ −1240.65 + 2148.86i −1.24065 + 2.14886i
$$101$$ −759.336 1315.21i −0.748087 1.29572i −0.948739 0.316062i $$-0.897639\pi$$
0.200652 0.979663i $$-0.435694\pi$$
$$102$$ −364.058 630.568i −0.353403 0.612113i
$$103$$ 525.942 910.957i 0.503132 0.871450i −0.496862 0.867830i $$-0.665514\pi$$
0.999993 0.00361990i $$-0.00115225\pi$$
$$104$$ 284.116 0.267883
$$105$$ −121.206 + 985.625i −0.112652 + 0.916068i
$$106$$ −1667.19 −1.52766
$$107$$ −383.260 + 663.826i −0.346273 + 0.599762i −0.985584 0.169186i $$-0.945886\pi$$
0.639312 + 0.768948i $$0.279219\pi$$
$$108$$ 172.266 + 298.374i 0.153485 + 0.265843i
$$109$$ 713.524 + 1235.86i 0.627002 + 1.08600i 0.988150 + 0.153491i $$0.0490516\pi$$
−0.361148 + 0.932509i $$0.617615\pi$$
$$110$$ −463.952 + 803.588i −0.402146 + 0.696538i
$$111$$ −11.2376 −0.00960928
$$112$$ −48.1247 36.2786i −0.0406014 0.0306072i
$$113$$ 362.564 0.301833 0.150917 0.988546i $$-0.451778\pi$$
0.150917 + 0.988546i $$0.451778\pi$$
$$114$$ 289.937 502.186i 0.238203 0.412579i
$$115$$ −1359.13 2354.08i −1.10208 1.90886i
$$116$$ −1189.87 2060.92i −0.952386 1.64958i
$$117$$ 58.9440 102.094i 0.0465759 0.0806718i
$$118$$ 1032.37 0.805402
$$119$$ −908.173 + 385.297i −0.699597 + 0.296808i
$$120$$ 1163.03 0.884750
$$121$$ 600.587 1040.25i 0.451230 0.781553i
$$122$$ 1485.31 + 2572.64i 1.10225 + 1.90915i
$$123$$ −58.9845 102.164i −0.0432395 0.0748930i
$$124$$ 1007.27 1744.65i 0.729481 1.26350i
$$125$$ 1241.32 0.888216
$$126$$ 699.147 296.617i 0.494325 0.209720i
$$127$$ 974.777 0.681082 0.340541 0.940230i $$-0.389390\pi$$
0.340541 + 0.940230i $$0.389390\pi$$
$$128$$ −1142.41 + 1978.72i −0.788875 + 1.36637i
$$129$$ 644.158 + 1115.71i 0.439651 + 0.761498i
$$130$$ −533.357 923.802i −0.359835 0.623252i
$$131$$ 896.351 1552.53i 0.597821 1.03546i −0.395321 0.918543i $$-0.629367\pi$$
0.993142 0.116914i $$-0.0373001\pi$$
$$132$$ 436.184 0.287613
$$133$$ −627.377 472.946i −0.409026 0.308343i
$$134$$ −662.647 −0.427194
$$135$$ 241.288 417.924i 0.153828 0.266438i
$$136$$ 577.697 + 1000.60i 0.364243 + 0.630888i
$$137$$ −842.208 1458.75i −0.525217 0.909702i −0.999569 0.0293665i $$-0.990651\pi$$
0.474352 0.880335i $$-0.342682\pi$$
$$138$$ −1039.44 + 1800.35i −0.641178 + 1.11055i
$$139$$ 315.089 0.192270 0.0961350 0.995368i $$-0.469352\pi$$
0.0961350 + 0.995368i $$0.469352\pi$$
$$140$$ 515.547 4192.35i 0.311226 2.53084i
$$141$$ −63.5606 −0.0379629
$$142$$ −840.563 + 1455.90i −0.496750 + 0.860396i
$$143$$ −74.6241 129.253i −0.0436390 0.0755850i
$$144$$ 14.6435 + 25.3633i 0.00847427 + 0.0146779i
$$145$$ −1666.62 + 2886.67i −0.954517 + 1.65327i
$$146$$ −2774.40 −1.57268
$$147$$ −283.263 989.244i −0.158933 0.555044i
$$148$$ 47.7992 0.0265478
$$149$$ −946.887 + 1640.06i −0.520617 + 0.901736i 0.479095 + 0.877763i $$0.340965\pi$$
−0.999713 + 0.0239729i $$0.992368\pi$$
$$150$$ −1328.99 2301.87i −0.723409 1.25298i
$$151$$ 1005.92 + 1742.31i 0.542124 + 0.938986i 0.998782 + 0.0493434i $$0.0157129\pi$$
−0.456658 + 0.889642i $$0.650954\pi$$
$$152$$ −460.079 + 796.881i −0.245509 + 0.425234i
$$153$$ 479.406 0.253318
$$154$$ 117.355 954.308i 0.0614071 0.499353i
$$155$$ −2821.71 −1.46223
$$156$$ −250.718 + 434.256i −0.128676 + 0.222874i
$$157$$ 1914.25 + 3315.58i 0.973082 + 1.68543i 0.686125 + 0.727483i $$0.259310\pi$$
0.286956 + 0.957944i $$0.407357\pi$$
$$158$$ 2073.69 + 3591.73i 1.04414 + 1.80850i
$$159$$ 548.856 950.647i 0.273755 0.474158i
$$160$$ 3366.43 1.66337
$$161$$ 2249.17 + 1695.53i 1.10099 + 0.829977i
$$162$$ −369.066 −0.178991
$$163$$ 1754.63 3039.11i 0.843148 1.46038i −0.0440718 0.999028i $$-0.514033\pi$$
0.887220 0.461347i $$-0.152634\pi$$
$$164$$ 250.890 + 434.554i 0.119459 + 0.206909i
$$165$$ −305.475 529.098i −0.144128 0.249638i
$$166$$ −747.083 + 1293.99i −0.349307 + 0.605017i
$$167$$ −343.008 −0.158939 −0.0794694 0.996837i $$-0.525323\pi$$
−0.0794694 + 0.996837i $$0.525323\pi$$
$$168$$ −1109.42 + 470.679i −0.509487 + 0.216153i
$$169$$ −2025.42 −0.921905
$$170$$ 2168.96 3756.75i 0.978541 1.69488i
$$171$$ 190.900 + 330.649i 0.0853714 + 0.147868i
$$172$$ −2739.92 4745.68i −1.21463 2.10381i
$$173$$ 2093.61 3626.23i 0.920081 1.59363i 0.120793 0.992678i $$-0.461456\pi$$
0.799288 0.600949i $$-0.205210\pi$$
$$174$$ 2549.20 1.11066
$$175$$ −3315.27 + 1406.52i −1.43206 + 0.607559i
$$176$$ 37.0779 0.0158798
$$177$$ −339.866 + 588.666i −0.144327 + 0.249982i
$$178$$ −85.6866 148.413i −0.0360813 0.0624947i
$$179$$ 985.143 + 1706.32i 0.411358 + 0.712493i 0.995039 0.0994906i $$-0.0317213\pi$$
−0.583681 + 0.811983i $$0.698388\pi$$
$$180$$ −1026.32 + 1777.63i −0.424984 + 0.736095i
$$181$$ −3613.10 −1.48376 −0.741878 0.670535i $$-0.766065\pi$$
−0.741878 + 0.670535i $$0.766065\pi$$
$$182$$ 882.634 + 665.370i 0.359479 + 0.270992i
$$183$$ −1955.92 −0.790086
$$184$$ 1649.40 2856.85i 0.660845 1.14462i
$$185$$ −33.4755 57.9812i −0.0133036 0.0230425i
$$186$$ 1079.00 + 1868.88i 0.425354 + 0.736734i
$$187$$ 303.468 525.622i 0.118673 0.205547i
$$188$$ 270.355 0.104881
$$189$$ −61.0328 + 496.308i −0.0234893 + 0.191011i
$$190$$ 3454.74 1.31912
$$191$$ −953.884 + 1652.18i −0.361365 + 0.625902i −0.988186 0.153261i $$-0.951022\pi$$
0.626821 + 0.779163i $$0.284356\pi$$
$$192$$ −1248.24 2162.02i −0.469188 0.812658i
$$193$$ −1199.96 2078.40i −0.447540 0.775162i 0.550685 0.834713i $$-0.314366\pi$$
−0.998225 + 0.0595509i $$0.981033\pi$$
$$194$$ 1644.88 2849.01i 0.608738 1.05437i
$$195$$ 702.346 0.257928
$$196$$ 1204.86 + 4207.74i 0.439087 + 1.53343i
$$197$$ 1514.32 0.547668 0.273834 0.961777i $$-0.411708\pi$$
0.273834 + 0.961777i $$0.411708\pi$$
$$198$$ −233.622 + 404.645i −0.0838524 + 0.145237i
$$199$$ −683.889 1184.53i −0.243616 0.421955i 0.718126 0.695914i $$-0.245000\pi$$
−0.961742 + 0.273958i $$0.911667\pi$$
$$200$$ 2108.87 + 3652.67i 0.745598 + 1.29141i
$$201$$ 218.150 377.847i 0.0765527 0.132593i
$$202$$ −6919.63 −2.41021
$$203$$ 421.563 3428.08i 0.145753 1.18524i
$$204$$ −2039.15 −0.699848
$$205$$ 351.414 608.667i 0.119726 0.207371i
$$206$$ −2396.38 4150.66i −0.810504 1.40383i
$$207$$ −684.384 1185.39i −0.229797 0.398020i
$$208$$ −21.3123 + 36.9140i −0.00710453 + 0.0123054i
$$209$$ 483.366 0.159977
$$210$$ 3613.08 + 2723.70i 1.18727 + 0.895016i
$$211$$ 4302.52 1.40378 0.701891 0.712285i $$-0.252339\pi$$
0.701891 + 0.712285i $$0.252339\pi$$
$$212$$ −2334.55 + 4043.57i −0.756311 + 1.30997i
$$213$$ −553.443 958.591i −0.178034 0.308364i
$$214$$ 1746.27 + 3024.64i 0.557817 + 0.966167i
$$215$$ −3837.72 + 6647.13i −1.21735 + 2.10851i
$$216$$ 585.642 0.184481
$$217$$ 2691.64 1141.94i 0.842030 0.357236i
$$218$$ 6502.16 2.02010
$$219$$ 913.359 1581.98i 0.281822 0.488130i
$$220$$ 1299.34 + 2250.51i 0.398187 + 0.689680i
$$221$$ 348.866 + 604.253i 0.106187 + 0.183921i
$$222$$ −25.6014 + 44.3429i −0.00773988 + 0.0134059i
$$223$$ −1497.19 −0.449592 −0.224796 0.974406i $$-0.572172\pi$$
−0.224796 + 0.974406i $$0.572172\pi$$
$$224$$ −3211.25 + 1362.39i −0.957861 + 0.406377i
$$225$$ 1750.06 0.518537
$$226$$ 825.987 1430.65i 0.243114 0.421086i
$$227$$ −801.662 1388.52i −0.234397 0.405988i 0.724700 0.689065i $$-0.241978\pi$$
−0.959097 + 0.283076i $$0.908645\pi$$
$$228$$ −811.992 1406.41i −0.235858 0.408517i
$$229$$ −505.261 + 875.137i −0.145802 + 0.252536i −0.929672 0.368389i $$-0.879909\pi$$
0.783870 + 0.620925i $$0.213243\pi$$
$$230$$ −12385.4 −3.55072
$$231$$ 505.520 + 381.084i 0.143986 + 0.108543i
$$232$$ −4045.13 −1.14472
$$233$$ −99.1084 + 171.661i −0.0278661 + 0.0482656i −0.879622 0.475673i $$-0.842205\pi$$
0.851756 + 0.523939i $$0.175538\pi$$
$$234$$ −268.571 465.178i −0.0750299 0.129956i
$$235$$ −189.339 327.944i −0.0525578 0.0910329i
$$236$$ 1445.62 2503.88i 0.398736 0.690631i
$$237$$ −2730.71 −0.748434
$$238$$ −548.629 + 4461.36i −0.149422 + 1.21507i
$$239$$ −1201.19 −0.325098 −0.162549 0.986700i $$-0.551972\pi$$
−0.162549 + 0.986700i $$0.551972\pi$$
$$240$$ −87.2423 + 151.108i −0.0234644 + 0.0406416i
$$241$$ 1366.35 + 2366.58i 0.365204 + 0.632551i 0.988809 0.149188i $$-0.0476660\pi$$
−0.623605 + 0.781739i $$0.714333\pi$$
$$242$$ −2736.49 4739.74i −0.726894 1.25902i
$$243$$ 121.500 210.444i 0.0320750 0.0555556i
$$244$$ 8319.49 2.18279
$$245$$ 4260.25 4408.33i 1.11093 1.14954i
$$246$$ −537.510 −0.139311
$$247$$ −277.838 + 481.229i −0.0715724 + 0.123967i
$$248$$ −1712.18 2965.58i −0.438401 0.759332i
$$249$$ −491.894 851.985i −0.125191 0.216837i
$$250$$ 2827.95 4898.16i 0.715422 1.23915i
$$251$$ 7565.82 1.90259 0.951295 0.308281i $$-0.0997537\pi$$
0.951295 + 0.308281i $$0.0997537\pi$$
$$252$$ 259.602 2111.04i 0.0648945 0.527711i
$$253$$ −1732.88 −0.430615
$$254$$ 2220.72 3846.40i 0.548584 0.950175i
$$255$$ 1428.09 + 2473.52i 0.350707 + 0.607443i
$$256$$ 1876.61 + 3250.38i 0.458156 + 0.793550i
$$257$$ −2504.34 + 4337.64i −0.607846 + 1.05282i 0.383749 + 0.923437i $$0.374633\pi$$
−0.991595 + 0.129382i $$0.958701\pi$$
$$258$$ 5870.04 1.41648
$$259$$ 55.3973 + 41.7610i 0.0132904 + 0.0100189i
$$260$$ −2987.42 −0.712584
$$261$$ −839.220 + 1453.57i −0.199028 + 0.344727i
$$262$$ −4084.10 7073.88i −0.963041 1.66804i
$$263$$ 3124.40 + 5411.63i 0.732544 + 1.26880i 0.955793 + 0.294042i $$0.0950004\pi$$
−0.223249 + 0.974761i $$0.571666\pi$$
$$264$$ 370.716 642.100i 0.0864243 0.149691i
$$265$$ 6539.88 1.51601
$$266$$ −3295.49 + 1398.13i −0.759622 + 0.322274i
$$267$$ 112.835 0.0258630
$$268$$ −927.898 + 1607.17i −0.211494 + 0.366318i
$$269$$ 1794.22 + 3107.69i 0.406676 + 0.704383i 0.994515 0.104595i $$-0.0333546\pi$$
−0.587839 + 0.808978i $$0.700021\pi$$
$$270$$ −1099.40 1904.21i −0.247804 0.429210i
$$271$$ 991.571 1717.45i 0.222264 0.384973i −0.733231 0.679980i $$-0.761988\pi$$
0.955495 + 0.295007i $$0.0953218\pi$$
$$272$$ −173.338 −0.0386404
$$273$$ −669.971 + 284.239i −0.148529 + 0.0630143i
$$274$$ −7674.81 −1.69216
$$275$$ 1107.80 1918.77i 0.242920 0.420751i
$$276$$ 2911.02 + 5042.04i 0.634866 + 1.09962i
$$277$$ −3681.96 6377.33i −0.798654 1.38331i −0.920493 0.390760i $$-0.872212\pi$$
0.121838 0.992550i $$-0.461121\pi$$
$$278$$ 717.831 1243.32i 0.154866 0.268235i
$$279$$ −1420.86 −0.304892
$$280$$ −5733.32 4322.04i −1.22368 0.922468i
$$281$$ −5312.05 −1.12772 −0.563861 0.825869i $$-0.690685\pi$$
−0.563861 + 0.825869i $$0.690685\pi$$
$$282$$ −144.803 + 250.806i −0.0305776 + 0.0529619i
$$283$$ 545.882 + 945.495i 0.114662 + 0.198600i 0.917645 0.397402i $$-0.130088\pi$$
−0.802983 + 0.596002i $$0.796755\pi$$
$$284$$ 2354.06 + 4077.36i 0.491859 + 0.851925i
$$285$$ −1137.33 + 1969.92i −0.236385 + 0.409431i
$$286$$ −680.030 −0.140598
$$287$$ −88.8886 + 722.827i −0.0182820 + 0.148666i
$$288$$ 1695.16 0.346833
$$289$$ 1037.79 1797.51i 0.211234 0.365869i
$$290$$ 7593.72 + 13152.7i 1.53765 + 2.66329i
$$291$$ 1083.02 + 1875.84i 0.218171 + 0.377883i
$$292$$ −3884.96 + 6728.95i −0.778597 + 1.34857i
$$293$$ −7191.86 −1.43397 −0.716985 0.697089i $$-0.754478\pi$$
−0.716985 + 0.697089i $$0.754478\pi$$
$$294$$ −4548.81 1135.94i −0.902354 0.225339i
$$295$$ −4049.67 −0.799257
$$296$$ 40.6249 70.3645i 0.00797729 0.0138171i
$$297$$ −153.821 266.426i −0.0300525 0.0520525i
$$298$$ 4314.36 + 7472.70i 0.838672 + 1.45262i
$$299$$ 996.058 1725.22i 0.192654 0.333687i
$$300$$ −7443.88 −1.43257
$$301$$ 970.735 7893.85i 0.185888 1.51161i
$$302$$ 9166.69 1.74663
$$303$$ 2278.01 3945.63i 0.431908 0.748087i
$$304$$ −69.0236 119.552i −0.0130223 0.0225552i
$$305$$ −5826.43 10091.7i −1.09384 1.89458i
$$306$$ 1092.18 1891.70i 0.204038 0.353403i
$$307$$ 541.355 0.100641 0.0503204 0.998733i $$-0.483976\pi$$
0.0503204 + 0.998733i $$0.483976\pi$$
$$308$$ −2150.22 1620.94i −0.397793 0.299875i
$$309$$ 3155.65 0.580966
$$310$$ −6428.37 + 11134.3i −1.17776 + 2.03995i
$$311$$ −27.0084 46.7799i −0.00492446 0.00852941i 0.863553 0.504259i $$-0.168234\pi$$
−0.868477 + 0.495729i $$0.834901\pi$$
$$312$$ 426.174 + 738.155i 0.0773313 + 0.133942i
$$313$$ −1886.47 + 3267.46i −0.340670 + 0.590058i −0.984557 0.175063i $$-0.943987\pi$$
0.643887 + 0.765120i $$0.277321\pi$$
$$314$$ 17444.1 3.13511
$$315$$ −2742.54 + 1163.54i −0.490554 + 0.208120i
$$316$$ 11615.1 2.06772
$$317$$ −859.618 + 1488.90i −0.152306 + 0.263802i −0.932075 0.362266i $$-0.882003\pi$$
0.779769 + 0.626068i $$0.215337\pi$$
$$318$$ −2500.79 4331.49i −0.440998 0.763831i
$$319$$ 1062.47 + 1840.25i 0.186479 + 0.322991i
$$320$$ 7436.70 12880.7i 1.29914 2.25017i
$$321$$ −2299.56 −0.399841
$$322$$ 11814.5 5012.34i 2.04470 0.867475i
$$323$$ −2259.72 −0.389270
$$324$$ −516.799 + 895.122i −0.0886144 + 0.153485i
$$325$$ 1273.53 + 2205.81i 0.217362 + 0.376482i
$$326$$ −7994.73 13847.3i −1.35824 2.35255i
$$327$$ −2140.57 + 3707.58i −0.362000 + 0.627002i
$$328$$ 852.934 0.143584
$$329$$ 313.330 + 236.202i 0.0525059 + 0.0395813i
$$330$$ −2783.71 −0.464358
$$331$$ −4204.11 + 7281.73i −0.698123 + 1.20918i 0.270994 + 0.962581i $$0.412648\pi$$
−0.969117 + 0.246603i $$0.920686\pi$$
$$332$$ 2092.27 + 3623.91i 0.345868 + 0.599060i
$$333$$ −16.8565 29.1963i −0.00277396 0.00480464i
$$334$$ −781.436 + 1353.49i −0.128019 + 0.221735i
$$335$$ 2599.36 0.423935
$$336$$ 22.0675 179.450i 0.00358298 0.0291362i
$$337$$ 2789.46 0.450894 0.225447 0.974255i $$-0.427616\pi$$
0.225447 + 0.974255i $$0.427616\pi$$
$$338$$ −4614.29 + 7992.18i −0.742557 + 1.28615i
$$339$$ 543.846 + 941.969i 0.0871317 + 0.150917i
$$340$$ −6074.36 10521.1i −0.968907 1.67820i
$$341$$ −899.419 + 1557.84i −0.142834 + 0.247395i
$$342$$ 1739.62 0.275053
$$343$$ −2279.82 + 5929.25i −0.358889 + 0.933380i
$$344$$ −9314.72 −1.45993
$$345$$ 4077.38 7062.23i 0.636286 1.10208i
$$346$$ −9539.24 16522.4i −1.48217 2.56720i
$$347$$ 1735.98 + 3006.81i 0.268566 + 0.465170i 0.968492 0.249046i $$-0.0801170\pi$$
−0.699926 + 0.714216i $$0.746784\pi$$
$$348$$ 3569.61 6182.75i 0.549860 0.952386i
$$349$$ −6626.12 −1.01630 −0.508149 0.861269i $$-0.669670\pi$$
−0.508149 + 0.861269i $$0.669670\pi$$
$$350$$ −2002.76 + 16286.1i −0.305863 + 2.48723i
$$351$$ 353.664 0.0537812
$$352$$ 1073.05 1858.57i 0.162482 0.281427i
$$353$$ −4734.20 8199.87i −0.713813 1.23636i −0.963416 0.268012i $$-0.913633\pi$$
0.249603 0.968348i $$-0.419700\pi$$
$$354$$ 1548.56 + 2682.18i 0.232499 + 0.402701i
$$355$$ 3297.27 5711.03i 0.492960 0.853831i
$$356$$ −479.944 −0.0714522
$$357$$ −2363.29 1781.56i −0.350360 0.264118i
$$358$$ 8977.35 1.32533
$$359$$ 3139.78 5438.25i 0.461591 0.799499i −0.537450 0.843296i $$-0.680612\pi$$
0.999040 + 0.0437971i $$0.0139455\pi$$
$$360$$ 1744.55 + 3021.65i 0.255405 + 0.442375i
$$361$$ 2529.68 + 4381.53i 0.368811 + 0.638800i
$$362$$ −8231.31 + 14257.0i −1.19510 + 2.06998i
$$363$$ 3603.52 0.521035
$$364$$ 2849.71 1209.01i 0.410345 0.174091i
$$365$$ 10883.1 1.56068
$$366$$ −4455.94 + 7717.92i −0.636382 + 1.10225i
$$367$$ 5413.91 + 9377.17i 0.770038 + 1.33374i 0.937542 + 0.347873i $$0.113096\pi$$
−0.167504 + 0.985871i $$0.553571\pi$$
$$368$$ 247.452 + 428.599i 0.0350525 + 0.0607127i
$$369$$ 176.954 306.493i 0.0249643 0.0432395i
$$370$$ −305.053 −0.0428620
$$371$$ −6238.42 + 2646.68i −0.872999 + 0.370374i
$$372$$ 6043.63 0.842332
$$373$$ −2619.61 + 4537.30i −0.363642 + 0.629846i −0.988557 0.150846i $$-0.951800\pi$$
0.624915 + 0.780693i $$0.285134\pi$$
$$374$$ −1382.71 2394.93i −0.191172 0.331120i
$$375$$ 1861.98 + 3225.04i 0.256406 + 0.444108i
$$376$$ 229.777 397.985i 0.0315155 0.0545864i
$$377$$ −2442.81 −0.333717
$$378$$ 1819.35 + 1371.51i 0.247559 + 0.186622i
$$379$$ −11050.4 −1.49768 −0.748839 0.662751i $$-0.769389\pi$$
−0.748839 + 0.662751i $$0.769389\pi$$
$$380$$ 4837.64 8379.03i 0.653067 1.13115i
$$381$$ 1462.16 + 2532.54i 0.196611 + 0.340541i
$$382$$ 4346.25 + 7527.92i 0.582129 + 1.00828i
$$383$$ 5234.02 9065.59i 0.698292 1.20948i −0.270766 0.962645i $$-0.587277\pi$$
0.969058 0.246832i $$-0.0793897\pi$$
$$384$$ −6854.48 −0.910915
$$385$$ −460.345 + 3743.45i −0.0609386 + 0.495543i
$$386$$ −10934.9 −1.44190
$$387$$ −1932.47 + 3347.14i −0.253833 + 0.439651i
$$388$$ −4606.61 7978.88i −0.602745 1.04399i
$$389$$ 5807.02 + 10058.1i 0.756884 + 1.31096i 0.944432 + 0.328705i $$0.106612\pi$$
−0.187549 + 0.982255i $$0.560054\pi$$
$$390$$ 1600.07 2771.41i 0.207751 0.359835i
$$391$$ 8101.19 1.04781
$$392$$ 7218.16 + 1802.54i 0.930031 + 0.232251i
$$393$$ 5378.11 0.690304
$$394$$ 3449.89 5975.38i 0.441124 0.764049i
$$395$$ −8134.43 14089.2i −1.03617 1.79470i
$$396$$ 654.276 + 1133.24i 0.0830268 + 0.143807i
$$397$$ 3353.65 5808.69i 0.423967 0.734332i −0.572356 0.820005i $$-0.693971\pi$$
0.996323 + 0.0856726i $$0.0273039\pi$$
$$398$$ −6232.10 −0.784892
$$399$$ 287.683 2339.39i 0.0360957 0.293524i
$$400$$ −632.768 −0.0790960
$$401$$ −2763.19 + 4785.98i −0.344107 + 0.596011i −0.985191 0.171459i $$-0.945152\pi$$
0.641084 + 0.767471i $$0.278485\pi$$
$$402$$ −993.970 1721.61i −0.123320 0.213597i
$$403$$ −1033.97 1790.89i −0.127805 0.221366i
$$404$$ −9689.49 + 16782.7i −1.19324 + 2.06676i
$$405$$ 1447.73 0.177625
$$406$$ −12566.6 9473.26i −1.53613 1.15800i
$$407$$ −42.6811 −0.00519810
$$408$$ −1733.09 + 3001.80i −0.210296 + 0.364243i
$$409$$ 659.453 + 1142.21i 0.0797258 + 0.138089i 0.903132 0.429364i $$-0.141262\pi$$
−0.823406 + 0.567453i $$0.807929\pi$$
$$410$$ −1601.17 2773.31i −0.192869 0.334059i
$$411$$ 2526.62 4376.24i 0.303234 0.525217i
$$412$$ −13422.5 −1.60505
$$413$$ 3863.00 1638.90i 0.460256 0.195266i
$$414$$ −6236.61 −0.740369
$$415$$ 2930.57 5075.90i 0.346641 0.600401i
$$416$$ 1233.57 + 2136.61i 0.145387 + 0.251817i
$$417$$ 472.634 + 818.626i 0.0555036 + 0.0961350i
$$418$$ 1101.20 1907.33i 0.128855 0.223183i
$$419$$ 3656.13 0.426286 0.213143 0.977021i $$-0.431630\pi$$
0.213143 + 0.977021i $$0.431630\pi$$
$$420$$ 11665.4 4949.09i 1.35526 0.574978i
$$421$$ −135.389 −0.0156733 −0.00783663 0.999969i $$-0.502495\pi$$
−0.00783663 + 0.999969i $$0.502495\pi$$
$$422$$ 9801.93 16977.4i 1.13069 1.95841i
$$423$$ −95.3409 165.135i −0.0109589 0.0189815i
$$424$$ 3968.31 + 6873.32i 0.454524 + 0.787259i
$$425$$ −5178.96 + 8970.22i −0.591097 + 1.02381i
$$426$$ −5043.38 −0.573597
$$427$$ 9641.94 + 7268.54i 1.09276 + 0.823769i
$$428$$ 9781.16 1.10465
$$429$$ 223.872 387.758i 0.0251950 0.0436390i
$$430$$ 17486.1 + 30286.8i 1.96105 + 3.39665i
$$431$$ −4194.58 7265.23i −0.468784 0.811958i 0.530579 0.847635i $$-0.321974\pi$$
−0.999363 + 0.0356776i $$0.988641\pi$$
$$432$$ −43.9306 + 76.0900i −0.00489262 + 0.00847427i
$$433$$ −8243.02 −0.914859 −0.457430 0.889246i $$-0.651230\pi$$
−0.457430 + 0.889246i $$0.651230\pi$$
$$434$$ 1626.03 13222.6i 0.179843 1.46245i
$$435$$ −9999.70 −1.10218
$$436$$ 9104.91 15770.2i 1.00011 1.73223i
$$437$$ 3225.91 + 5587.43i 0.353126 + 0.611632i
$$438$$ −4161.60 7208.10i −0.453993 0.786338i
$$439$$ 9141.59 15833.7i 0.993859 1.72142i 0.401104 0.916032i $$-0.368626\pi$$
0.592755 0.805383i $$-0.298040\pi$$
$$440$$ 4417.26 0.478602
$$441$$ 2145.24 2219.80i 0.231642 0.239694i
$$442$$ 3179.12 0.342116
$$443$$ −605.218 + 1048.27i −0.0649092 + 0.112426i −0.896654 0.442733i $$-0.854009\pi$$
0.831745 + 0.555159i $$0.187342\pi$$
$$444$$ 71.6988 + 124.186i 0.00766368 + 0.0132739i
$$445$$ 336.122 + 582.180i 0.0358061 + 0.0620179i
$$446$$ −3410.86 + 5907.79i −0.362128 + 0.627224i
$$447$$ −5681.32 −0.601157
$$448$$ −1881.08 + 15296.6i −0.198376 + 1.61316i
$$449$$ −8301.16 −0.872508 −0.436254 0.899824i $$-0.643695\pi$$
−0.436254 + 0.899824i $$0.643695\pi$$
$$450$$ 3986.96 6905.62i 0.417661 0.723409i
$$451$$ −224.026 388.025i −0.0233902 0.0405130i
$$452$$ −2313.24 4006.66i −0.240721 0.416941i
$$453$$ −3017.76 + 5226.92i −0.312995 + 0.542124i
$$454$$ −7305.34 −0.755190
$$455$$ −3462.30 2610.04i −0.356736 0.268924i
$$456$$ −2760.48 −0.283489
$$457$$ 6146.88 10646.7i 0.629188 1.08979i −0.358527 0.933519i $$-0.616721\pi$$
0.987715 0.156266i $$-0.0499458\pi$$
$$458$$ 2302.15 + 3987.45i 0.234875 + 0.406815i
$$459$$ 719.109 + 1245.53i 0.0731267 + 0.126659i
$$460$$ −17343.1 + 30039.1i −1.75788 + 3.04474i
$$461$$ 19434.2 1.96343 0.981717 0.190346i $$-0.0609609\pi$$
0.981717 + 0.190346i $$0.0609609\pi$$
$$462$$ 2655.40 1126.57i 0.267403 0.113447i
$$463$$ −12491.1 −1.25380 −0.626902 0.779098i $$-0.715678\pi$$
−0.626902 + 0.779098i $$0.715678\pi$$
$$464$$ 303.436 525.566i 0.0303592 0.0525836i
$$465$$ −4232.56 7331.02i −0.422109 0.731113i
$$466$$ 451.574 + 782.150i 0.0448901 + 0.0777519i
$$467$$ −1692.59 + 2931.65i −0.167716 + 0.290493i −0.937617 0.347671i $$-0.886973\pi$$
0.769900 + 0.638164i $$0.220306\pi$$
$$468$$ −1504.31 −0.148583
$$469$$ −2479.54 + 1051.96i −0.244125 + 0.103571i
$$470$$ −1725.39 −0.169333
$$471$$ −5742.75 + 9946.74i −0.561809 + 0.973082i
$$472$$ −2457.29 4256.14i −0.239631 0.415053i
$$473$$ 2446.54 + 4237.54i 0.237827 + 0.411929i
$$474$$ −6221.06 + 10775.2i −0.602833 + 1.04414i
$$475$$ −8249.07 −0.796828
$$476$$ 10052.2 + 7577.84i 0.967948 + 0.729684i
$$477$$ 3293.14 0.316106
$$478$$ −2736.53 + 4739.80i −0.261853 + 0.453543i
$$479$$ −2989.71 5178.32i −0.285184 0.493953i 0.687470 0.726213i $$-0.258721\pi$$
−0.972654 + 0.232260i $$0.925388\pi$$
$$480$$ 5049.64 + 8746.24i 0.480174 + 0.831686i
$$481$$ 24.5330 42.4925i 0.00232559 0.00402804i
$$482$$ 12451.1 1.17663
$$483$$ −1031.35 + 8386.81i −0.0971600 + 0.790089i
$$484$$ −15327.5 −1.43948
$$485$$ −6452.34 + 11175.8i −0.604094 + 1.04632i
$$486$$ −553.598 958.861i −0.0516702 0.0894955i
$$487$$ 557.481 + 965.586i 0.0518725 + 0.0898457i 0.890796 0.454404i $$-0.150148\pi$$
−0.838923 + 0.544250i $$0.816814\pi$$
$$488$$ 7070.80 12247.0i 0.655902 1.13606i
$$489$$ 10527.8 0.973583
$$490$$ −7689.34 26853.6i −0.708916 2.47576i
$$491$$ 1086.23 0.0998387 0.0499194 0.998753i $$-0.484104\pi$$
0.0499194 + 0.998753i $$0.484104\pi$$
$$492$$ −752.670 + 1303.66i −0.0689695 + 0.119459i
$$493$$ −4967.00 8603.10i −0.453758 0.785932i
$$494$$ 1265.93 + 2192.66i 0.115297 + 0.199701i
$$495$$ 916.425 1587.29i 0.0832126 0.144128i
$$496$$ 513.740 0.0465073
$$497$$ −834.028 + 6782.18i −0.0752742 + 0.612117i
$$498$$ −4482.50 −0.403344
$$499$$ 1106.75 1916.95i 0.0992884 0.171973i −0.812102 0.583516i $$-0.801677\pi$$
0.911390 + 0.411543i $$0.135010\pi$$
$$500$$ −7919.92 13717.7i −0.708379 1.22695i
$$501$$ −514.512 891.162i −0.0458817 0.0794694i
$$502$$ 17236.3 29854.2i 1.53246 2.65430i
$$503$$ −2643.32 −0.234314 −0.117157 0.993113i $$-0.537378\pi$$
−0.117157 + 0.993113i $$0.537378\pi$$
$$504$$ −2886.99 2176.35i −0.255153 0.192346i
$$505$$ 27143.5 2.39183
$$506$$ −3947.83 + 6837.84i −0.346843 + 0.600749i
$$507$$ −3038.14 5262.21i −0.266131 0.460952i
$$508$$ −6219.31 10772.2i −0.543183 0.940821i
$$509$$ 332.584 576.053i 0.0289618 0.0501633i −0.851181 0.524872i $$-0.824113\pi$$
0.880143 + 0.474709i $$0.157447\pi$$
$$510$$ 13013.8 1.12992
$$511$$ −10381.4 + 4404.38i −0.898724 + 0.381288i
$$512$$ −1177.58 −0.101645
$$513$$ −572.701 + 991.947i −0.0492892 + 0.0853714i
$$514$$ 11410.7 + 19763.9i 0.979190 + 1.69601i
$$515$$ 9400.26 + 16281.7i 0.804320 + 1.39312i
$$516$$ 8219.76 14237.0i 0.701269 1.21463i
$$517$$ −241.406 −0.0205359
$$518$$ 290.991 123.455i 0.0246823 0.0104716i
$$519$$ 12561.6 1.06242
$$520$$ −2539.03 + 4397.73i −0.214123 + 0.370872i
$$521$$ 5880.99 + 10186.2i 0.494531 + 0.856554i 0.999980 0.00630307i $$-0.00200634\pi$$
−0.505449 + 0.862857i $$0.668673\pi$$
$$522$$ 3823.79 + 6623.01i 0.320619 + 0.555328i
$$523$$ −5061.30 + 8766.43i −0.423165 + 0.732943i −0.996247 0.0865547i $$-0.972414\pi$$
0.573082 + 0.819498i $$0.305748\pi$$
$$524$$ −22875.7 −1.90712
$$525$$ −8627.15 6503.54i −0.717180 0.540643i
$$526$$ 28471.9 2.36014
$$527$$ 4204.76 7282.85i 0.347556 0.601985i
$$528$$ 55.6169 + 96.3312i 0.00458412 + 0.00793992i
$$529$$ −5481.49 9494.22i −0.450521 0.780325i
$$530$$ 14899.0 25805.9i 1.22108 2.11497i
$$531$$ −2039.20 −0.166655
$$532$$ −1223.66 + 9950.58i −0.0997224 + 0.810926i
$$533$$ 515.079 0.0418585
$$534$$ 257.060 445.240i 0.0208316 0.0360813i
$$535$$ −6850.09 11864.7i −0.553561 0.958796i
$$536$$ 1577.26 + 2731.89i 0.127103 + 0.220148i
$$537$$ −2955.43 + 5118.95i −0.237498 + 0.411358i
$$538$$ 16350.3 1.31024
$$539$$ −1075.85 3757.20i −0.0859740 0.300249i
$$540$$ −6157.90 −0.490730
$$541$$ −8058.98 + 13958.6i −0.640449 + 1.10929i 0.344884 + 0.938645i $$0.387918\pi$$
−0.985333 + 0.170644i $$0.945415\pi$$
$$542$$ −4517.96 7825.34i −0.358050 0.620161i
$$543$$ −5419.65 9387.11i −0.428323 0.741878i
$$544$$ −5016.47 + 8688.78i −0.395366 + 0.684795i
$$545$$ −25505.9 −2.00469
$$546$$ −404.731 + 3291.20i −0.0317232 + 0.257968i
$$547$$ −626.100 −0.0489399 −0.0244699 0.999701i $$-0.507790\pi$$
−0.0244699 + 0.999701i $$0.507790\pi$$
$$548$$ −10747.0 + 18614.3i −0.837751 + 1.45103i
$$549$$ −2933.88 5081.63i −0.228078 0.395043i
$$550$$ −5047.56 8742.64i −0.391325 0.677795i
$$551$$ 3955.74 6851.54i 0.305844 0.529737i
$$552$$ 9896.41 0.763078
$$553$$ 13461.4 + 10147.8i 1.03515 + 0.780341i
$$554$$ −33552.7 −2.57313
$$555$$ 100.426 173.944i 0.00768083 0.0133036i
$$556$$ −2010.34 3482.02i −0.153341 0.265594i
$$557$$ −10385.6 17988.4i −0.790039 1.36839i −0.925942 0.377665i $$-0.876727\pi$$
0.135903 0.990722i $$-0.456606\pi$$
$$558$$ −3236.99 + 5606.63i −0.245578 + 0.425354i
$$559$$ −5625.08 −0.425609
$$560$$ 991.615 420.698i 0.0748275 0.0317460i
$$561$$ 1820.81 0.137031
$$562$$ −12101.8 + 20961.0i −0.908335 + 1.57328i
$$563$$ 2760.86 + 4781.95i 0.206672 + 0.357966i 0.950664 0.310222i $$-0.100403\pi$$
−0.743992 + 0.668188i $$0.767070\pi$$
$$564$$ 405.532 + 702.402i 0.0302765 + 0.0524405i
$$565$$ −3240.09 + 5612.00i −0.241260 + 0.417874i
$$566$$ 4974.48 0.369422
$$567$$ −1381.00 + 585.895i −0.102286 + 0.0433955i
$$568$$ 8002.95 0.591191
$$569$$ −3787.40 + 6559.97i −0.279044 + 0.483319i −0.971147 0.238480i $$-0.923351\pi$$
0.692103 + 0.721799i $$0.256684\pi$$
$$570$$ 5182.11 + 8975.67i 0.380797 + 0.659560i
$$571$$ 165.624 + 286.869i 0.0121386 + 0.0210247i 0.872031 0.489451i $$-0.162803\pi$$
−0.859892 + 0.510476i $$0.829469\pi$$
$$572$$ −952.239 + 1649.33i −0.0696068 + 0.120563i
$$573$$ −5723.31 −0.417268
$$574$$ 2649.72 + 1997.48i 0.192678 + 0.145250i
$$575$$ 29573.2 2.14485
$$576$$ 3744.73 6486.06i 0.270886 0.469188i
$$577$$ −1019.06 1765.06i −0.0735248 0.127349i 0.826919 0.562321i $$-0.190091\pi$$
−0.900444 + 0.434972i $$0.856758\pi$$
$$578$$ −4728.57 8190.13i −0.340281 0.589385i
$$579$$ 3599.89 6235.19i 0.258387 0.447540i
$$580$$ 42533.6 3.04502
$$581$$ −741.275 + 6027.93i −0.0529316 + 0.430431i
$$582$$ 9869.26 0.702911
$$583$$ 2084.58 3610.60i 0.148087 0.256494i
$$584$$ 6603.72 + 11438.0i 0.467918 + 0.810457i
$$585$$ 1053.52 + 1824.75i 0.0744575 + 0.128964i
$$586$$ −16384.4 + 28378.6i −1.15500 + 2.00053i
$$587$$ 5232.90 0.367947 0.183973 0.982931i $$-0.441104\pi$$
0.183973 + 0.982931i $$0.441104\pi$$
$$588$$ −9124.74 + 9441.91i −0.639963 + 0.662207i
$$589$$ 6697.36 0.468523
$$590$$ −9225.88 + 15979.7i −0.643769 + 1.11504i
$$591$$ 2271.47 + 3934.31i 0.158098 + 0.273834i
$$592$$ 6.09477 + 10.5565i 0.000423131 + 0.000732884i
$$593$$ 2860.12 4953.87i 0.198062 0.343054i −0.749838 0.661622i $$-0.769868\pi$$
0.947900 + 0.318568i $$0.103202\pi$$
$$594$$ −1401.73 −0.0968244
$$595$$ 2152.10 17500.5i 0.148282 1.20580i
$$596$$ 24165.5 1.66083
$$597$$ 2051.67 3553.59i 0.140652 0.243616i
$$598$$ −4538.41 7860.75i −0.310350 0.537542i
$$599$$ −9044.21 15665.0i −0.616922 1.06854i −0.990044 0.140758i $$-0.955046\pi$$
0.373122 0.927782i $$-0.378287\pi$$
$$600$$ −6326.61 + 10958.0i −0.430471 + 0.745598i
$$601$$ −1821.43 −0.123623 −0.0618117 0.998088i $$-0.519688\pi$$
−0.0618117 + 0.998088i $$0.519688\pi$$
$$602$$ −28937.1 21814.1i −1.95911 1.47687i
$$603$$ 1308.90 0.0883955
$$604$$ 12836.0 22232.6i 0.864719 1.49774i
$$605$$ 10734.4 + 18592.5i 0.721348 + 1.24941i
$$606$$ −10379.4 17977.7i −0.695769 1.20511i
$$607$$ −1186.10 + 2054.39i −0.0793120 + 0.137372i −0.902953 0.429739i $$-0.858606\pi$$
0.823641 + 0.567111i $$0.191939\pi$$
$$608$$ −7990.26 −0.532974
$$609$$ 9538.76 4046.87i 0.634696 0.269273i
$$610$$ −53094.7 −3.52416
$$611$$ 138.760 240.339i 0.00918760 0.0159134i
$$612$$ −3058.72 5297.87i −0.202029 0.349924i
$$613$$ −4862.54 8422.16i −0.320385 0.554923i 0.660182 0.751105i $$-0.270479\pi$$
−0.980567 + 0.196182i $$0.937146\pi$$
$$614$$ 1233.30 2136.15i 0.0810621 0.140404i
$$615$$ 2108.48 0.138248
$$616$$ −4213.65 + 1787.66i −0.275605 + 0.116927i
$$617$$ −5329.51 −0.347744 −0.173872 0.984768i $$-0.555628\pi$$
−0.173872 + 0.984768i $$0.555628\pi$$
$$618$$ 7189.15 12452.0i 0.467945 0.810504i
$$619$$ 7988.29 + 13836.1i 0.518702 + 0.898418i 0.999764 + 0.0217314i $$0.00691786\pi$$
−0.481062 + 0.876687i $$0.659749\pi$$
$$620$$ 18003.2 + 31182.4i 1.16617 + 2.01986i
$$621$$ 2053.15 3556.17i 0.132673 0.229797i
$$622$$ −246.120 −0.0158658
$$623$$ −556.236 419.316i −0.0357706 0.0269656i
$$624$$ −127.874 −0.00820361
$$625$$ 1060.03 1836.03i 0.0678420 0.117506i
$$626$$ 8595.45 + 14887.8i 0.548791 + 0.950535i
$$627$$ 725.049 + 1255.82i 0.0461813 + 0.0799883i
$$628$$ 24426.7 42308.4i 1.55212 2.68836i
$$629$$ 199.533 0.0126485
$$630$$ −1656.77 + 13472.6i −0.104774 + 0.852002i
$$631$$ −4199.98 −0.264974 −0.132487 0.991185i $$-0.542296\pi$$
−0.132487 + 0.991185i $$0.542296\pi$$
$$632$$ 9871.73 17098.3i 0.621324 1.07616i
$$633$$ 6453.78 + 11178.3i 0.405237 + 0.701891i
$$634$$ 3916.74 + 6783.99i 0.245352 + 0.424963i
$$635$$ −8711.19 + 15088.2i −0.544399 + 0.942926i
$$636$$ −14007.3 −0.873312
$$637$$ 4358.98 + 1088.54i 0.271129 + 0.0677072i
$$638$$ 9681.97 0.600804
$$639$$ 1660.33 2875.77i 0.102788 0.178034i
$$640$$ −20418.6 35366.0i −1.26112 2.18432i
$$641$$ −1324.25 2293.67i −0.0815988 0.141333i 0.822338 0.568999i $$-0.192669\pi$$
−0.903937 + 0.427666i $$0.859336\pi$$
$$642$$ −5238.82 + 9073.91i −0.322056 + 0.557817i
$$643$$ 13.4305 0.000823715 0.000411857 1.00000i $$-0.499869\pi$$
0.000411857 1.00000i $$0.499869\pi$$
$$644$$ 4386.86 35673.2i 0.268426 2.18280i
$$645$$ −23026.3 −1.40568
$$646$$ −5148.06 + 8916.70i −0.313541 + 0.543070i
$$647$$ −5812.07 10066.8i −0.353162 0.611695i 0.633639 0.773628i $$-0.281560\pi$$
−0.986802 + 0.161934i $$0.948227\pi$$
$$648$$ 878.463 + 1521.54i 0.0532551 + 0.0922405i
$$649$$ −1290.83 + 2235.78i −0.0780732 + 0.135227i
$$650$$ 11605.3 0.700305
$$651$$ 7004.32 + 5280.18i 0.421691 + 0.317890i
$$652$$ −44779.8 −2.68974
$$653$$ 14258.3 24696.1i 0.854471 1.47999i −0.0226638 0.999743i $$-0.507215\pi$$
0.877135 0.480244i $$-0.159452\pi$$
$$654$$ 9753.23 + 16893.1i 0.583152 + 1.01005i
$$655$$ 16020.7 + 27748.6i 0.955694 + 1.65531i
$$656$$ −63.9809 + 110.818i −0.00380798 + 0.00659561i
$$657$$ 5480.15 0.325420
$$658$$ 1645.86 698.265i 0.0975111 0.0413696i
$$659$$ 18048.6 1.06688 0.533440 0.845838i $$-0.320899\pi$$
0.533440 + 0.845838i $$0.320899\pi$$
$$660$$ −3898.01 + 6751.54i −0.229893 + 0.398187i
$$661$$ −8920.72 15451.1i −0.524926 0.909198i −0.999579 0.0290250i $$-0.990760\pi$$
0.474653 0.880173i $$-0.342574\pi$$
$$662$$ 19155.5 + 33178.2i 1.12462 + 1.94790i
$$663$$ −1046.60 + 1812.76i −0.0613069 + 0.106187i
$$664$$ 7112.94 0.415716
$$665$$ 12927.2 5484.42i 0.753826 0.319815i
$$666$$ −153.608 −0.00893725
$$667$$ −14181.5 + 24563.0i −0.823251 + 1.42591i
$$668$$ 2188.47 + 3790.55i 0.126758 + 0.219552i
$$669$$ −2245.78 3889.80i −0.129786 0.224796i
$$670$$ 5921.81 10256.9i 0.341462 0.591430i
$$671$$ −7428.68 −0.427394
$$672$$ −8356.47 6299.49i −0.479699 0.361619i
$$673$$ −6826.13 −0.390978 −0.195489 0.980706i $$-0.562629\pi$$
−0.195489 + 0.980706i $$0.562629\pi$$
$$674$$ 6354.89 11007.0i 0.363177 0.629041i
$$675$$ 2625.09 + 4546.80i 0.149689 + 0.259269i
$$676$$ 12922.7 + 22382.8i 0.735246 + 1.27348i
$$677$$ 10643.4 18435.0i 0.604225 1.04655i −0.387949 0.921681i $$-0.626816\pi$$
0.992173 0.124867i $$-0.0398505\pi$$
$$678$$ 4955.92 0.280724
$$679$$ 1632.09 13271.9i 0.0922443 0.750115i
$$680$$ −20650.6 −1.16458
$$681$$ 2404.99 4165.56i 0.135329 0.234397i
$$682$$ 4098.08 + 7098.08i 0.230093 + 0.398533i
$$683$$ 10348.4 + 17924.0i 0.579753 + 1.00416i 0.995507 + 0.0946842i $$0.0301841\pi$$
−0.415755 + 0.909477i $$0.636483\pi$$
$$684$$ 2435.98 4219.24i 0.136172 0.235858i
$$685$$ 30105.9 1.67925
$$686$$ 18202.5 + 22503.9i 1.01308 + 1.25248i
$$687$$ −3031.56 −0.168357
$$688$$ 698.722 1210.22i 0.0387188 0.0670629i
$$689$$ 2396.43 + 4150.74i 0.132506 + 0.229507i
$$690$$ −18578.0 32178.1i −1.02501 1.77536i
$$691$$ −15671.0 + 27142.9i −0.862738 + 1.49431i 0.00653825 + 0.999979i $$0.497919\pi$$
−0.869276 + 0.494327i $$0.835415\pi$$
$$692$$ −53430.8 −2.93517
$$693$$ −231.805 + 1885.00i −0.0127064 + 0.103327i
$$694$$ 15819.5 0.865276
$$695$$ −2815.83 + 4877.16i −0.153684 + 0.266189i
$$696$$ −6067.69 10509.5i −0.330453 0.572361i
$$697$$ 1047.32 + 1814.01i 0.0569153 + 0.0985801i
$$698$$ −15095.5 + 26146.2i −0.818587 + 1.41783i
$$699$$ −594.651 −0.0321770
$$700$$ 36695.5 + 27662.7i 1.98137 + 1.49365i
$$701$$ −9213.32 −0.496408 −0.248204 0.968708i $$-0.579840\pi$$
−0.248204 + 0.968708i $$0.579840\pi$$
$$702$$ 805.712 1395.53i 0.0433185 0.0750299i
$$703$$ 79.4544 + 137.619i 0.00426270 + 0.00738322i
$$704$$ −4740.89 8211.46i −0.253805 0.439604i
$$705$$ 568.016 983.833i 0.0303443 0.0525578i
$$706$$ −43141.5 −2.29979
$$707$$ −25892.4 + 10985.0i −1.37734 + 0.584345i
$$708$$ 8673.71 0.460421
$$709$$ −7258.27 + 12571.7i −0.384471 + 0.665923i −0.991696 0.128607i $$-0.958949\pi$$
0.607225 + 0.794530i $$0.292283\pi$$
$$710$$ −15023.5 26021.6i −0.794118 1.37545i
$$711$$ −4096.07 7094.60i −0.216054 0.374217i
$$712$$ −407.908 + 706.518i −0.0214705 + 0.0371880i
$$713$$ −24010.3 −1.26114
$$714$$ −12413.9 + 5266.66i −0.650671 + 0.276050i
$$715$$ 2667.54 0.139525
$$716$$ 12570.9 21773.4i 0.656140 1.13647i
$$717$$ −1801.78 3120.78i −0.0938477 0.162549i
$$718$$ −14306.0 24778.7i −0.743585 1.28793i
$$719$$ −12941.2 + 22414.8i −0.671246 + 1.16263i 0.306306 + 0.951933i $$0.400907\pi$$
−0.977551 + 0.210698i $$0.932426\pi$$
$$720$$ −523.454 −0.0270944
$$721$$ −15556.2 11726.9i −0.803525 0.605734i
$$722$$ 23052.3 1.18825
$$723$$ −4099.04 + 7099.74i −0.210850 + 0.365204i
$$724$$ 23052.4 + 39928.0i 1.18334 + 2.04960i
$$725$$ −18132.0 31405.5i −0.928833 1.60879i
$$726$$ 8209.48 14219.2i 0.419673 0.726894i
$$727$$ 32181.2 1.64172 0.820862 0.571127i $$-0.193494\pi$$
0.820862 + 0.571127i $$0.193494\pi$$
$$728$$ 642.237 5222.56i 0.0326963 0.265881i
$$729$$ 729.000 0.0370370
$$730$$ 24793.7 42943.9i 1.25706 2.17730i
$$731$$ −11437.5 19810.4i −0.578704 1.00234i
$$732$$ 12479.2 + 21614.7i 0.630117 + 1.09139i
$$733$$ −10418.1 + 18044.6i −0.524966 + 0.909268i 0.474611 + 0.880195i $$0.342589\pi$$
−0.999577 + 0.0290722i $$0.990745\pi$$
$$734$$ 49335.5 2.48094
$$735$$ 17843.6 + 4455.95i 0.895469 + 0.223620i
$$736$$ 28645.4 1.43462
$$737$$ 828.544 1435.08i 0.0414109 0.0717257i
$$738$$ −806.265 1396.49i −0.0402155 0.0696553i
$$739$$ −13217.4 22893.3i −0.657931 1.13957i −0.981150 0.193246i $$-0.938098\pi$$
0.323219 0.946324i $$-0.395235\pi$$
$$740$$ −427.163 + 739.867i −0.0212200 + 0.0367541i
$$741$$ −1667.03 −0.0826447
$$742$$ −3768.64 + 30646.0i −0.186457 + 1.51624i
$$743$$ 9954.69 0.491524 0.245762 0.969330i $$-0.420962\pi$$
0.245762 + 0.969330i $$0.420962\pi$$
$$744$$ 5136.53 8896.73i 0.253111 0.438401i
$$745$$ −16923.9 29313.1i −0.832274 1.44154i
$$746$$ 11935.9 + 20673.6i 0.585798 + 1.01463i
$$747$$ 1475.68 2555.96i 0.0722790 0.125191i
$$748$$ −7744.79 −0.378580
$$749$$ 11336.0 + 8545.57i 0.553014 + 0.416887i
$$750$$ 16967.7 0.826098
$$751$$ 16602.3 28756.0i 0.806692 1.39723i −0.108451 0.994102i $$-0.534589\pi$$
0.915143 0.403129i $$-0.132077\pi$$
$$752$$ 34.4723 + 59.7078i 0.00167164 + 0.00289537i
$$753$$ 11348.7 + 19656.6i 0.549231 + 0.951295i
$$754$$ −5565.18 + 9639.17i −0.268796 + 0.465568i
$$755$$ −35958.1 −1.73331
$$756$$ 5874.05 2492.10i 0.282589 0.119890i
$$757$$ 1964.06 0.0942998 0.0471499 0.998888i $$-0.484986\pi$$
0.0471499 + 0.998888i $$0.484986\pi$$
$$758$$ −25174.8 + 43604.0i −1.20632 + 2.08941i
$$759$$ −2599.33 4502.17i −0.124308 0.215307i
$$760$$ −8223.09 14242.8i −0.392477 0.679791i
$$761$$ 19276.9 33388.6i 0.918248 1.59045i 0.116174 0.993229i $$-0.462937\pi$$
0.802075 0.597224i $$-0.203730\pi$$
$$762$$ 13324.3 0.633450
$$763$$ 24330.2 10322.2i 1.15441 0.489764i
$$764$$ 24344.0 1.15280
$$765$$ −4284.26 + 7420.56i −0.202481 + 0.350707i
$$766$$ −23848.1 41306.1i −1.12489 1.94837i
$$767$$ −1483.93 2570.25i −0.0698588 0.120999i
$$768$$ −5629.83 + 9751.15i −0.264517 + 0.458156i
$$769$$ −19715.0 −0.924501 −0.462251 0.886749i $$-0.652958\pi$$
−0.462251 + 0.886749i $$0.652958\pi$$
$$770$$ 13722.6 + 10344.8i 0.642246 + 0.484155i
$$771$$ −15026.0 −0.701880
$$772$$ −15312.1 + 26521.3i −0.713853 + 1.23643i
$$773$$ 7350.34 + 12731.2i 0.342010 +