# Properties

 Label 21.4.e.b.16.2 Level $21$ Weight $4$ Character 21.16 Analytic conductor $1.239$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$21 = 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 21.e (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.23904011012$$ Analytic rank: $$0$$ Dimension: $$6$$ Relative dimension: $$3$$ over $$\Q(\zeta_{3})$$ Coefficient field: 6.0.9924270768.1 Defining polynomial: $$x^{6} - x^{5} + 25 x^{4} + 12 x^{3} + 582 x^{2} - 144 x + 36$$ Coefficient ring: $$\Z[a_1, \ldots, a_{4}]$$ Coefficient ring index: $$3$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 16.2 Root $$0.124036 - 0.214837i$$ of defining polynomial Character $$\chi$$ $$=$$ 21.16 Dual form 21.4.e.b.4.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.124036 + 0.214837i) q^{2} +(1.50000 + 2.59808i) q^{3} +(3.96923 + 6.87491i) q^{4} +(6.21730 - 10.7687i) q^{5} -0.744216 q^{6} +(-18.4385 - 1.73873i) q^{7} -3.95388 q^{8} +(-4.50000 + 7.79423i) q^{9} +O(q^{10})$$ $$q+(-0.124036 + 0.214837i) q^{2} +(1.50000 + 2.59808i) q^{3} +(3.96923 + 6.87491i) q^{4} +(6.21730 - 10.7687i) q^{5} -0.744216 q^{6} +(-18.4385 - 1.73873i) q^{7} -3.95388 q^{8} +(-4.50000 + 7.79423i) q^{9} +(1.54234 + 2.67141i) q^{10} +(-30.1558 - 52.2313i) q^{11} +(-11.9077 + 20.6247i) q^{12} +36.4269 q^{13} +(2.66058 - 3.74559i) q^{14} +37.3038 q^{15} +(-31.2634 + 54.1498i) q^{16} +(24.3731 + 42.2154i) q^{17} +(-1.11632 - 1.93353i) q^{18} +(25.2750 - 43.7776i) q^{19} +98.7116 q^{20} +(-23.1403 - 50.5126i) q^{21} +14.9616 q^{22} +(-69.3962 + 120.198i) q^{23} +(-5.93083 - 10.2725i) q^{24} +(-14.8097 - 25.6511i) q^{25} +(-4.51824 + 7.82583i) q^{26} -27.0000 q^{27} +(-61.2329 - 133.664i) q^{28} -61.1345 q^{29} +(-4.62701 + 8.01422i) q^{30} +(0.584676 + 1.01269i) q^{31} +(-23.5711 - 40.8264i) q^{32} +(90.4673 - 156.694i) q^{33} -12.0925 q^{34} +(-133.361 + 187.748i) q^{35} -71.4461 q^{36} +(-34.7634 + 60.2120i) q^{37} +(6.27001 + 10.8600i) q^{38} +(54.6403 + 94.6398i) q^{39} +(-24.5825 + 42.5781i) q^{40} +308.115 q^{41} +(13.7222 + 1.29399i) q^{42} +174.443 q^{43} +(239.390 - 414.636i) q^{44} +(55.9557 + 96.9181i) q^{45} +(-17.2153 - 29.8177i) q^{46} +(-194.681 + 337.197i) q^{47} -187.581 q^{48} +(336.954 + 64.1190i) q^{49} +7.34774 q^{50} +(-73.1192 + 126.646i) q^{51} +(144.587 + 250.432i) q^{52} +(-157.467 - 272.742i) q^{53} +(3.34897 - 5.80059i) q^{54} -749.950 q^{55} +(72.9035 + 6.87474i) q^{56} +151.650 q^{57} +(7.58287 - 13.1339i) q^{58} +(-422.263 - 731.381i) q^{59} +(148.067 + 256.460i) q^{60} +(169.269 - 293.182i) q^{61} -0.290084 q^{62} +(96.5251 - 135.889i) q^{63} -488.520 q^{64} +(226.477 - 392.270i) q^{65} +(22.4424 + 38.8714i) q^{66} +(485.775 + 841.387i) q^{67} +(-193.485 + 335.125i) q^{68} -416.377 q^{69} +(-23.7935 - 51.9384i) q^{70} -98.4698 q^{71} +(17.7925 - 30.8175i) q^{72} +(-355.117 - 615.082i) q^{73} +(-8.62383 - 14.9369i) q^{74} +(44.4291 - 76.9534i) q^{75} +401.289 q^{76} +(465.210 + 1015.50i) q^{77} -27.1095 q^{78} +(243.442 - 421.654i) q^{79} +(388.748 + 673.332i) q^{80} +(-40.5000 - 70.1481i) q^{81} +(-38.2174 + 66.1944i) q^{82} +605.688 q^{83} +(255.420 - 359.584i) q^{84} +606.139 q^{85} +(-21.6372 + 37.4767i) q^{86} +(-91.7017 - 158.832i) q^{87} +(119.232 + 206.517i) q^{88} +(-109.034 + 188.853i) q^{89} -27.7621 q^{90} +(-671.656 - 63.3365i) q^{91} -1101.80 q^{92} +(-1.75403 + 3.03807i) q^{93} +(-48.2949 - 83.6491i) q^{94} +(-314.284 - 544.357i) q^{95} +(70.7133 - 122.479i) q^{96} -782.288 q^{97} +(-55.5695 + 64.4369i) q^{98} +542.804 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6q - q^{2} + 9q^{3} - 25q^{4} - 11q^{5} - 6q^{6} - 13q^{7} + 78q^{8} - 27q^{9} + O(q^{10})$$ $$6q - q^{2} + 9q^{3} - 25q^{4} - 11q^{5} - 6q^{6} - 13q^{7} + 78q^{8} - 27q^{9} + 55q^{10} - 35q^{11} + 75q^{12} + 124q^{13} - 326q^{14} - 66q^{15} - 241q^{16} - 48q^{17} - 9q^{18} + 202q^{19} + 878q^{20} + 3q^{21} - 14q^{22} - 216q^{23} + 117q^{24} - 130q^{25} - 274q^{26} - 162q^{27} - 201q^{28} + 106q^{29} - 165q^{30} + 95q^{31} - 683q^{32} + 105q^{33} - 48q^{34} + 56q^{35} + 450q^{36} - 262q^{37} + 398q^{38} + 186q^{39} - 21q^{40} + 488q^{41} - 219q^{42} + 720q^{43} + 905q^{44} - 99q^{45} + 1056q^{46} + 210q^{47} - 1446q^{48} - 303q^{49} - 2756q^{50} + 144q^{51} - 324q^{52} - 393q^{53} + 27q^{54} - 2062q^{55} + 1299q^{56} + 1212q^{57} + 1249q^{58} - 1143q^{59} + 1317q^{60} + 70q^{61} + 2118q^{62} + 126q^{63} - 798q^{64} + 472q^{65} - 21q^{66} + 628q^{67} - 1944q^{68} - 1296q^{69} + 3251q^{70} + 636q^{71} - 351q^{72} - 988q^{73} - 1002q^{74} + 390q^{75} - 4680q^{76} + 1073q^{77} - 1644q^{78} - 861q^{79} - 175q^{80} - 243q^{81} - 124q^{82} + 1038q^{83} + 1620q^{84} + 3600q^{85} + 3208q^{86} + 159q^{87} + 891q^{88} - 1766q^{89} - 990q^{90} - 654q^{91} - 1344q^{92} - 285q^{93} + 3294q^{94} + 736q^{95} + 2049q^{96} + 38q^{97} - 4267q^{98} + 630q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/21\mathbb{Z}\right)^\times$$.

 $$n$$ $$8$$ $$10$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.124036 + 0.214837i −0.0438533 + 0.0759562i −0.887119 0.461541i $$-0.847297\pi$$
0.843266 + 0.537497i $$0.180630\pi$$
$$3$$ 1.50000 + 2.59808i 0.288675 + 0.500000i
$$4$$ 3.96923 + 6.87491i 0.496154 + 0.859364i
$$5$$ 6.21730 10.7687i 0.556092 0.963180i −0.441725 0.897150i $$-0.645633\pi$$
0.997818 0.0660299i $$-0.0210333\pi$$
$$6$$ −0.744216 −0.0506375
$$7$$ −18.4385 1.73873i −0.995583 0.0938826i
$$8$$ −3.95388 −0.174739
$$9$$ −4.50000 + 7.79423i −0.166667 + 0.288675i
$$10$$ 1.54234 + 2.67141i 0.0487730 + 0.0844773i
$$11$$ −30.1558 52.2313i −0.826573 1.43167i −0.900711 0.434419i $$-0.856954\pi$$
0.0741379 0.997248i $$-0.476379\pi$$
$$12$$ −11.9077 + 20.6247i −0.286455 + 0.496154i
$$13$$ 36.4269 0.777154 0.388577 0.921416i $$-0.372967\pi$$
0.388577 + 0.921416i $$0.372967\pi$$
$$14$$ 2.66058 3.74559i 0.0507906 0.0715037i
$$15$$ 37.3038 0.642120
$$16$$ −31.2634 + 54.1498i −0.488491 + 0.846091i
$$17$$ 24.3731 + 42.2154i 0.347726 + 0.602279i 0.985845 0.167659i $$-0.0536207\pi$$
−0.638119 + 0.769937i $$0.720287\pi$$
$$18$$ −1.11632 1.93353i −0.0146178 0.0253187i
$$19$$ 25.2750 43.7776i 0.305183 0.528593i −0.672119 0.740443i $$-0.734616\pi$$
0.977302 + 0.211851i $$0.0679490\pi$$
$$20$$ 98.7116 1.10363
$$21$$ −23.1403 50.5126i −0.240459 0.524893i
$$22$$ 14.9616 0.144992
$$23$$ −69.3962 + 120.198i −0.629135 + 1.08969i 0.358590 + 0.933495i $$0.383257\pi$$
−0.987726 + 0.156199i $$0.950076\pi$$
$$24$$ −5.93083 10.2725i −0.0504427 0.0873693i
$$25$$ −14.8097 25.6511i −0.118478 0.205209i
$$26$$ −4.51824 + 7.82583i −0.0340808 + 0.0590297i
$$27$$ −27.0000 −0.192450
$$28$$ −61.2329 133.664i −0.413283 0.902148i
$$29$$ −61.1345 −0.391462 −0.195731 0.980658i $$-0.562708\pi$$
−0.195731 + 0.980658i $$0.562708\pi$$
$$30$$ −4.62701 + 8.01422i −0.0281591 + 0.0487730i
$$31$$ 0.584676 + 1.01269i 0.00338745 + 0.00586724i 0.867714 0.497064i $$-0.165588\pi$$
−0.864327 + 0.502931i $$0.832255\pi$$
$$32$$ −23.5711 40.8264i −0.130213 0.225536i
$$33$$ 90.4673 156.694i 0.477222 0.826573i
$$34$$ −12.0925 −0.0609957
$$35$$ −133.361 + 187.748i −0.644062 + 0.906719i
$$36$$ −71.4461 −0.330769
$$37$$ −34.7634 + 60.2120i −0.154461 + 0.267535i −0.932863 0.360232i $$-0.882698\pi$$
0.778401 + 0.627767i $$0.216031\pi$$
$$38$$ 6.27001 + 10.8600i 0.0267666 + 0.0463611i
$$39$$ 54.6403 + 94.6398i 0.224345 + 0.388577i
$$40$$ −24.5825 + 42.5781i −0.0971708 + 0.168305i
$$41$$ 308.115 1.17365 0.586823 0.809715i $$-0.300378\pi$$
0.586823 + 0.809715i $$0.300378\pi$$
$$42$$ 13.7222 + 1.29399i 0.0504138 + 0.00475398i
$$43$$ 174.443 0.618657 0.309329 0.950955i $$-0.399896\pi$$
0.309329 + 0.950955i $$0.399896\pi$$
$$44$$ 239.390 414.636i 0.820215 1.42065i
$$45$$ 55.9557 + 96.9181i 0.185364 + 0.321060i
$$46$$ −17.2153 29.8177i −0.0551794 0.0955734i
$$47$$ −194.681 + 337.197i −0.604194 + 1.04649i 0.387984 + 0.921666i $$0.373172\pi$$
−0.992178 + 0.124829i $$0.960162\pi$$
$$48$$ −187.581 −0.564061
$$49$$ 336.954 + 64.1190i 0.982372 + 0.186936i
$$50$$ 7.34774 0.0207825
$$51$$ −73.1192 + 126.646i −0.200760 + 0.347726i
$$52$$ 144.587 + 250.432i 0.385588 + 0.667858i
$$53$$ −157.467 272.742i −0.408110 0.706867i 0.586568 0.809900i $$-0.300479\pi$$
−0.994678 + 0.103033i $$0.967145\pi$$
$$54$$ 3.34897 5.80059i 0.00843958 0.0146178i
$$55$$ −749.950 −1.83860
$$56$$ 72.9035 + 6.87474i 0.173967 + 0.0164049i
$$57$$ 151.650 0.352395
$$58$$ 7.58287 13.1339i 0.0171669 0.0297339i
$$59$$ −422.263 731.381i −0.931762 1.61386i −0.780308 0.625396i $$-0.784938\pi$$
−0.151455 0.988464i $$-0.548396\pi$$
$$60$$ 148.067 + 256.460i 0.318590 + 0.551815i
$$61$$ 169.269 293.182i 0.355290 0.615380i −0.631878 0.775068i $$-0.717716\pi$$
0.987167 + 0.159688i $$0.0510489\pi$$
$$62$$ −0.290084 −0.000594204
$$63$$ 96.5251 135.889i 0.193032 0.271753i
$$64$$ −488.520 −0.954141
$$65$$ 226.477 392.270i 0.432169 0.748539i
$$66$$ 22.4424 + 38.8714i 0.0418556 + 0.0724960i
$$67$$ 485.775 + 841.387i 0.885774 + 1.53421i 0.844824 + 0.535044i $$0.179705\pi$$
0.0409498 + 0.999161i $$0.486962\pi$$
$$68$$ −193.485 + 335.125i −0.345051 + 0.597646i
$$69$$ −416.377 −0.726463
$$70$$ −23.7935 51.9384i −0.0406266 0.0886832i
$$71$$ −98.4698 −0.164595 −0.0822973 0.996608i $$-0.526226\pi$$
−0.0822973 + 0.996608i $$0.526226\pi$$
$$72$$ 17.7925 30.8175i 0.0291231 0.0504427i
$$73$$ −355.117 615.082i −0.569361 0.986162i −0.996629 0.0820374i $$-0.973857\pi$$
0.427268 0.904125i $$-0.359476\pi$$
$$74$$ −8.62383 14.9369i −0.0135473 0.0234646i
$$75$$ 44.4291 76.9534i 0.0684030 0.118478i
$$76$$ 401.289 0.605671
$$77$$ 465.210 + 1015.50i 0.688514 + 1.50294i
$$78$$ −27.1095 −0.0393531
$$79$$ 243.442 421.654i 0.346701 0.600504i −0.638960 0.769240i $$-0.720635\pi$$
0.985661 + 0.168736i $$0.0539686\pi$$
$$80$$ 388.748 + 673.332i 0.543292 + 0.941010i
$$81$$ −40.5000 70.1481i −0.0555556 0.0962250i
$$82$$ −38.2174 + 66.1944i −0.0514683 + 0.0891458i
$$83$$ 605.688 0.800999 0.400499 0.916297i $$-0.368837\pi$$
0.400499 + 0.916297i $$0.368837\pi$$
$$84$$ 255.420 359.584i 0.331770 0.467069i
$$85$$ 606.139 0.773470
$$86$$ −21.6372 + 37.4767i −0.0271302 + 0.0469908i
$$87$$ −91.7017 158.832i −0.113005 0.195731i
$$88$$ 119.232 + 206.517i 0.144434 + 0.250168i
$$89$$ −109.034 + 188.853i −0.129861 + 0.224925i −0.923622 0.383303i $$-0.874786\pi$$
0.793762 + 0.608229i $$0.208120\pi$$
$$90$$ −27.7621 −0.0325153
$$91$$ −671.656 63.3365i −0.773722 0.0729612i
$$92$$ −1101.80 −1.24859
$$93$$ −1.75403 + 3.03807i −0.00195575 + 0.00338745i
$$94$$ −48.2949 83.6491i −0.0529919 0.0917846i
$$95$$ −314.284 544.357i −0.339420 0.587893i
$$96$$ 70.7133 122.479i 0.0751787 0.130213i
$$97$$ −782.288 −0.818859 −0.409429 0.912342i $$-0.634272\pi$$
−0.409429 + 0.912342i $$0.634272\pi$$
$$98$$ −55.5695 + 64.4369i −0.0572792 + 0.0664195i
$$99$$ 542.804 0.551049
$$100$$ 117.566 203.631i 0.117566 0.203631i
$$101$$ 155.823 + 269.893i 0.153514 + 0.265895i 0.932517 0.361126i $$-0.117608\pi$$
−0.779003 + 0.627021i $$0.784274\pi$$
$$102$$ −18.1388 31.4174i −0.0176079 0.0304979i
$$103$$ 74.6289 129.261i 0.0713922 0.123655i −0.828119 0.560552i $$-0.810589\pi$$
0.899512 + 0.436897i $$0.143922\pi$$
$$104$$ −144.028 −0.135799
$$105$$ −687.825 64.8613i −0.639284 0.0602839i
$$106$$ 78.1265 0.0715879
$$107$$ −425.760 + 737.437i −0.384670 + 0.666269i −0.991723 0.128393i $$-0.959018\pi$$
0.607053 + 0.794661i $$0.292352\pi$$
$$108$$ −107.169 185.623i −0.0954848 0.165385i
$$109$$ −680.939 1179.42i −0.598369 1.03640i −0.993062 0.117592i $$-0.962483\pi$$
0.394694 0.918813i $$-0.370851\pi$$
$$110$$ 93.0208 161.117i 0.0806289 0.139653i
$$111$$ −208.581 −0.178357
$$112$$ 670.601 944.081i 0.565767 0.796493i
$$113$$ 1048.55 0.872917 0.436459 0.899724i $$-0.356233\pi$$
0.436459 + 0.899724i $$0.356233\pi$$
$$114$$ −18.8100 + 32.5800i −0.0154537 + 0.0267666i
$$115$$ 862.914 + 1494.61i 0.699715 + 1.21194i
$$116$$ −242.657 420.294i −0.194225 0.336408i
$$117$$ −163.921 + 283.920i −0.129526 + 0.224345i
$$118$$ 209.503 0.163444
$$119$$ −376.001 820.765i −0.289646 0.632264i
$$120$$ −147.495 −0.112203
$$121$$ −1153.24 + 1997.47i −0.866446 + 1.50073i
$$122$$ 41.9909 + 72.7303i 0.0311613 + 0.0539729i
$$123$$ 462.173 + 800.507i 0.338803 + 0.586823i
$$124$$ −4.64143 + 8.03919i −0.00336139 + 0.00582210i
$$125$$ 1186.02 0.848647
$$126$$ 17.2214 + 37.5923i 0.0121762 + 0.0265793i
$$127$$ 488.408 0.341254 0.170627 0.985336i $$-0.445421\pi$$
0.170627 + 0.985336i $$0.445421\pi$$
$$128$$ 249.163 431.563i 0.172056 0.298009i
$$129$$ 261.664 + 453.215i 0.178591 + 0.309329i
$$130$$ 56.1826 + 97.3111i 0.0379041 + 0.0656519i
$$131$$ 927.114 1605.81i 0.618338 1.07099i −0.371451 0.928453i $$-0.621139\pi$$
0.989789 0.142541i $$-0.0455272\pi$$
$$132$$ 1436.34 0.947102
$$133$$ −542.149 + 763.244i −0.353461 + 0.497607i
$$134$$ −241.014 −0.155377
$$135$$ −167.867 + 290.754i −0.107020 + 0.185364i
$$136$$ −96.3683 166.915i −0.0607611 0.105241i
$$137$$ 255.558 + 442.639i 0.159370 + 0.276038i 0.934642 0.355591i $$-0.115720\pi$$
−0.775271 + 0.631628i $$0.782387\pi$$
$$138$$ 51.6458 89.4531i 0.0318578 0.0551794i
$$139$$ 2266.10 1.38279 0.691397 0.722475i $$-0.256995\pi$$
0.691397 + 0.722475i $$0.256995\pi$$
$$140$$ −1820.09 171.633i −1.09875 0.103612i
$$141$$ −1168.09 −0.697663
$$142$$ 12.2138 21.1549i 0.00721802 0.0125020i
$$143$$ −1098.48 1902.62i −0.642375 1.11263i
$$144$$ −281.371 487.348i −0.162830 0.282030i
$$145$$ −380.091 + 658.338i −0.217689 + 0.377048i
$$146$$ 176.189 0.0998735
$$147$$ 338.844 + 971.610i 0.190118 + 0.545150i
$$148$$ −551.936 −0.306546
$$149$$ −753.950 + 1305.88i −0.414537 + 0.717999i −0.995380 0.0960168i $$-0.969390\pi$$
0.580843 + 0.814016i $$0.302723\pi$$
$$150$$ 11.0216 + 19.0900i 0.00599940 + 0.0103913i
$$151$$ −795.913 1378.56i −0.428943 0.742952i 0.567836 0.823142i $$-0.307781\pi$$
−0.996780 + 0.0801897i $$0.974447\pi$$
$$152$$ −99.9344 + 173.091i −0.0533273 + 0.0923656i
$$153$$ −438.715 −0.231817
$$154$$ −275.869 26.0142i −0.144352 0.0136122i
$$155$$ 14.5404 0.00753494
$$156$$ −433.760 + 751.295i −0.222619 + 0.385588i
$$157$$ −582.080 1008.19i −0.295892 0.512500i 0.679300 0.733861i $$-0.262283\pi$$
−0.975192 + 0.221361i $$0.928950\pi$$
$$158$$ 60.3911 + 104.601i 0.0304080 + 0.0526682i
$$159$$ 472.402 818.225i 0.235622 0.408110i
$$160$$ −586.195 −0.289642
$$161$$ 1488.55 2095.60i 0.728660 1.02582i
$$162$$ 20.0938 0.00974519
$$163$$ 577.940 1001.02i 0.277716 0.481019i −0.693101 0.720841i $$-0.743756\pi$$
0.970817 + 0.239822i $$0.0770892\pi$$
$$164$$ 1222.98 + 2118.26i 0.582309 + 1.00859i
$$165$$ −1124.92 1948.43i −0.530759 0.919302i
$$166$$ −75.1271 + 130.124i −0.0351265 + 0.0608408i
$$167$$ −2890.61 −1.33941 −0.669707 0.742626i $$-0.733580\pi$$
−0.669707 + 0.742626i $$0.733580\pi$$
$$168$$ 91.4942 + 199.721i 0.0420175 + 0.0917191i
$$169$$ −870.082 −0.396032
$$170$$ −75.1830 + 130.221i −0.0339193 + 0.0587499i
$$171$$ 227.475 + 393.998i 0.101728 + 0.176198i
$$172$$ 692.403 + 1199.28i 0.306949 + 0.531651i
$$173$$ −947.468 + 1641.06i −0.416385 + 0.721200i −0.995573 0.0939940i $$-0.970037\pi$$
0.579188 + 0.815194i $$0.303370\pi$$
$$174$$ 45.4972 0.0198226
$$175$$ 228.467 + 498.718i 0.0986887 + 0.215426i
$$176$$ 3771.09 1.61509
$$177$$ 1266.79 2194.14i 0.537953 0.931762i
$$178$$ −27.0483 46.8491i −0.0113897 0.0197275i
$$179$$ 2144.25 + 3713.94i 0.895355 + 1.55080i 0.833365 + 0.552723i $$0.186411\pi$$
0.0619893 + 0.998077i $$0.480256\pi$$
$$180$$ −444.202 + 769.381i −0.183938 + 0.318590i
$$181$$ 383.732 0.157583 0.0787917 0.996891i $$-0.474894\pi$$
0.0787917 + 0.996891i $$0.474894\pi$$
$$182$$ 96.9165 136.440i 0.0394721 0.0555694i
$$183$$ 1015.61 0.410253
$$184$$ 274.385 475.248i 0.109934 0.190412i
$$185$$ 432.269 + 748.712i 0.171790 + 0.297548i
$$186$$ −0.435125 0.753659i −0.000171532 0.000297102i
$$187$$ 1469.98 2546.07i 0.574841 0.995655i
$$188$$ −3090.93 −1.19909
$$189$$ 497.838 + 46.9457i 0.191600 + 0.0180677i
$$190$$ 155.930 0.0595388
$$191$$ −192.655 + 333.689i −0.0729845 + 0.126413i −0.900208 0.435460i $$-0.856586\pi$$
0.827224 + 0.561873i $$0.189919\pi$$
$$192$$ −732.780 1269.21i −0.275437 0.477070i
$$193$$ −315.112 545.790i −0.117525 0.203559i 0.801262 0.598314i $$-0.204163\pi$$
−0.918786 + 0.394756i $$0.870829\pi$$
$$194$$ 97.0318 168.064i 0.0359097 0.0621974i
$$195$$ 1358.86 0.499026
$$196$$ 896.634 + 2571.03i 0.326762 + 0.936964i
$$197$$ −1250.23 −0.452158 −0.226079 0.974109i $$-0.572591\pi$$
−0.226079 + 0.974109i $$0.572591\pi$$
$$198$$ −67.3272 + 116.614i −0.0241653 + 0.0418556i
$$199$$ 546.122 + 945.912i 0.194541 + 0.336954i 0.946750 0.321970i $$-0.104345\pi$$
−0.752209 + 0.658924i $$0.771012\pi$$
$$200$$ 58.5558 + 101.422i 0.0207026 + 0.0358580i
$$201$$ −1457.32 + 2524.16i −0.511402 + 0.885774i
$$202$$ −77.3105 −0.0269285
$$203$$ 1127.23 + 106.296i 0.389733 + 0.0367514i
$$204$$ −1160.91 −0.398430
$$205$$ 1915.65 3318.00i 0.652656 1.13043i
$$206$$ 18.5133 + 32.0660i 0.00626158 + 0.0108454i
$$207$$ −624.566 1081.78i −0.209712 0.363231i
$$208$$ −1138.83 + 1972.51i −0.379633 + 0.657543i
$$209$$ −3048.75 −1.00902
$$210$$ 99.2496 139.725i 0.0326137 0.0459139i
$$211$$ −3620.05 −1.18111 −0.590556 0.806997i $$-0.701091\pi$$
−0.590556 + 0.806997i $$0.701091\pi$$
$$212$$ 1250.05 2165.15i 0.404970 0.701429i
$$213$$ −147.705 255.832i −0.0475143 0.0822973i
$$214$$ −105.619 182.937i −0.0337382 0.0584362i
$$215$$ 1084.56 1878.52i 0.344030 0.595878i
$$216$$ 106.755 0.0336285
$$217$$ −9.01974 19.6890i −0.00282166 0.00615935i
$$218$$ 337.844 0.104962
$$219$$ 1065.35 1845.24i 0.328721 0.569361i
$$220$$ −2976.72 5155.84i −0.912230 1.58003i
$$221$$ 887.835 + 1537.78i 0.270236 + 0.468063i
$$222$$ 25.8715 44.8107i 0.00782153 0.0135473i
$$223$$ −183.844 −0.0552069 −0.0276034 0.999619i $$-0.508788\pi$$
−0.0276034 + 0.999619i $$0.508788\pi$$
$$224$$ 363.629 + 793.759i 0.108464 + 0.236765i
$$225$$ 266.574 0.0789850
$$226$$ −130.058 + 225.268i −0.0382803 + 0.0663035i
$$227$$ −1139.76 1974.12i −0.333253 0.577211i 0.649895 0.760024i $$-0.274813\pi$$
−0.983148 + 0.182813i $$0.941480\pi$$
$$228$$ 601.933 + 1042.58i 0.174842 + 0.302836i
$$229$$ −2706.34 + 4687.51i −0.780960 + 1.35266i 0.150424 + 0.988622i $$0.451936\pi$$
−0.931383 + 0.364040i $$0.881397\pi$$
$$230$$ −428.130 −0.122739
$$231$$ −1940.53 + 2731.90i −0.552715 + 0.778120i
$$232$$ 241.719 0.0684035
$$233$$ −569.184 + 985.856i −0.160036 + 0.277191i −0.934882 0.354960i $$-0.884494\pi$$
0.774845 + 0.632151i $$0.217828\pi$$
$$234$$ −40.6642 70.4325i −0.0113603 0.0196766i
$$235$$ 2420.78 + 4192.91i 0.671975 + 1.16390i
$$236$$ 3352.12 5806.04i 0.924595 1.60145i
$$237$$ 1460.65 0.400336
$$238$$ 222.968 + 21.0257i 0.0607263 + 0.00572644i
$$239$$ −6226.36 −1.68515 −0.842573 0.538583i $$-0.818960\pi$$
−0.842573 + 0.538583i $$0.818960\pi$$
$$240$$ −1166.24 + 2020.00i −0.313670 + 0.543292i
$$241$$ 1598.10 + 2767.99i 0.427147 + 0.739841i 0.996618 0.0821704i $$-0.0261852\pi$$
−0.569471 + 0.822012i $$0.692852\pi$$
$$242$$ −286.086 495.516i −0.0759931 0.131624i
$$243$$ 121.500 210.444i 0.0320750 0.0555556i
$$244$$ 2687.47 0.705113
$$245$$ 2785.42 3229.90i 0.726343 0.842248i
$$246$$ −229.304 −0.0594305
$$247$$ 920.689 1594.68i 0.237174 0.410798i
$$248$$ −2.31174 4.00406i −0.000591919 0.00102523i
$$249$$ 908.532 + 1573.62i 0.231228 + 0.400499i
$$250$$ −147.109 + 254.801i −0.0372160 + 0.0644600i
$$251$$ 239.608 0.0602546 0.0301273 0.999546i $$-0.490409\pi$$
0.0301273 + 0.999546i $$0.490409\pi$$
$$252$$ 1317.36 + 124.226i 0.329308 + 0.0310535i
$$253$$ 8370.78 2.08010
$$254$$ −60.5802 + 104.928i −0.0149651 + 0.0259203i
$$255$$ 909.208 + 1574.79i 0.223282 + 0.386735i
$$256$$ −1892.27 3277.51i −0.461980 0.800173i
$$257$$ −349.559 + 605.453i −0.0848439 + 0.146954i −0.905325 0.424720i $$-0.860372\pi$$
0.820481 + 0.571674i $$0.193706\pi$$
$$258$$ −129.823 −0.0313272
$$259$$ 745.676 1049.77i 0.178896 0.251852i
$$260$$ 3595.76 0.857690
$$261$$ 275.105 476.496i 0.0652436 0.113005i
$$262$$ 229.991 + 398.356i 0.0542324 + 0.0939333i
$$263$$ 459.520 + 795.912i 0.107738 + 0.186609i 0.914854 0.403785i $$-0.132306\pi$$
−0.807115 + 0.590394i $$0.798972\pi$$
$$264$$ −357.697 + 619.550i −0.0833892 + 0.144434i
$$265$$ −3916.09 −0.907787
$$266$$ −96.7268 211.143i −0.0222959 0.0486693i
$$267$$ −654.206 −0.149950
$$268$$ −3856.30 + 6679.32i −0.878960 + 1.52240i
$$269$$ 1389.59 + 2406.84i 0.314961 + 0.545529i 0.979429 0.201788i $$-0.0646751\pi$$
−0.664468 + 0.747317i $$0.731342\pi$$
$$270$$ −41.6431 72.1280i −0.00938637 0.0162577i
$$271$$ −1113.49 + 1928.62i −0.249593 + 0.432308i −0.963413 0.268021i $$-0.913630\pi$$
0.713820 + 0.700329i $$0.246964\pi$$
$$272$$ −3047.94 −0.679443
$$273$$ −842.931 1840.02i −0.186874 0.407923i
$$274$$ −126.793 −0.0279557
$$275$$ −893.195 + 1547.06i −0.195861 + 0.339241i
$$276$$ −1652.70 2862.56i −0.360437 0.624296i
$$277$$ −3653.85 6328.65i −0.792557 1.37275i −0.924379 0.381476i $$-0.875416\pi$$
0.131821 0.991273i $$-0.457917\pi$$
$$278$$ −281.078 + 486.842i −0.0606402 + 0.105032i
$$279$$ −10.5242 −0.00225830
$$280$$ 527.295 742.333i 0.112543 0.158439i
$$281$$ 2730.61 0.579696 0.289848 0.957073i $$-0.406395\pi$$
0.289848 + 0.957073i $$0.406395\pi$$
$$282$$ 144.885 250.947i 0.0305949 0.0529919i
$$283$$ 884.926 + 1532.74i 0.185878 + 0.321950i 0.943872 0.330312i $$-0.107154\pi$$
−0.757994 + 0.652261i $$0.773821\pi$$
$$284$$ −390.849 676.971i −0.0816642 0.141447i
$$285$$ 942.853 1633.07i 0.195964 0.339420i
$$286$$ 545.004 0.112681
$$287$$ −5681.17 535.729i −1.16846 0.110185i
$$288$$ 424.280 0.0868088
$$289$$ 1268.41 2196.95i 0.258174 0.447170i
$$290$$ −94.2900 163.315i −0.0190928 0.0330696i
$$291$$ −1173.43 2032.44i −0.236384 0.409429i
$$292$$ 2819.09 4882.80i 0.564981 0.978576i
$$293$$ 8228.81 1.64072 0.820362 0.571844i $$-0.193772\pi$$
0.820362 + 0.571844i $$0.193772\pi$$
$$294$$ −250.766 47.7184i −0.0497448 0.00946596i
$$295$$ −10501.4 −2.07258
$$296$$ 137.451 238.071i 0.0269904 0.0467487i
$$297$$ 814.206 + 1410.25i 0.159074 + 0.275524i
$$298$$ −187.034 323.952i −0.0363577 0.0629733i
$$299$$ −2527.89 + 4378.43i −0.488935 + 0.846860i
$$300$$ 705.397 0.135754
$$301$$ −3216.45 303.309i −0.615925 0.0580811i
$$302$$ 394.887 0.0752424
$$303$$ −467.468 + 809.679i −0.0886316 + 0.153514i
$$304$$ 1580.36 + 2737.27i 0.298158 + 0.516425i
$$305$$ −2104.79 3645.61i −0.395148 0.684416i
$$306$$ 54.4165 94.2521i 0.0101660 0.0176079i
$$307$$ 6019.62 1.11908 0.559541 0.828803i $$-0.310977\pi$$
0.559541 + 0.828803i $$0.310977\pi$$
$$308$$ −5134.93 + 7229.02i −0.949967 + 1.33738i
$$309$$ 447.773 0.0824366
$$310$$ −1.80354 + 3.12382i −0.000330432 + 0.000572326i
$$311$$ −596.857 1033.79i −0.108825 0.188491i 0.806469 0.591276i $$-0.201376\pi$$
−0.915295 + 0.402785i $$0.868042\pi$$
$$312$$ −216.042 374.195i −0.0392018 0.0678994i
$$313$$ 4423.02 7660.89i 0.798734 1.38345i −0.121707 0.992566i $$-0.538837\pi$$
0.920441 0.390882i $$-0.127830\pi$$
$$314$$ 288.795 0.0519034
$$315$$ −863.223 1884.31i −0.154403 0.337045i
$$316$$ 3865.11 0.688068
$$317$$ −3040.72 + 5266.68i −0.538750 + 0.933142i 0.460222 + 0.887804i $$0.347770\pi$$
−0.998972 + 0.0453380i $$0.985564\pi$$
$$318$$ 117.190 + 202.979i 0.0206656 + 0.0357940i
$$319$$ 1843.56 + 3193.13i 0.323572 + 0.560442i
$$320$$ −3037.28 + 5260.72i −0.530590 + 0.919009i
$$321$$ −2554.56 −0.444179
$$322$$ 265.578 + 579.725i 0.0459630 + 0.100332i
$$323$$ 2464.12 0.424480
$$324$$ 321.508 556.868i 0.0551282 0.0954848i
$$325$$ −539.471 934.391i −0.0920753 0.159479i
$$326$$ 143.371 + 248.325i 0.0243576 + 0.0421885i
$$327$$ 2042.82 3538.26i 0.345468 0.598369i
$$328$$ −1218.25 −0.205082
$$329$$ 4175.91 5878.90i 0.699773 0.985149i
$$330$$ 558.125 0.0931023
$$331$$ −1526.65 + 2644.23i −0.253511 + 0.439094i −0.964490 0.264119i $$-0.914919\pi$$
0.710979 + 0.703213i $$0.248252\pi$$
$$332$$ 2404.12 + 4164.05i 0.397419 + 0.688349i
$$333$$ −312.871 541.908i −0.0514871 0.0891783i
$$334$$ 358.539 621.009i 0.0587377 0.101737i
$$335$$ 12080.8 1.97029
$$336$$ 3458.70 + 326.152i 0.561569 + 0.0529555i
$$337$$ 3865.80 0.624877 0.312438 0.949938i $$-0.398854\pi$$
0.312438 + 0.949938i $$0.398854\pi$$
$$338$$ 107.921 186.925i 0.0173673 0.0300811i
$$339$$ 1572.83 + 2724.22i 0.251989 + 0.436459i
$$340$$ 2405.90 + 4167.15i 0.383760 + 0.664692i
$$341$$ 35.2627 61.0768i 0.00559995 0.00969940i
$$342$$ −112.860 −0.0178444
$$343$$ −6101.42 1768.13i −0.960483 0.278338i
$$344$$ −689.726 −0.108103
$$345$$ −2588.74 + 4483.83i −0.403980 + 0.699715i
$$346$$ −235.040 407.101i −0.0365198 0.0632541i
$$347$$ 49.7965 + 86.2501i 0.00770380 + 0.0133434i 0.869852 0.493313i $$-0.164214\pi$$
−0.862148 + 0.506657i $$0.830881\pi$$
$$348$$ 727.970 1260.88i 0.112136 0.194225i
$$349$$ −3607.34 −0.553285 −0.276643 0.960973i $$-0.589222\pi$$
−0.276643 + 0.960973i $$0.589222\pi$$
$$350$$ −135.481 12.7757i −0.0206907 0.00195112i
$$351$$ −983.526 −0.149563
$$352$$ −1421.61 + 2462.30i −0.215262 + 0.372844i
$$353$$ −3565.37 6175.40i −0.537579 0.931114i −0.999034 0.0439501i $$-0.986006\pi$$
0.461455 0.887164i $$-0.347328\pi$$
$$354$$ 314.255 + 544.306i 0.0471821 + 0.0817218i
$$355$$ −612.216 + 1060.39i −0.0915298 + 0.158534i
$$356$$ −1731.13 −0.257724
$$357$$ 1568.41 2208.03i 0.232518 0.327342i
$$358$$ −1063.85 −0.157057
$$359$$ 3250.14 5629.41i 0.477816 0.827602i −0.521860 0.853031i $$-0.674762\pi$$
0.999677 + 0.0254289i $$0.00809514\pi$$
$$360$$ −221.242 383.203i −0.0323903 0.0561016i
$$361$$ 2151.85 + 3727.11i 0.313727 + 0.543390i
$$362$$ −47.5966 + 82.4398i −0.00691056 + 0.0119694i
$$363$$ −6919.44 −1.00049
$$364$$ −2230.52 4868.97i −0.321185 0.701108i
$$365$$ −8831.49 −1.26647
$$366$$ −125.973 + 218.191i −0.0179910 + 0.0311613i
$$367$$ −412.443 714.372i −0.0586631 0.101607i 0.835202 0.549943i $$-0.185350\pi$$
−0.893866 + 0.448335i $$0.852017\pi$$
$$368$$ −4339.12 7515.58i −0.614654 1.06461i
$$369$$ −1386.52 + 2401.52i −0.195608 + 0.338803i
$$370$$ −214.468 −0.0301342
$$371$$ 2429.23 + 5302.73i 0.339945 + 0.742059i
$$372$$ −27.8486 −0.00388140
$$373$$ −666.925 + 1155.15i −0.0925793 + 0.160352i −0.908596 0.417677i $$-0.862845\pi$$
0.816016 + 0.578029i $$0.196178\pi$$
$$374$$ 364.660 + 631.610i 0.0504174 + 0.0873255i
$$375$$ 1779.03 + 3081.37i 0.244983 + 0.424324i
$$376$$ 769.746 1333.24i 0.105576 0.182863i
$$377$$ −2226.94 −0.304226
$$378$$ −71.8355 + 101.131i −0.00977466 + 0.0137609i
$$379$$ −1338.29 −0.181380 −0.0906902 0.995879i $$-0.528907\pi$$
−0.0906902 + 0.995879i $$0.528907\pi$$
$$380$$ 2494.93 4321.35i 0.336809 0.583370i
$$381$$ 732.612 + 1268.92i 0.0985114 + 0.170627i
$$382$$ −47.7924 82.7788i −0.00640123 0.0110873i
$$383$$ −176.688 + 306.032i −0.0235727 + 0.0408290i −0.877571 0.479447i $$-0.840837\pi$$
0.853998 + 0.520276i $$0.174171\pi$$
$$384$$ 1494.98 0.198673
$$385$$ 13827.9 + 1303.96i 1.83048 + 0.172613i
$$386$$ 156.341 0.0206154
$$387$$ −784.992 + 1359.65i −0.103110 + 0.178591i
$$388$$ −3105.08 5378.16i −0.406280 0.703697i
$$389$$ −5868.59 10164.7i −0.764908 1.32486i −0.940295 0.340360i $$-0.889451\pi$$
0.175387 0.984500i $$-0.443882\pi$$
$$390$$ −168.548 + 291.933i −0.0218840 + 0.0379041i
$$391$$ −6765.59 −0.875066
$$392$$ −1332.28 253.519i −0.171658 0.0326649i
$$393$$ 5562.68 0.713996
$$394$$ 155.073 268.595i 0.0198286 0.0343442i
$$395$$ −3027.11 5243.10i −0.385595 0.667871i
$$396$$ 2154.51 + 3731.73i 0.273405 + 0.473551i
$$397$$ −6640.71 + 11502.1i −0.839516 + 1.45408i 0.0507841 + 0.998710i $$0.483828\pi$$
−0.890300 + 0.455374i $$0.849505\pi$$
$$398$$ −270.955 −0.0341250
$$399$$ −2796.19 263.678i −0.350839 0.0330838i
$$400$$ 1852.01 0.231501
$$401$$ 3741.18 6479.91i 0.465899 0.806961i −0.533343 0.845899i $$-0.679064\pi$$
0.999242 + 0.0389385i $$0.0123976\pi$$
$$402$$ −361.521 626.173i −0.0448534 0.0776883i
$$403$$ 21.2979 + 36.8891i 0.00263257 + 0.00455975i
$$404$$ −1236.99 + 2142.54i −0.152333 + 0.263849i
$$405$$ −1007.20 −0.123576
$$406$$ −162.653 + 228.985i −0.0198826 + 0.0279909i
$$407$$ 4193.27 0.510694
$$408$$ 289.105 500.744i 0.0350805 0.0607611i
$$409$$ 6898.30 + 11948.2i 0.833983 + 1.44450i 0.894856 + 0.446355i $$0.147278\pi$$
−0.0608735 + 0.998145i $$0.519389\pi$$
$$410$$ 475.218 + 823.102i 0.0572423 + 0.0991466i
$$411$$ −766.673 + 1327.92i −0.0920126 + 0.159370i
$$412$$ 1184.88 0.141686
$$413$$ 6514.21 + 14219.7i 0.776134 + 1.69421i
$$414$$ 309.875 0.0367862
$$415$$ 3765.75 6522.46i 0.445429 0.771506i
$$416$$ −858.622 1487.18i −0.101196 0.175276i
$$417$$ 3399.16 + 5887.51i 0.399179 + 0.691397i
$$418$$ 378.154 654.982i 0.0442491 0.0766417i
$$419$$ 9497.56 1.10737 0.553683 0.832728i $$-0.313222\pi$$
0.553683 + 0.832728i $$0.313222\pi$$
$$420$$ −2284.22 4986.18i −0.265377 0.579288i
$$421$$ 624.367 0.0722797 0.0361399 0.999347i $$-0.488494\pi$$
0.0361399 + 0.999347i $$0.488494\pi$$
$$422$$ 449.016 777.719i 0.0517957 0.0897127i
$$423$$ −1752.13 3034.77i −0.201398 0.348832i
$$424$$ 622.608 + 1078.39i 0.0713126 + 0.123517i
$$425$$ 721.915 1250.39i 0.0823954 0.142713i
$$426$$ 73.2827 0.00833465
$$427$$ −3630.82 + 5111.52i −0.411494 + 0.579306i
$$428$$ −6759.75 −0.763423
$$429$$ 3295.44 5707.87i 0.370875 0.642375i
$$430$$ 269.050 + 466.007i 0.0301738 + 0.0522625i
$$431$$ 6698.64 + 11602.4i 0.748636 + 1.29668i 0.948476 + 0.316848i $$0.102624\pi$$
−0.199840 + 0.979829i $$0.564042\pi$$
$$432$$ 844.112 1462.05i 0.0940101 0.162830i
$$433$$ −14057.3 −1.56016 −0.780079 0.625681i $$-0.784821\pi$$
−0.780079 + 0.625681i $$0.784821\pi$$
$$434$$ 5.34870 + 0.504377i 0.000591580 + 5.57854e-5i
$$435$$ −2280.55 −0.251365
$$436$$ 5405.61 9362.79i 0.593766 1.02843i
$$437$$ 3507.98 + 6075.99i 0.384003 + 0.665112i
$$438$$ 264.284 + 457.753i 0.0288310 + 0.0499368i
$$439$$ 8184.42 14175.8i 0.889798 1.54117i 0.0496832 0.998765i $$-0.484179\pi$$
0.840114 0.542409i $$-0.182488\pi$$
$$440$$ 2965.22 0.321275
$$441$$ −2016.05 + 2337.76i −0.217692 + 0.252430i
$$442$$ −440.494 −0.0474031
$$443$$ 589.354 1020.79i 0.0632078 0.109479i −0.832690 0.553740i $$-0.813200\pi$$
0.895898 + 0.444261i $$0.146534\pi$$
$$444$$ −827.904 1433.97i −0.0884923 0.153273i
$$445$$ 1355.80 + 2348.31i 0.144429 + 0.250159i
$$446$$ 22.8033 39.4965i 0.00242101 0.00419331i
$$447$$ −4523.70 −0.478666
$$448$$ 9007.56 + 849.404i 0.949926 + 0.0895772i
$$449$$ −12400.9 −1.30342 −0.651709 0.758469i $$-0.725948\pi$$
−0.651709 + 0.758469i $$0.725948\pi$$
$$450$$ −33.0648 + 57.2699i −0.00346376 + 0.00599940i
$$451$$ −9291.45 16093.3i −0.970105 1.68027i
$$452$$ 4161.95 + 7208.71i 0.433101 + 0.750153i
$$453$$ 2387.74 4135.68i 0.247651 0.428943i
$$454$$ 565.484 0.0584570
$$455$$ −4857.94 + 6839.07i −0.500535 + 0.704660i
$$456$$ −599.606 −0.0615771
$$457$$ −4962.79 + 8595.81i −0.507986 + 0.879858i 0.491971 + 0.870611i $$0.336277\pi$$
−0.999957 + 0.00924618i $$0.997057\pi$$
$$458$$ −671.366 1162.84i −0.0684954 0.118637i
$$459$$ −658.073 1139.82i −0.0669198 0.115909i
$$460$$ −6850.21 + 11864.9i −0.694332 + 1.20262i
$$461$$ −16010.3 −1.61751 −0.808755 0.588146i $$-0.799858\pi$$
−0.808755 + 0.588146i $$0.799858\pi$$
$$462$$ −346.216 755.749i −0.0348646 0.0761053i
$$463$$ 17372.4 1.74377 0.871883 0.489714i $$-0.162899\pi$$
0.871883 + 0.489714i $$0.162899\pi$$
$$464$$ 1911.27 3310.42i 0.191225 0.331212i
$$465$$ 21.8107 + 37.7772i 0.00217515 + 0.00376747i
$$466$$ −141.199 244.563i −0.0140363 0.0243115i
$$467$$ −1054.03 + 1825.64i −0.104443 + 0.180900i −0.913510 0.406815i $$-0.866639\pi$$
0.809068 + 0.587716i $$0.199973\pi$$
$$468$$ −2602.56 −0.257059
$$469$$ −7494.00 16358.5i −0.737826 1.61059i
$$470$$ −1201.05 −0.117873
$$471$$ 1746.24 3024.58i 0.170833 0.295892i
$$472$$ 1669.58 + 2891.80i 0.162815 + 0.282004i
$$473$$ −5260.45 9111.37i −0.511365 0.885711i
$$474$$ −181.173 + 313.802i −0.0175561 + 0.0304080i
$$475$$ −1497.26 −0.144629
$$476$$ 4150.25 5842.77i 0.399635 0.562612i
$$477$$ 2834.41 0.272073
$$478$$ 772.293 1337.65i 0.0738992 0.127997i
$$479$$ 1225.02 + 2121.80i 0.116853 + 0.202395i 0.918519 0.395377i $$-0.129386\pi$$
−0.801666 + 0.597772i $$0.796053\pi$$
$$480$$ −879.292 1522.98i −0.0836126 0.144821i
$$481$$ −1266.32 + 2193.34i −0.120040 + 0.207916i
$$482$$ −792.887 −0.0749274
$$483$$ 7677.35 + 723.967i 0.723254 + 0.0682022i
$$484$$ −18309.9 −1.71956
$$485$$ −4863.72 + 8424.21i −0.455361 + 0.788709i
$$486$$ 30.1407 + 52.2053i 0.00281319 + 0.00487259i
$$487$$ −322.618 558.791i −0.0300189 0.0519943i 0.850626 0.525772i $$-0.176223\pi$$
−0.880645 + 0.473778i $$0.842890\pi$$
$$488$$ −669.270 + 1159.21i −0.0620828 + 0.107531i
$$489$$ 3467.64 0.320679
$$490$$ 348.408 + 999.034i 0.0321214 + 0.0921056i
$$491$$ 11766.1 1.08146 0.540731 0.841196i $$-0.318148\pi$$
0.540731 + 0.841196i $$0.318148\pi$$
$$492$$ −3668.94 + 6354.79i −0.336196 + 0.582309i
$$493$$ −1490.03 2580.81i −0.136121 0.235769i
$$494$$ 228.397 + 395.595i 0.0208018 + 0.0360297i
$$495$$ 3374.77 5845.28i 0.306434 0.530759i
$$496$$ −73.1159 −0.00661896
$$497$$ 1815.63 + 171.212i 0.163868 + 0.0154526i
$$498$$ −450.763 −0.0405606
$$499$$ 22.0104 38.1232i 0.00197459 0.00342010i −0.865036 0.501709i $$-0.832705\pi$$
0.867011 + 0.498289i $$0.166038\pi$$
$$500$$ 4707.59 + 8153.78i 0.421059 + 0.729296i
$$501$$ −4335.91 7510.02i −0.386655 0.669707i
$$502$$ −29.7200 + 51.4765i −0.00264236 + 0.00457671i
$$503$$ 8290.27 0.734880 0.367440 0.930047i $$-0.380234\pi$$
0.367440 + 0.930047i $$0.380234\pi$$
$$504$$ −381.649 + 537.291i −0.0337302 + 0.0474858i
$$505$$ 3875.19 0.341473
$$506$$ −1038.28 + 1798.35i −0.0912195 + 0.157997i
$$507$$ −1305.12 2260.54i −0.114324 0.198016i
$$508$$ 1938.60 + 3357.76i 0.169314 + 0.293261i
$$509$$ −3457.52 + 5988.60i −0.301084 + 0.521493i −0.976382 0.216052i $$-0.930682\pi$$
0.675298 + 0.737545i $$0.264015\pi$$
$$510$$ −451.098 −0.0391666
$$511$$ 5478.36 + 11958.6i 0.474263 + 1.03526i
$$512$$ 4925.45 0.425148
$$513$$ −682.425 + 1181.99i −0.0587325 + 0.101728i
$$514$$ −86.7157 150.196i −0.00744137 0.0128888i
$$515$$ −927.980 1607.31i −0.0794014 0.137527i
$$516$$ −2077.21 + 3597.83i −0.177217 + 0.306949i
$$517$$ 23483.0 1.99764
$$518$$ 133.039 + 290.408i 0.0112845 + 0.0246328i
$$519$$ −5684.81 −0.480800
$$520$$ −895.464 + 1550.99i −0.0755167 + 0.130799i
$$521$$ −6699.64 11604.1i −0.563371 0.975788i −0.997199 0.0747919i $$-0.976171\pi$$
0.433828 0.900996i $$-0.357163\pi$$
$$522$$ 68.2458 + 118.205i 0.00572230 + 0.00991131i
$$523$$ 4968.50 8605.69i 0.415406 0.719504i −0.580065 0.814570i $$-0.696973\pi$$
0.995471 + 0.0950662i $$0.0303063\pi$$
$$524$$ 14719.7 1.22716
$$525$$ −953.005 + 1341.65i −0.0792239 + 0.111532i
$$526$$ −227.988 −0.0188988
$$527$$ −28.5007 + 49.3647i −0.00235581 + 0.00408038i
$$528$$ 5656.63 + 9797.58i 0.466237 + 0.807547i
$$529$$ −3548.17 6145.60i −0.291622 0.505104i
$$530$$ 485.736 841.320i 0.0398095 0.0689521i
$$531$$ 7600.74 0.621175
$$532$$ −7399.15 697.733i −0.602996 0.0568620i
$$533$$ 11223.7 0.912104
$$534$$ 81.1450 140.547i 0.00657582 0.0113897i
$$535$$ 5294.15 + 9169.74i 0.427825 + 0.741014i
$$536$$ −1920.70 3326.75i −0.154779 0.268085i
$$537$$ −6432.74 + 11141.8i −0.516933 + 0.895355i
$$538$$ −689.435 −0.0552484
$$539$$ −6812.07 19533.1i −0.544373 1.56095i
$$540$$ −2665.21 −0.212394
$$541$$ −4643.08 + 8042.06i −0.368987 + 0.639103i −0.989407 0.145166i $$-0.953628\pi$$
0.620421 + 0.784269i $$0.286962\pi$$
$$542$$ −276.226 478.437i −0.0218910 0.0379163i
$$543$$ 575.599 + 996.966i 0.0454904 + 0.0787917i
$$544$$ 1149.00 1990.13i 0.0905570 0.156849i
$$545$$ −16934.4 −1.33099
$$546$$ 499.857 + 47.1360i 0.0391793 + 0.00369457i
$$547$$ −16821.6 −1.31488 −0.657438 0.753508i $$-0.728360\pi$$
−0.657438 + 0.753508i $$0.728360\pi$$
$$548$$ −2028.73 + 3513.87i −0.158144 + 0.273914i
$$549$$ 1523.42 + 2638.64i 0.118430 + 0.205127i
$$550$$ −221.577 383.782i −0.0171783 0.0297537i
$$551$$ −1545.17 + 2676.32i −0.119467 + 0.206924i
$$552$$ 1646.31 0.126941
$$553$$ −5221.84 + 7351.37i −0.401546 + 0.565302i
$$554$$ 1812.83 0.139025
$$555$$ −1296.81 + 2246.14i −0.0991828 + 0.171790i
$$556$$ 8994.69 + 15579.3i 0.686079 + 1.18832i
$$557$$ −902.972 1563.99i −0.0686897 0.118974i 0.829635 0.558306i $$-0.188549\pi$$
−0.898325 + 0.439332i $$0.855215\pi$$
$$558$$ 1.30538 2.26098i 9.90340e−5 0.000171532i
$$559$$ 6354.40 0.480792
$$560$$ −5997.18 13091.1i −0.452548 0.987859i
$$561$$ 8819.86 0.663770
$$562$$ −338.694 + 586.635i −0.0254216 + 0.0440315i
$$563$$ −6107.45 10578.4i −0.457190 0.791877i 0.541621 0.840623i $$-0.317811\pi$$
−0.998811 + 0.0487460i $$0.984478\pi$$
$$564$$ −4636.40 8030.48i −0.346148 0.599546i
$$565$$ 6519.17 11291.5i 0.485423 0.840776i
$$566$$ −439.050 −0.0326054
$$567$$ 624.789 + 1363.84i 0.0462763 + 0.101016i
$$568$$ 389.338 0.0287610
$$569$$ −2141.89 + 3709.86i −0.157808 + 0.273331i −0.934078 0.357070i $$-0.883776\pi$$
0.776270 + 0.630400i $$0.217109\pi$$
$$570$$ 233.895 + 405.119i 0.0171874 + 0.0297694i
$$571$$ −3179.97 5507.87i −0.233060 0.403673i 0.725647 0.688067i $$-0.241541\pi$$
−0.958707 + 0.284395i $$0.908207\pi$$
$$572$$ 8720.25 15103.9i 0.637433 1.10407i
$$573$$ −1155.93 −0.0842753
$$574$$ 819.764 1154.07i 0.0596103 0.0839201i
$$575$$ 4110.95 0.298153
$$576$$ 2198.34 3807.64i 0.159023 0.275437i
$$577$$ −7234.36 12530.3i −0.521959 0.904059i −0.999674 0.0255444i $$-0.991868\pi$$
0.477715 0.878515i $$-0.341465\pi$$
$$578$$ 314.656 + 545.001i 0.0226436 + 0.0392198i
$$579$$ 945.335 1637.37i 0.0678528 0.117525i
$$580$$ −6034.68 −0.432028
$$581$$ −11168.0 1053.13i −0.797461 0.0751998i
$$582$$ 582.191 0.0414649
$$583$$ −9497.10 + 16449.5i −0.674665 + 1.16855i
$$584$$ 1404.09 + 2431.96i 0.0994894 + 0.172321i
$$585$$ 2038.29 + 3530.43i 0.144056 + 0.249513i
$$586$$ −1020.67 + 1767.85i −0.0719513 + 0.124623i
$$587$$ −11132.6 −0.782777 −0.391388 0.920226i $$-0.628005\pi$$
−0.391388 + 0.920226i $$0.628005\pi$$
$$588$$ −5334.78 + 6186.07i −0.374154 + 0.433859i
$$589$$ 59.1108 0.00413517
$$590$$ 1302.55 2256.07i 0.0908897 0.157426i
$$591$$ −1875.34 3248.19i −0.130527 0.226079i
$$592$$ −2173.65 3764.87i −0.150906 0.261377i
$$593$$ 9887.81 17126.2i 0.684728 1.18598i −0.288794 0.957391i $$-0.593254\pi$$
0.973522 0.228592i $$-0.0734123\pi$$
$$594$$ −403.963 −0.0279037
$$595$$ −11176.3 1053.91i −0.770054 0.0726154i
$$596$$ −11970.4 −0.822696
$$597$$ −1638.37 + 2837.73i −0.112318 + 0.194541i
$$598$$ −627.098 1086.17i −0.0428829 0.0742753i
$$599$$ 11945.5 + 20690.2i 0.814825 + 1.41132i 0.909453 + 0.415806i $$0.136500\pi$$
−0.0946282 + 0.995513i $$0.530166\pi$$
$$600$$ −175.667 + 304.265i −0.0119527 + 0.0207026i
$$601$$ 19395.5 1.31641 0.658204 0.752840i $$-0.271317\pi$$
0.658204 + 0.752840i $$0.271317\pi$$
$$602$$ 464.118 653.391i 0.0314220 0.0442362i
$$603$$ −8743.95 −0.590516
$$604$$ 6318.32 10943.7i 0.425644 0.737237i
$$605$$ 14340.1 + 24837.8i 0.963648 + 1.66909i
$$606$$ −115.966 200.859i −0.00777358 0.0134642i
$$607$$ −7298.36 + 12641.1i −0.488025 + 0.845285i −0.999905 0.0137724i $$-0.995616\pi$$
0.511880 + 0.859057i $$0.328949\pi$$
$$608$$ −2383.04 −0.158956
$$609$$ 1414.67 + 3088.06i 0.0941304 + 0.205475i
$$610$$ 1044.28 0.0693142
$$611$$ −7091.62 + 12283.0i −0.469552 + 0.813288i
$$612$$ −1741.36 3016.13i −0.115017 0.199215i
$$613$$ −989.898 1714.55i −0.0652229 0.112969i 0.831570 0.555420i $$-0.187442\pi$$
−0.896793 + 0.442451i $$0.854109\pi$$
$$614$$ −746.650 + 1293.24i −0.0490755 + 0.0850012i
$$615$$ 11493.9 0.753622
$$616$$ −1839.39 4015.16i −0.120310 0.262622i
$$617$$ 16262.4 1.06110 0.530551 0.847653i $$-0.321985\pi$$
0.530551 + 0.847653i $$0.321985\pi$$
$$618$$ −55.5400 + 96.1981i −0.00361512 + 0.00626158i
$$619$$ 6010.49 + 10410.5i 0.390278 + 0.675981i 0.992486 0.122358i $$-0.0390457\pi$$
−0.602208 + 0.798339i $$0.705712\pi$$
$$620$$ 57.7143 + 99.9642i 0.00373849 + 0.00647526i
$$621$$ 1873.70 3245.34i 0.121077 0.209712i
$$622$$ 296.127 0.0190894
$$623$$ 2338.79 3292.58i 0.150404 0.211740i
$$624$$ −6832.97 −0.438362
$$625$$ 9225.06 15978.3i 0.590404 1.02261i
$$626$$ 1097.23 + 1900.45i 0.0700543 + 0.121338i
$$627$$ −4573.12 7920.87i −0.291280 0.504512i
$$628$$ 4620.82 8003.49i 0.293616 0.508557i
$$629$$ −3389.16 −0.214841
$$630$$ 511.890 + 48.2708i 0.0323717 + 0.00305262i
$$631$$ 25347.6 1.59916 0.799582 0.600557i $$-0.205055\pi$$
0.799582 + 0.600557i $$0.205055\pi$$
$$632$$ −962.542 + 1667.17i −0.0605821 + 0.104931i
$$633$$ −5430.07 9405.16i −0.340957 0.590556i
$$634$$ −754.317 1306.51i −0.0472519 0.0818428i
$$635$$ 3036.58 5259.51i 0.189769 0.328689i
$$636$$ 7500.29 0.467620
$$637$$ 12274.2 + 2335.66i 0.763454 + 0.145278i
$$638$$ −914.669 −0.0567588
$$639$$ 443.114 767.496i 0.0274324 0.0475143i
$$640$$ −3098.24 5366.31i −0.191358 0.331441i
$$641$$ 2555.80 + 4426.78i 0.157485 + 0.272772i 0.933961 0.357374i $$-0.116328\pi$$
−0.776476 + 0.630147i $$0.782995\pi$$
$$642$$ 316.857 548.812i 0.0194787 0.0337382i
$$643$$ −10931.3 −0.670435 −0.335217 0.942141i $$-0.608810\pi$$
−0.335217 + 0.942141i $$0.608810\pi$$
$$644$$ 20315.5 + 1915.73i 1.24308 + 0.117221i
$$645$$ 6507.38 0.397252
$$646$$ −305.639 + 529.382i −0.0186149 + 0.0322419i
$$647$$ 9203.06 + 15940.2i 0.559211 + 0.968582i 0.997563 + 0.0697783i $$0.0222292\pi$$
−0.438352 + 0.898804i $$0.644437\pi$$
$$648$$ 160.132 + 277.357i 0.00970770 + 0.0168142i
$$649$$ −25467.3 + 44110.7i −1.54034 + 2.66795i
$$650$$ 267.655 0.0161512
$$651$$ 37.6240 52.9675i 0.00226513 0.00318888i
$$652$$ 9175.91 0.551160
$$653$$ −9960.71 + 17252.5i −0.596926 + 1.03391i 0.396346 + 0.918101i $$0.370278\pi$$
−0.993272 + 0.115805i $$0.963055\pi$$
$$654$$ 506.766 + 877.744i 0.0302999 + 0.0524809i
$$655$$ −11528.3 19967.6i −0.687707 1.19114i
$$656$$ −9632.74 + 16684.4i −0.573316 + 0.993012i
$$657$$ 6392.11 0.379574
$$658$$ 745.040 + 1626.33i 0.0441408 + 0.0963542i
$$659$$ −18858.8 −1.11477 −0.557385 0.830254i $$-0.688195\pi$$
−0.557385 + 0.830254i $$0.688195\pi$$
$$660$$ 8930.17 15467.5i 0.526676 0.912230i
$$661$$ −12916.0 22371.2i −0.760023 1.31640i −0.942838 0.333251i $$-0.891854\pi$$
0.182815 0.983147i $$-0.441479\pi$$
$$662$$ −378.718 655.960i −0.0222346 0.0385115i
$$663$$ −2663.50 + 4613.33i −0.156021 + 0.270236i
$$664$$ −2394.82 −0.139965
$$665$$ 4848.43 + 10583.6i 0.282728 + 0.617162i
$$666$$ 155.229 0.00903153
$$667$$ 4242.50 7348.22i 0.246282 0.426573i
$$668$$ −11473.5 19872.7i −0.664555 1.15104i
$$669$$ −275.767 477.642i −0.0159369 0.0276034i
$$670$$ −1498.46 + 2595.41i −0.0864037 + 0.149656i
$$671$$ −20417.7 −1.17469
$$672$$ −1516.80 + 2135.37i −0.0870714 + 0.122580i
$$673$$ −16275.0 −0.932178 −0.466089 0.884738i $$-0.654337\pi$$
−0.466089 + 0.884738i $$0.654337\pi$$
$$674$$ −479.498 + 830.515i −0.0274029 + 0.0474633i
$$675$$ 399.862 + 692.581i 0.0228010 + 0.0394925i
$$676$$ −3453.55 5981.73i −0.196493 0.340335i
$$677$$ 13135.9 22752.0i 0.745720 1.29163i −0.204137 0.978942i $$-0.565439\pi$$
0.949857 0.312683i $$-0.101228\pi$$
$$678$$ −780.350 −0.0442023
$$679$$ 14424.2 + 1360.19i 0.815242 + 0.0768766i
$$680$$ −2396.60 −0.135155
$$681$$ 3419.28 5922.36i 0.192404 0.333253i
$$682$$ 8.74769 + 15.1514i 0.000491153 + 0.000850702i
$$683$$ 4036.14 + 6990.81i 0.226118 + 0.391648i 0.956654 0.291226i $$-0.0940631\pi$$
−0.730536 + 0.682874i $$0.760730\pi$$
$$684$$ −1805.80 + 3127.74i −0.100945 + 0.174842i
$$685$$ 6355.51 0.354499
$$686$$ 1136.65 1091.50i 0.0632619 0.0607486i
$$687$$ −16238.0 −0.901774
$$688$$ −5453.67 + 9446.04i −0.302208 + 0.523440i
$$689$$ −5736.05 9935.13i −0.317164 0.549344i
$$690$$ −642.194 1112.31i −0.0354318 0.0613696i
$$691$$ 12242.6 21204.9i 0.673997 1.16740i −0.302763 0.953066i $$-0.597909\pi$$
0.976761 0.214332i $$-0.0687575\pi$$
$$692$$ −15042.9 −0.826364
$$693$$ −10008.5 943.789i −0.548615 0.0517339i
$$694$$ −24.7062 −0.00135135
$$695$$ 14089.1 24403.0i 0.768962 1.33188i
$$696$$ 362.578 + 628.003i 0.0197464 + 0.0342017i
$$697$$ 7509.71 + 13007.2i 0.408107 + 0.706862i
$$698$$ 447.440 774.989i 0.0242634 0.0420254i
$$699$$ −3415.10 −0.184794
$$700$$ −2521.80 + 3550.22i −0.136164 + 0.191694i
$$701$$ 778.448 0.0419423 0.0209712 0.999780i $$-0.493324\pi$$
0.0209712 + 0.999780i $$0.493324\pi$$
$$702$$ 121.993 211.297i 0.00655885 0.0113603i
$$703$$ 1757.29 + 3043.72i 0.0942780 + 0.163294i
$$704$$ 14731.7 + 25516.0i 0.788667 + 1.36601i
$$705$$ −7262.34 + 12578.7i −0.387965 + 0.671975i
$$706$$ 1768.93 0.0942985
$$707$$ −2403.86 5247.35i −0.127873 0.279133i
$$708$$ 20112.7 1.06763
$$709$$ 12086.0 20933.6i 0.640197 1.10885i −0.345192 0.938532i $$-0.612186\pi$$
0.985389 0.170322i $$-0.0544806\pi$$
$$710$$ −151.874 263.053i −0.00802777 0.0139045i
$$711$$ 2190.98 + 3794.89i 0.115567 + 0.200168i
$$712$$ 431.109 746.703i 0.0226917 0.0393032i
$$713$$ −162.297 −0.00852466
$$714$$ 279.826 + 610.826i 0.0146670 + 0.0320162i
$$715$$ −27318.3 −1.42888
$$716$$ −17022.0 + 29483.0i −0.888467 + 1.53887i
$$717$$ −9339.54 16176.6i −0.486460 0.842573i
$$718$$ 806.269 + 1396.50i 0.0419077 + 0.0725862i
$$719$$ 40.9418 70.9132i 0.00212360 0.00367819i −0.864962 0.501838i $$-0.832657\pi$$
0.867085 + 0.498160i $$0.165991\pi$$
$$720$$ −6997.47 −0.362195
$$721$$ −1600.79 + 2253.61i −0.0826860 + 0.116406i
$$722$$ −1067.63 −0.0550318
$$723$$ −4794.29 + 8303.96i −0.246614 + 0.427147i
$$724$$ 1523.12 + 2638.13i 0.0781856 + 0.135421i
$$725$$ 905.382 + 1568.17i 0.0463794 + 0.0803315i
$$726$$ 858.259 1486.55i 0.0438747 0.0759931i
$$727$$ −32542.9 −1.66018 −0.830088 0.557632i $$-0.811710\pi$$
−0.830088 + 0.557632i $$0.811710\pi$$
$$728$$ 2655.65 + 250.425i 0.135199 + 0.0127491i
$$729$$ 729.000 0.0370370
$$730$$ 1095.42 1897.33i 0.0555389 0.0961962i
$$731$$ 4251.70 + 7364.16i 0.215123 + 0.372604i
$$732$$ 4031.20 + 6982.25i 0.203549 + 0.352557i
$$733$$ 2534.47 4389.83i 0.127712 0.221203i −0.795078 0.606507i $$-0.792570\pi$$
0.922790 + 0.385304i $$0.125903\pi$$
$$734$$ 204.631 0.0102903
$$735$$ 12569.7 + 2391.88i 0.630801 + 0.120035i
$$736$$ 6542.98 0.327687
$$737$$ 29297.8 50745.3i 1.46431 2.53627i
$$738$$ −343.956 595.750i −0.0171561 0.0297153i
$$739$$ 19214.2 + 33280.0i 0.956437 + 1.65660i 0.731045 + 0.682329i $$0.239033\pi$$
0.225392 + 0.974268i $$0.427634\pi$$
$$740$$ −3431.55 + 5943.62i −0.170468 + 0.295259i
$$741$$ 5524.14 0.273865
$$742$$ −1440.53 135.841i −0.0712717 0.00672086i
$$743$$ 21592.9 1.06617 0.533086 0.846061i $$-0.321032\pi$$
0.533086 + 0.846061i $$0.321032\pi$$
$$744$$ 6.93523 12.0122i 0.000341744 0.000591919i
$$745$$ 9375.07 + 16238.1i 0.461042 + 0.798548i
$$746$$ −165.445 286.560i −0.00811982 0.0140639i
$$747$$ −2725.60 + 4720.87i −0.133500 + 0.231228i
$$748$$ 23338.7 1.14084
$$749$$ 9132.55 12856.9i 0.445522 0.627212i
$$750$$ −882.655 −0.0429733
$$751$$ −4056.30 + 7025.72i −0.197093 + 0.341374i −0.947585 0.319505i $$-0.896483\pi$$
0.750492 + 0.660880i $$0.229817\pi$$
$$752$$ −12172.8 21083.9i −0.590287 1.02241i
$$753$$ 359.411 + 622.519i 0.0173940 + 0.0301273i
$$754$$ 276.220 478.428i 0.0133413 0.0231078i
$$755$$ −19793.7 −0.954129
$$756$$ 1653.29 + 3608.93i 0.0795364 + 0.173618i
$$757$$ 3108.01 0.149224 0.0746120 0.997213i $$-0.476228\pi$$
0.0746120 + 0.997213i $$0.476228\pi$$
$$758$$ 165.996 287.513i 0.00795414 0.0137770i
$$759$$ 12556.2 + 21747.9i 0.600475 + 1.04005i
$$760$$ 1242.64 + 2152.32i 0.0593098 + 0.102728i
$$761$$ 3605.96 6245.71i 0.171769 0.297512i −0.767269 0.641325i $$-0.778385\pi$$
0.939038 + 0.343812i $$0.111718\pi$$
$$762$$ −363.481 −0.0172802
$$763$$ 10504.8 + 22930.7i 0.498425 + 1.08800i
$$764$$ −3058.77 −0.144846
$$765$$ −2727.62 + 4724.38i −0.128912 + 0.223282i
$$766$$ −43.8313 75.9181i −0.00206748 0.00358098i
$$767$$ −15381.7 26641.9i −0.724123 1.25422i
$$768$$ 5676.81 9832.52i 0.266724 0.461980i
$$769$$ −7533.07 −0.353250 −0.176625 0.984278i $$-0.556518\pi$$
−0.176625 + 0.984278i $$0.556518\pi$$
$$770$$ −1995.30 + 2809.01i −0.0933838 + 0.131467i
$$771$$ −2097.35 −0.0979693
$$772$$ 2501.50 4332.73i 0.116621 0.201993i
$$773$$ 12416.3