# Properties

 Label 21.4.e.a.16.1 Level $21$ Weight $4$ Character 21.16 Analytic conductor $1.239$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$21 = 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 21.e (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.23904011012$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{4}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 16.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 21.16 Dual form 21.4.e.a.4.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(1.50000 - 2.59808i) q^{2} +(-1.50000 - 2.59808i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.50000 - 2.59808i) q^{5} -9.00000 q^{6} +(-3.50000 + 18.1865i) q^{7} +21.0000 q^{8} +(-4.50000 + 7.79423i) q^{9} +O(q^{10})$$ $$q+(1.50000 - 2.59808i) q^{2} +(-1.50000 - 2.59808i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.50000 - 2.59808i) q^{5} -9.00000 q^{6} +(-3.50000 + 18.1865i) q^{7} +21.0000 q^{8} +(-4.50000 + 7.79423i) q^{9} +(-4.50000 - 7.79423i) q^{10} +(7.50000 + 12.9904i) q^{11} +(-1.50000 + 2.59808i) q^{12} -64.0000 q^{13} +(42.0000 + 36.3731i) q^{14} -9.00000 q^{15} +(35.5000 - 61.4878i) q^{16} +(-42.0000 - 72.7461i) q^{17} +(13.5000 + 23.3827i) q^{18} +(8.00000 - 13.8564i) q^{19} -3.00000 q^{20} +(52.5000 - 18.1865i) q^{21} +45.0000 q^{22} +(42.0000 - 72.7461i) q^{23} +(-31.5000 - 54.5596i) q^{24} +(58.0000 + 100.459i) q^{25} +(-96.0000 + 166.277i) q^{26} +27.0000 q^{27} +(17.5000 - 6.06218i) q^{28} -297.000 q^{29} +(-13.5000 + 23.3827i) q^{30} +(126.500 + 219.104i) q^{31} +(-22.5000 - 38.9711i) q^{32} +(22.5000 - 38.9711i) q^{33} -252.000 q^{34} +(42.0000 + 36.3731i) q^{35} +9.00000 q^{36} +(158.000 - 273.664i) q^{37} +(-24.0000 - 41.5692i) q^{38} +(96.0000 + 166.277i) q^{39} +(31.5000 - 54.5596i) q^{40} +360.000 q^{41} +(31.5000 - 163.679i) q^{42} +26.0000 q^{43} +(7.50000 - 12.9904i) q^{44} +(13.5000 + 23.3827i) q^{45} +(-126.000 - 218.238i) q^{46} +(15.0000 - 25.9808i) q^{47} -213.000 q^{48} +(-318.500 - 127.306i) q^{49} +348.000 q^{50} +(-126.000 + 218.238i) q^{51} +(32.0000 + 55.4256i) q^{52} +(-181.500 - 314.367i) q^{53} +(40.5000 - 70.1481i) q^{54} +45.0000 q^{55} +(-73.5000 + 381.917i) q^{56} -48.0000 q^{57} +(-445.500 + 771.629i) q^{58} +(7.50000 + 12.9904i) q^{59} +(4.50000 + 7.79423i) q^{60} +(59.0000 - 102.191i) q^{61} +759.000 q^{62} +(-126.000 - 109.119i) q^{63} +433.000 q^{64} +(-96.0000 + 166.277i) q^{65} +(-67.5000 - 116.913i) q^{66} +(185.000 + 320.429i) q^{67} +(-42.0000 + 72.7461i) q^{68} -252.000 q^{69} +(157.500 - 54.5596i) q^{70} -342.000 q^{71} +(-94.5000 + 163.679i) q^{72} +(-181.000 - 313.501i) q^{73} +(-474.000 - 820.992i) q^{74} +(174.000 - 301.377i) q^{75} -16.0000 q^{76} +(-262.500 + 90.9327i) q^{77} +576.000 q^{78} +(-233.500 + 404.434i) q^{79} +(-106.500 - 184.463i) q^{80} +(-40.5000 - 70.1481i) q^{81} +(540.000 - 935.307i) q^{82} +477.000 q^{83} +(-42.0000 - 36.3731i) q^{84} -252.000 q^{85} +(39.0000 - 67.5500i) q^{86} +(445.500 + 771.629i) q^{87} +(157.500 + 272.798i) q^{88} +(-453.000 + 784.619i) q^{89} +81.0000 q^{90} +(224.000 - 1163.94i) q^{91} -84.0000 q^{92} +(379.500 - 657.313i) q^{93} +(-45.0000 - 77.9423i) q^{94} +(-24.0000 - 41.5692i) q^{95} +(-67.5000 + 116.913i) q^{96} +503.000 q^{97} +(-808.500 + 636.529i) q^{98} -135.000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 3q^{2} - 3q^{3} - q^{4} + 3q^{5} - 18q^{6} - 7q^{7} + 42q^{8} - 9q^{9} + O(q^{10})$$ $$2q + 3q^{2} - 3q^{3} - q^{4} + 3q^{5} - 18q^{6} - 7q^{7} + 42q^{8} - 9q^{9} - 9q^{10} + 15q^{11} - 3q^{12} - 128q^{13} + 84q^{14} - 18q^{15} + 71q^{16} - 84q^{17} + 27q^{18} + 16q^{19} - 6q^{20} + 105q^{21} + 90q^{22} + 84q^{23} - 63q^{24} + 116q^{25} - 192q^{26} + 54q^{27} + 35q^{28} - 594q^{29} - 27q^{30} + 253q^{31} - 45q^{32} + 45q^{33} - 504q^{34} + 84q^{35} + 18q^{36} + 316q^{37} - 48q^{38} + 192q^{39} + 63q^{40} + 720q^{41} + 63q^{42} + 52q^{43} + 15q^{44} + 27q^{45} - 252q^{46} + 30q^{47} - 426q^{48} - 637q^{49} + 696q^{50} - 252q^{51} + 64q^{52} - 363q^{53} + 81q^{54} + 90q^{55} - 147q^{56} - 96q^{57} - 891q^{58} + 15q^{59} + 9q^{60} + 118q^{61} + 1518q^{62} - 252q^{63} + 866q^{64} - 192q^{65} - 135q^{66} + 370q^{67} - 84q^{68} - 504q^{69} + 315q^{70} - 684q^{71} - 189q^{72} - 362q^{73} - 948q^{74} + 348q^{75} - 32q^{76} - 525q^{77} + 1152q^{78} - 467q^{79} - 213q^{80} - 81q^{81} + 1080q^{82} + 954q^{83} - 84q^{84} - 504q^{85} + 78q^{86} + 891q^{87} + 315q^{88} - 906q^{89} + 162q^{90} + 448q^{91} - 168q^{92} + 759q^{93} - 90q^{94} - 48q^{95} - 135q^{96} + 1006q^{97} - 1617q^{98} - 270q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/21\mathbb{Z}\right)^\times$$.

 $$n$$ $$8$$ $$10$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.50000 2.59808i 0.530330 0.918559i −0.469044 0.883175i $$-0.655401\pi$$
0.999374 0.0353837i $$-0.0112653\pi$$
$$3$$ −1.50000 2.59808i −0.288675 0.500000i
$$4$$ −0.500000 0.866025i −0.0625000 0.108253i
$$5$$ 1.50000 2.59808i 0.134164 0.232379i −0.791114 0.611669i $$-0.790498\pi$$
0.925278 + 0.379290i $$0.123832\pi$$
$$6$$ −9.00000 −0.612372
$$7$$ −3.50000 + 18.1865i −0.188982 + 0.981981i
$$8$$ 21.0000 0.928078
$$9$$ −4.50000 + 7.79423i −0.166667 + 0.288675i
$$10$$ −4.50000 7.79423i −0.142302 0.246475i
$$11$$ 7.50000 + 12.9904i 0.205576 + 0.356068i 0.950316 0.311287i $$-0.100760\pi$$
−0.744740 + 0.667355i $$0.767427\pi$$
$$12$$ −1.50000 + 2.59808i −0.0360844 + 0.0625000i
$$13$$ −64.0000 −1.36542 −0.682708 0.730691i $$-0.739198\pi$$
−0.682708 + 0.730691i $$0.739198\pi$$
$$14$$ 42.0000 + 36.3731i 0.801784 + 0.694365i
$$15$$ −9.00000 −0.154919
$$16$$ 35.5000 61.4878i 0.554688 0.960747i
$$17$$ −42.0000 72.7461i −0.599206 1.03785i −0.992939 0.118630i $$-0.962150\pi$$
0.393733 0.919225i $$-0.371183\pi$$
$$18$$ 13.5000 + 23.3827i 0.176777 + 0.306186i
$$19$$ 8.00000 13.8564i 0.0965961 0.167309i −0.813678 0.581317i $$-0.802538\pi$$
0.910274 + 0.414007i $$0.135871\pi$$
$$20$$ −3.00000 −0.0335410
$$21$$ 52.5000 18.1865i 0.545545 0.188982i
$$22$$ 45.0000 0.436092
$$23$$ 42.0000 72.7461i 0.380765 0.659505i −0.610406 0.792088i $$-0.708994\pi$$
0.991172 + 0.132583i $$0.0423272\pi$$
$$24$$ −31.5000 54.5596i −0.267913 0.464039i
$$25$$ 58.0000 + 100.459i 0.464000 + 0.803672i
$$26$$ −96.0000 + 166.277i −0.724121 + 1.25421i
$$27$$ 27.0000 0.192450
$$28$$ 17.5000 6.06218i 0.118114 0.0409159i
$$29$$ −297.000 −1.90178 −0.950888 0.309535i $$-0.899827\pi$$
−0.950888 + 0.309535i $$0.899827\pi$$
$$30$$ −13.5000 + 23.3827i −0.0821584 + 0.142302i
$$31$$ 126.500 + 219.104i 0.732906 + 1.26943i 0.955636 + 0.294550i $$0.0951696\pi$$
−0.222731 + 0.974880i $$0.571497\pi$$
$$32$$ −22.5000 38.9711i −0.124296 0.215287i
$$33$$ 22.5000 38.9711i 0.118689 0.205576i
$$34$$ −252.000 −1.27111
$$35$$ 42.0000 + 36.3731i 0.202837 + 0.175662i
$$36$$ 9.00000 0.0416667
$$37$$ 158.000 273.664i 0.702028 1.21595i −0.265725 0.964049i $$-0.585611\pi$$
0.967753 0.251900i $$-0.0810553\pi$$
$$38$$ −24.0000 41.5692i −0.102456 0.177458i
$$39$$ 96.0000 + 166.277i 0.394162 + 0.682708i
$$40$$ 31.5000 54.5596i 0.124515 0.215666i
$$41$$ 360.000 1.37128 0.685641 0.727940i $$-0.259522\pi$$
0.685641 + 0.727940i $$0.259522\pi$$
$$42$$ 31.5000 163.679i 0.115728 0.601338i
$$43$$ 26.0000 0.0922084 0.0461042 0.998937i $$-0.485319\pi$$
0.0461042 + 0.998937i $$0.485319\pi$$
$$44$$ 7.50000 12.9904i 0.0256970 0.0445085i
$$45$$ 13.5000 + 23.3827i 0.0447214 + 0.0774597i
$$46$$ −126.000 218.238i −0.403863 0.699511i
$$47$$ 15.0000 25.9808i 0.0465527 0.0806316i −0.841810 0.539774i $$-0.818510\pi$$
0.888363 + 0.459142i $$0.151843\pi$$
$$48$$ −213.000 −0.640498
$$49$$ −318.500 127.306i −0.928571 0.371154i
$$50$$ 348.000 0.984293
$$51$$ −126.000 + 218.238i −0.345952 + 0.599206i
$$52$$ 32.0000 + 55.4256i 0.0853385 + 0.147811i
$$53$$ −181.500 314.367i −0.470395 0.814748i 0.529032 0.848602i $$-0.322555\pi$$
−0.999427 + 0.0338538i $$0.989222\pi$$
$$54$$ 40.5000 70.1481i 0.102062 0.176777i
$$55$$ 45.0000 0.110324
$$56$$ −73.5000 + 381.917i −0.175390 + 0.911354i
$$57$$ −48.0000 −0.111540
$$58$$ −445.500 + 771.629i −1.00857 + 1.74689i
$$59$$ 7.50000 + 12.9904i 0.0165494 + 0.0286645i 0.874182 0.485599i $$-0.161399\pi$$
−0.857632 + 0.514264i $$0.828065\pi$$
$$60$$ 4.50000 + 7.79423i 0.00968246 + 0.0167705i
$$61$$ 59.0000 102.191i 0.123839 0.214495i −0.797440 0.603399i $$-0.793813\pi$$
0.921279 + 0.388903i $$0.127146\pi$$
$$62$$ 759.000 1.55473
$$63$$ −126.000 109.119i −0.251976 0.218218i
$$64$$ 433.000 0.845703
$$65$$ −96.0000 + 166.277i −0.183190 + 0.317294i
$$66$$ −67.5000 116.913i −0.125889 0.218046i
$$67$$ 185.000 + 320.429i 0.337334 + 0.584279i 0.983930 0.178553i $$-0.0571417\pi$$
−0.646597 + 0.762832i $$0.723808\pi$$
$$68$$ −42.0000 + 72.7461i −0.0749007 + 0.129732i
$$69$$ −252.000 −0.439670
$$70$$ 157.500 54.5596i 0.268926 0.0931589i
$$71$$ −342.000 −0.571661 −0.285831 0.958280i $$-0.592269\pi$$
−0.285831 + 0.958280i $$0.592269\pi$$
$$72$$ −94.5000 + 163.679i −0.154680 + 0.267913i
$$73$$ −181.000 313.501i −0.290198 0.502638i 0.683658 0.729802i $$-0.260388\pi$$
−0.973856 + 0.227165i $$0.927054\pi$$
$$74$$ −474.000 820.992i −0.744613 1.28971i
$$75$$ 174.000 301.377i 0.267891 0.464000i
$$76$$ −16.0000 −0.0241490
$$77$$ −262.500 + 90.9327i −0.388502 + 0.134581i
$$78$$ 576.000 0.836143
$$79$$ −233.500 + 404.434i −0.332542 + 0.575979i −0.983010 0.183555i $$-0.941240\pi$$
0.650468 + 0.759534i $$0.274573\pi$$
$$80$$ −106.500 184.463i −0.148838 0.257795i
$$81$$ −40.5000 70.1481i −0.0555556 0.0962250i
$$82$$ 540.000 935.307i 0.727232 1.25960i
$$83$$ 477.000 0.630814 0.315407 0.948957i $$-0.397859\pi$$
0.315407 + 0.948957i $$0.397859\pi$$
$$84$$ −42.0000 36.3731i −0.0545545 0.0472456i
$$85$$ −252.000 −0.321568
$$86$$ 39.0000 67.5500i 0.0489009 0.0846989i
$$87$$ 445.500 + 771.629i 0.548996 + 0.950888i
$$88$$ 157.500 + 272.798i 0.190790 + 0.330459i
$$89$$ −453.000 + 784.619i −0.539527 + 0.934488i 0.459402 + 0.888228i $$0.348064\pi$$
−0.998929 + 0.0462600i $$0.985270\pi$$
$$90$$ 81.0000 0.0948683
$$91$$ 224.000 1163.94i 0.258039 1.34081i
$$92$$ −84.0000 −0.0951914
$$93$$ 379.500 657.313i 0.423143 0.732906i
$$94$$ −45.0000 77.9423i −0.0493765 0.0855227i
$$95$$ −24.0000 41.5692i −0.0259195 0.0448938i
$$96$$ −67.5000 + 116.913i −0.0717624 + 0.124296i
$$97$$ 503.000 0.526515 0.263257 0.964726i $$-0.415203\pi$$
0.263257 + 0.964726i $$0.415203\pi$$
$$98$$ −808.500 + 636.529i −0.833376 + 0.656113i
$$99$$ −135.000 −0.137051
$$100$$ 58.0000 100.459i 0.0580000 0.100459i
$$101$$ 543.000 + 940.504i 0.534956 + 0.926570i 0.999165 + 0.0408451i $$0.0130050\pi$$
−0.464210 + 0.885725i $$0.653662\pi$$
$$102$$ 378.000 + 654.715i 0.366937 + 0.635554i
$$103$$ −868.000 + 1503.42i −0.830355 + 1.43822i 0.0674017 + 0.997726i $$0.478529\pi$$
−0.897757 + 0.440491i $$0.854804\pi$$
$$104$$ −1344.00 −1.26721
$$105$$ 31.5000 163.679i 0.0292770 0.152128i
$$106$$ −1089.00 −0.997859
$$107$$ 676.500 1171.73i 0.611212 1.05865i −0.379824 0.925059i $$-0.624015\pi$$
0.991036 0.133592i $$-0.0426512\pi$$
$$108$$ −13.5000 23.3827i −0.0120281 0.0208333i
$$109$$ 185.000 + 320.429i 0.162567 + 0.281574i 0.935789 0.352562i $$-0.114689\pi$$
−0.773222 + 0.634136i $$0.781356\pi$$
$$110$$ 67.5000 116.913i 0.0585079 0.101339i
$$111$$ −948.000 −0.810632
$$112$$ 994.000 + 860.829i 0.838609 + 0.726256i
$$113$$ −648.000 −0.539458 −0.269729 0.962936i $$-0.586934\pi$$
−0.269729 + 0.962936i $$0.586934\pi$$
$$114$$ −72.0000 + 124.708i −0.0591528 + 0.102456i
$$115$$ −126.000 218.238i −0.102170 0.176964i
$$116$$ 148.500 + 257.210i 0.118861 + 0.205873i
$$117$$ 288.000 498.831i 0.227569 0.394162i
$$118$$ 45.0000 0.0351067
$$119$$ 1470.00 509.223i 1.13239 0.392272i
$$120$$ −189.000 −0.143777
$$121$$ 553.000 957.824i 0.415477 0.719627i
$$122$$ −177.000 306.573i −0.131351 0.227507i
$$123$$ −540.000 935.307i −0.395855 0.685641i
$$124$$ 126.500 219.104i 0.0916132 0.158679i
$$125$$ 723.000 0.517337
$$126$$ −472.500 + 163.679i −0.334077 + 0.115728i
$$127$$ 377.000 0.263412 0.131706 0.991289i $$-0.457954\pi$$
0.131706 + 0.991289i $$0.457954\pi$$
$$128$$ 829.500 1436.74i 0.572798 0.992115i
$$129$$ −39.0000 67.5500i −0.0266183 0.0461042i
$$130$$ 288.000 + 498.831i 0.194302 + 0.336541i
$$131$$ 325.500 563.783i 0.217092 0.376015i −0.736826 0.676083i $$-0.763676\pi$$
0.953918 + 0.300068i $$0.0970095\pi$$
$$132$$ −45.0000 −0.0296723
$$133$$ 224.000 + 193.990i 0.146040 + 0.126474i
$$134$$ 1110.00 0.715593
$$135$$ 40.5000 70.1481i 0.0258199 0.0447214i
$$136$$ −882.000 1527.67i −0.556109 0.963210i
$$137$$ 885.000 + 1532.86i 0.551903 + 0.955923i 0.998137 + 0.0610074i $$0.0194313\pi$$
−0.446235 + 0.894916i $$0.647235\pi$$
$$138$$ −378.000 + 654.715i −0.233170 + 0.403863i
$$139$$ −1558.00 −0.950704 −0.475352 0.879796i $$-0.657679\pi$$
−0.475352 + 0.879796i $$0.657679\pi$$
$$140$$ 10.5000 54.5596i 0.00633866 0.0329366i
$$141$$ −90.0000 −0.0537544
$$142$$ −513.000 + 888.542i −0.303169 + 0.525104i
$$143$$ −480.000 831.384i −0.280697 0.486181i
$$144$$ 319.500 + 553.390i 0.184896 + 0.320249i
$$145$$ −445.500 + 771.629i −0.255150 + 0.441933i
$$146$$ −1086.00 −0.615603
$$147$$ 147.000 + 1018.45i 0.0824786 + 0.571429i
$$148$$ −316.000 −0.175507
$$149$$ −1227.00 + 2125.23i −0.674629 + 1.16849i 0.301948 + 0.953324i $$0.402363\pi$$
−0.976577 + 0.215168i $$0.930970\pi$$
$$150$$ −522.000 904.131i −0.284141 0.492146i
$$151$$ −629.500 1090.33i −0.339258 0.587612i 0.645035 0.764153i $$-0.276843\pi$$
−0.984293 + 0.176540i $$0.943509\pi$$
$$152$$ 168.000 290.985i 0.0896487 0.155276i
$$153$$ 756.000 0.399470
$$154$$ −157.500 + 818.394i −0.0824137 + 0.428234i
$$155$$ 759.000 0.393318
$$156$$ 96.0000 166.277i 0.0492702 0.0853385i
$$157$$ 98.0000 + 169.741i 0.0498169 + 0.0862854i 0.889859 0.456236i $$-0.150803\pi$$
−0.840042 + 0.542522i $$0.817470\pi$$
$$158$$ 700.500 + 1213.30i 0.352714 + 0.610918i
$$159$$ −544.500 + 943.102i −0.271583 + 0.470395i
$$160$$ −135.000 −0.0667043
$$161$$ 1176.00 + 1018.45i 0.575663 + 0.498539i
$$162$$ −243.000 −0.117851
$$163$$ 626.000 1084.26i 0.300810 0.521019i −0.675509 0.737351i $$-0.736076\pi$$
0.976320 + 0.216332i $$0.0694095\pi$$
$$164$$ −180.000 311.769i −0.0857051 0.148446i
$$165$$ −67.5000 116.913i −0.0318477 0.0551618i
$$166$$ 715.500 1239.28i 0.334540 0.579440i
$$167$$ −2646.00 −1.22607 −0.613035 0.790056i $$-0.710051\pi$$
−0.613035 + 0.790056i $$0.710051\pi$$
$$168$$ 1102.50 381.917i 0.506308 0.175390i
$$169$$ 1899.00 0.864360
$$170$$ −378.000 + 654.715i −0.170537 + 0.295379i
$$171$$ 72.0000 + 124.708i 0.0321987 + 0.0557698i
$$172$$ −13.0000 22.5167i −0.00576303 0.00998186i
$$173$$ 393.000 680.696i 0.172712 0.299147i −0.766655 0.642059i $$-0.778080\pi$$
0.939367 + 0.342913i $$0.111414\pi$$
$$174$$ 2673.00 1.16460
$$175$$ −2030.00 + 703.213i −0.876878 + 0.303759i
$$176$$ 1065.00 0.456122
$$177$$ 22.5000 38.9711i 0.00955482 0.0165494i
$$178$$ 1359.00 + 2353.86i 0.572255 + 0.991174i
$$179$$ −1446.00 2504.55i −0.603794 1.04580i −0.992241 0.124331i $$-0.960322\pi$$
0.388447 0.921471i $$-0.373012\pi$$
$$180$$ 13.5000 23.3827i 0.00559017 0.00968246i
$$181$$ 1352.00 0.555212 0.277606 0.960695i $$-0.410459\pi$$
0.277606 + 0.960695i $$0.410459\pi$$
$$182$$ −2688.00 2327.88i −1.09477 0.948097i
$$183$$ −354.000 −0.142997
$$184$$ 882.000 1527.67i 0.353380 0.612072i
$$185$$ −474.000 820.992i −0.188374 0.326273i
$$186$$ −1138.50 1971.94i −0.448811 0.777364i
$$187$$ 630.000 1091.19i 0.246365 0.426716i
$$188$$ −30.0000 −0.0116382
$$189$$ −94.5000 + 491.036i −0.0363696 + 0.188982i
$$190$$ −144.000 −0.0549835
$$191$$ −1956.00 + 3387.89i −0.741001 + 1.28345i 0.211039 + 0.977478i $$0.432315\pi$$
−0.952040 + 0.305974i $$0.901018\pi$$
$$192$$ −649.500 1124.97i −0.244133 0.422852i
$$193$$ −746.500 1292.98i −0.278416 0.482230i 0.692575 0.721345i $$-0.256476\pi$$
−0.970991 + 0.239115i $$0.923143\pi$$
$$194$$ 754.500 1306.83i 0.279227 0.483635i
$$195$$ 576.000 0.211529
$$196$$ 49.0000 + 339.482i 0.0178571 + 0.123718i
$$197$$ −4086.00 −1.47774 −0.738872 0.673846i $$-0.764641\pi$$
−0.738872 + 0.673846i $$0.764641\pi$$
$$198$$ −202.500 + 350.740i −0.0726821 + 0.125889i
$$199$$ 1778.00 + 3079.59i 0.633362 + 1.09702i 0.986860 + 0.161580i $$0.0516590\pi$$
−0.353497 + 0.935436i $$0.615008\pi$$
$$200$$ 1218.00 + 2109.64i 0.430628 + 0.745870i
$$201$$ 555.000 961.288i 0.194760 0.337334i
$$202$$ 3258.00 1.13481
$$203$$ 1039.50 5401.40i 0.359402 1.86751i
$$204$$ 252.000 0.0864879
$$205$$ 540.000 935.307i 0.183977 0.318657i
$$206$$ 2604.00 + 4510.26i 0.880725 + 1.52546i
$$207$$ 378.000 + 654.715i 0.126922 + 0.219835i
$$208$$ −2272.00 + 3935.22i −0.757379 + 1.31182i
$$209$$ 240.000 0.0794313
$$210$$ −378.000 327.358i −0.124212 0.107571i
$$211$$ 1250.00 0.407837 0.203918 0.978988i $$-0.434632\pi$$
0.203918 + 0.978988i $$0.434632\pi$$
$$212$$ −181.500 + 314.367i −0.0587994 + 0.101844i
$$213$$ 513.000 + 888.542i 0.165024 + 0.285831i
$$214$$ −2029.50 3515.20i −0.648289 1.12287i
$$215$$ 39.0000 67.5500i 0.0123711 0.0214273i
$$216$$ 567.000 0.178609
$$217$$ −4427.50 + 1533.73i −1.38506 + 0.479799i
$$218$$ 1110.00 0.344856
$$219$$ −543.000 + 940.504i −0.167546 + 0.290198i
$$220$$ −22.5000 38.9711i −0.00689523 0.0119429i
$$221$$ 2688.00 + 4655.75i 0.818165 + 1.41710i
$$222$$ −1422.00 + 2462.98i −0.429903 + 0.744613i
$$223$$ 425.000 0.127624 0.0638119 0.997962i $$-0.479674\pi$$
0.0638119 + 0.997962i $$0.479674\pi$$
$$224$$ 787.500 272.798i 0.234898 0.0813709i
$$225$$ −1044.00 −0.309333
$$226$$ −972.000 + 1683.55i −0.286091 + 0.495523i
$$227$$ −1927.50 3338.53i −0.563580 0.976149i −0.997180 0.0750439i $$-0.976090\pi$$
0.433600 0.901105i $$-0.357243\pi$$
$$228$$ 24.0000 + 41.5692i 0.00697122 + 0.0120745i
$$229$$ 1094.00 1894.86i 0.315692 0.546795i −0.663892 0.747828i $$-0.731097\pi$$
0.979584 + 0.201033i $$0.0644299\pi$$
$$230$$ −756.000 −0.216735
$$231$$ 630.000 + 545.596i 0.179441 + 0.155401i
$$232$$ −6237.00 −1.76500
$$233$$ −426.000 + 737.854i −0.119778 + 0.207461i −0.919679 0.392670i $$-0.871551\pi$$
0.799902 + 0.600131i $$0.204885\pi$$
$$234$$ −864.000 1496.49i −0.241374 0.418072i
$$235$$ −45.0000 77.9423i −0.0124914 0.0216357i
$$236$$ 7.50000 12.9904i 0.00206868 0.00358306i
$$237$$ 1401.00 0.383986
$$238$$ 882.000 4583.01i 0.240217 1.24820i
$$239$$ 5508.00 1.49072 0.745362 0.666660i $$-0.232277\pi$$
0.745362 + 0.666660i $$0.232277\pi$$
$$240$$ −319.500 + 553.390i −0.0859318 + 0.148838i
$$241$$ −395.500 685.026i −0.105711 0.183097i 0.808317 0.588747i $$-0.200379\pi$$
−0.914029 + 0.405650i $$0.867045\pi$$
$$242$$ −1659.00 2873.47i −0.440680 0.763280i
$$243$$ −121.500 + 210.444i −0.0320750 + 0.0555556i
$$244$$ −118.000 −0.0309597
$$245$$ −808.500 + 636.529i −0.210829 + 0.165985i
$$246$$ −3240.00 −0.839735
$$247$$ −512.000 + 886.810i −0.131894 + 0.228447i
$$248$$ 2656.50 + 4601.19i 0.680193 + 1.17813i
$$249$$ −715.500 1239.28i −0.182100 0.315407i
$$250$$ 1084.50 1878.41i 0.274359 0.475204i
$$251$$ 5265.00 1.32400 0.662000 0.749504i $$-0.269708\pi$$
0.662000 + 0.749504i $$0.269708\pi$$
$$252$$ −31.5000 + 163.679i −0.00787426 + 0.0409159i
$$253$$ 1260.00 0.313105
$$254$$ 565.500 979.475i 0.139695 0.241959i
$$255$$ 378.000 + 654.715i 0.0928285 + 0.160784i
$$256$$ −756.500 1310.30i −0.184692 0.319897i
$$257$$ 3435.00 5949.59i 0.833733 1.44407i −0.0613246 0.998118i $$-0.519532\pi$$
0.895058 0.445950i $$-0.147134\pi$$
$$258$$ −234.000 −0.0564659
$$259$$ 4424.00 + 3831.30i 1.06137 + 0.919171i
$$260$$ 192.000 0.0457974
$$261$$ 1336.50 2314.89i 0.316963 0.548996i
$$262$$ −976.500 1691.35i −0.230261 0.398824i
$$263$$ 111.000 + 192.258i 0.0260249 + 0.0450765i 0.878745 0.477292i $$-0.158382\pi$$
−0.852720 + 0.522369i $$0.825048\pi$$
$$264$$ 472.500 818.394i 0.110153 0.190790i
$$265$$ −1089.00 −0.252441
$$266$$ 840.000 290.985i 0.193623 0.0670730i
$$267$$ 2718.00 0.622992
$$268$$ 185.000 320.429i 0.0421667 0.0730349i
$$269$$ −3925.50 6799.17i −0.889747 1.54109i −0.840174 0.542317i $$-0.817547\pi$$
−0.0495729 0.998771i $$-0.515786\pi$$
$$270$$ −121.500 210.444i −0.0273861 0.0474342i
$$271$$ −2591.50 + 4488.61i −0.580895 + 1.00614i 0.414479 + 0.910059i $$0.363964\pi$$
−0.995374 + 0.0960800i $$0.969370\pi$$
$$272$$ −5964.00 −1.32949
$$273$$ −3360.00 + 1163.94i −0.744895 + 0.258039i
$$274$$ 5310.00 1.17076
$$275$$ −870.000 + 1506.88i −0.190774 + 0.330431i
$$276$$ 126.000 + 218.238i 0.0274794 + 0.0475957i
$$277$$ 2480.00 + 4295.49i 0.537938 + 0.931736i 0.999015 + 0.0443755i $$0.0141298\pi$$
−0.461077 + 0.887360i $$0.652537\pi$$
$$278$$ −2337.00 + 4047.80i −0.504187 + 0.873277i
$$279$$ −2277.00 −0.488604
$$280$$ 882.000 + 763.834i 0.188249 + 0.163028i
$$281$$ −774.000 −0.164317 −0.0821583 0.996619i $$-0.526181\pi$$
−0.0821583 + 0.996619i $$0.526181\pi$$
$$282$$ −135.000 + 233.827i −0.0285076 + 0.0493765i
$$283$$ −1849.00 3202.56i −0.388380 0.672695i 0.603852 0.797097i $$-0.293632\pi$$
−0.992232 + 0.124402i $$0.960299\pi$$
$$284$$ 171.000 + 296.181i 0.0357288 + 0.0618841i
$$285$$ −72.0000 + 124.708i −0.0149646 + 0.0259195i
$$286$$ −2880.00 −0.595447
$$287$$ −1260.00 + 6547.15i −0.259148 + 1.34657i
$$288$$ 405.000 0.0828641
$$289$$ −1071.50 + 1855.89i −0.218095 + 0.377751i
$$290$$ 1336.50 + 2314.89i 0.270628 + 0.468741i
$$291$$ −754.500 1306.83i −0.151992 0.263257i
$$292$$ −181.000 + 313.501i −0.0362747 + 0.0628297i
$$293$$ −6273.00 −1.25076 −0.625380 0.780321i $$-0.715056\pi$$
−0.625380 + 0.780321i $$0.715056\pi$$
$$294$$ 2866.50 + 1145.75i 0.568632 + 0.227284i
$$295$$ 45.0000 0.00888136
$$296$$ 3318.00 5746.94i 0.651537 1.12849i
$$297$$ 202.500 + 350.740i 0.0395631 + 0.0685253i
$$298$$ 3681.00 + 6375.68i 0.715552 + 1.23937i
$$299$$ −2688.00 + 4655.75i −0.519903 + 0.900499i
$$300$$ −348.000 −0.0669726
$$301$$ −91.0000 + 472.850i −0.0174258 + 0.0905469i
$$302$$ −3777.00 −0.719675
$$303$$ 1629.00 2821.51i 0.308857 0.534956i
$$304$$ −568.000 983.805i −0.107161 0.185609i
$$305$$ −177.000 306.573i −0.0332295 0.0575551i
$$306$$ 1134.00 1964.15i 0.211851 0.366937i
$$307$$ −1684.00 −0.313065 −0.156533 0.987673i $$-0.550032\pi$$
−0.156533 + 0.987673i $$0.550032\pi$$
$$308$$ 210.000 + 181.865i 0.0388502 + 0.0336453i
$$309$$ 5208.00 0.958812
$$310$$ 1138.50 1971.94i 0.208589 0.361286i
$$311$$ 660.000 + 1143.15i 0.120338 + 0.208432i 0.919901 0.392151i $$-0.128269\pi$$
−0.799563 + 0.600582i $$0.794935\pi$$
$$312$$ 2016.00 + 3491.81i 0.365813 + 0.633606i
$$313$$ 4251.50 7363.81i 0.767760 1.32980i −0.171014 0.985269i $$-0.554704\pi$$
0.938775 0.344531i $$-0.111962\pi$$
$$314$$ 588.000 0.105678
$$315$$ −472.500 + 163.679i −0.0845154 + 0.0292770i
$$316$$ 467.000 0.0831355
$$317$$ 1288.50 2231.75i 0.228295 0.395418i −0.729008 0.684505i $$-0.760018\pi$$
0.957303 + 0.289087i $$0.0933517\pi$$
$$318$$ 1633.50 + 2829.30i 0.288057 + 0.498929i
$$319$$ −2227.50 3858.14i −0.390959 0.677162i
$$320$$ 649.500 1124.97i 0.113463 0.196524i
$$321$$ −4059.00 −0.705767
$$322$$ 4410.00 1527.67i 0.763229 0.264390i
$$323$$ −1344.00 −0.231524
$$324$$ −40.5000 + 70.1481i −0.00694444 + 0.0120281i
$$325$$ −3712.00 6429.37i −0.633553 1.09735i
$$326$$ −1878.00 3252.79i −0.319058 0.552624i
$$327$$ 555.000 961.288i 0.0938580 0.162567i
$$328$$ 7560.00 1.27266
$$329$$ 420.000 + 363.731i 0.0703810 + 0.0609517i
$$330$$ −405.000 −0.0675591
$$331$$ 242.000 419.156i 0.0401859 0.0696040i −0.845233 0.534398i $$-0.820538\pi$$
0.885419 + 0.464794i $$0.153872\pi$$
$$332$$ −238.500 413.094i −0.0394259 0.0682876i
$$333$$ 1422.00 + 2462.98i 0.234009 + 0.405316i
$$334$$ −3969.00 + 6874.51i −0.650222 + 1.12622i
$$335$$ 1110.00 0.181032
$$336$$ 745.500 3873.73i 0.121043 0.628957i
$$337$$ −8359.00 −1.35117 −0.675584 0.737283i $$-0.736109\pi$$
−0.675584 + 0.737283i $$0.736109\pi$$
$$338$$ 2848.50 4933.75i 0.458396 0.793966i
$$339$$ 972.000 + 1683.55i 0.155728 + 0.269729i
$$340$$ 126.000 + 218.238i 0.0200980 + 0.0348107i
$$341$$ −1897.50 + 3286.57i −0.301335 + 0.521928i
$$342$$ 432.000 0.0683038
$$343$$ 3430.00 5346.84i 0.539949 0.841698i
$$344$$ 546.000 0.0855766
$$345$$ −378.000 + 654.715i −0.0589879 + 0.102170i
$$346$$ −1179.00 2042.09i −0.183189 0.317293i
$$347$$ 930.000 + 1610.81i 0.143876 + 0.249201i 0.928953 0.370197i $$-0.120710\pi$$
−0.785077 + 0.619398i $$0.787377\pi$$
$$348$$ 445.500 771.629i 0.0686244 0.118861i
$$349$$ −1918.00 −0.294178 −0.147089 0.989123i $$-0.546990\pi$$
−0.147089 + 0.989123i $$0.546990\pi$$
$$350$$ −1218.00 + 6328.91i −0.186014 + 0.966556i
$$351$$ −1728.00 −0.262774
$$352$$ 337.500 584.567i 0.0511046 0.0885157i
$$353$$ 1524.00 + 2639.65i 0.229786 + 0.398000i 0.957744 0.287620i $$-0.0928642\pi$$
−0.727959 + 0.685621i $$0.759531\pi$$
$$354$$ −67.5000 116.913i −0.0101344 0.0175533i
$$355$$ −513.000 + 888.542i −0.0766964 + 0.132842i
$$356$$ 906.000 0.134882
$$357$$ −3528.00 3055.34i −0.523030 0.452957i
$$358$$ −8676.00 −1.28084
$$359$$ 15.0000 25.9808i 0.00220521 0.00381953i −0.864921 0.501909i $$-0.832631\pi$$
0.867126 + 0.498089i $$0.165965\pi$$
$$360$$ 283.500 + 491.036i 0.0415049 + 0.0718886i
$$361$$ 3301.50 + 5718.37i 0.481338 + 0.833703i
$$362$$ 2028.00 3512.60i 0.294446 0.509995i
$$363$$ −3318.00 −0.479752
$$364$$ −1120.00 + 387.979i −0.161275 + 0.0558672i
$$365$$ −1086.00 −0.155737
$$366$$ −531.000 + 919.719i −0.0758356 + 0.131351i
$$367$$ 5655.50 + 9795.61i 0.804400 + 1.39326i 0.916696 + 0.399586i $$0.130846\pi$$
−0.112296 + 0.993675i $$0.535820\pi$$
$$368$$ −2982.00 5164.98i −0.422412 0.731638i
$$369$$ −1620.00 + 2805.92i −0.228547 + 0.395855i
$$370$$ −2844.00 −0.399601
$$371$$ 6352.50 2200.57i 0.888963 0.307946i
$$372$$ −759.000 −0.105786
$$373$$ −604.000 + 1046.16i −0.0838443 + 0.145223i −0.904898 0.425628i $$-0.860053\pi$$
0.821054 + 0.570851i $$0.193387\pi$$
$$374$$ −1890.00 3273.58i −0.261309 0.452600i
$$375$$ −1084.50 1878.41i −0.149342 0.258668i
$$376$$ 315.000 545.596i 0.0432045 0.0748324i
$$377$$ 19008.0 2.59672
$$378$$ 1134.00 + 982.073i 0.154303 + 0.133631i
$$379$$ 7640.00 1.03546 0.517731 0.855543i $$-0.326777\pi$$
0.517731 + 0.855543i $$0.326777\pi$$
$$380$$ −24.0000 + 41.5692i −0.00323993 + 0.00561173i
$$381$$ −565.500 979.475i −0.0760405 0.131706i
$$382$$ 5868.00 + 10163.7i 0.785950 + 1.36131i
$$383$$ −6375.00 + 11041.8i −0.850515 + 1.47314i 0.0302291 + 0.999543i $$0.490376\pi$$
−0.880744 + 0.473592i $$0.842957\pi$$
$$384$$ −4977.00 −0.661410
$$385$$ −157.500 + 818.394i −0.0208492 + 0.108336i
$$386$$ −4479.00 −0.590609
$$387$$ −117.000 + 202.650i −0.0153681 + 0.0266183i
$$388$$ −251.500 435.611i −0.0329072 0.0569969i
$$389$$ −1563.00 2707.20i −0.203720 0.352854i 0.746004 0.665942i $$-0.231970\pi$$
−0.949724 + 0.313087i $$0.898637\pi$$
$$390$$ 864.000 1496.49i 0.112180 0.194302i
$$391$$ −7056.00 −0.912627
$$392$$ −6688.50 2673.42i −0.861786 0.344459i
$$393$$ −1953.00 −0.250676
$$394$$ −6129.00 + 10615.7i −0.783692 + 1.35739i
$$395$$ 700.500 + 1213.30i 0.0892303 + 0.154551i
$$396$$ 67.5000 + 116.913i 0.00856566 + 0.0148362i
$$397$$ 2966.00 5137.26i 0.374960 0.649450i −0.615361 0.788246i $$-0.710990\pi$$
0.990321 + 0.138795i $$0.0443230\pi$$
$$398$$ 10668.0 1.34356
$$399$$ 168.000 872.954i 0.0210790 0.109530i
$$400$$ 8236.00 1.02950
$$401$$ −804.000 + 1392.57i −0.100124 + 0.173420i −0.911736 0.410777i $$-0.865257\pi$$
0.811611 + 0.584198i $$0.198591\pi$$
$$402$$ −1665.00 2883.86i −0.206574 0.357796i
$$403$$ −8096.00 14022.7i −1.00072 1.73330i
$$404$$ 543.000 940.504i 0.0668695 0.115821i
$$405$$ −243.000 −0.0298142
$$406$$ −12474.0 10802.8i −1.52481 1.32053i
$$407$$ 4740.00 0.577280
$$408$$ −2646.00 + 4583.01i −0.321070 + 0.556109i
$$409$$ 2232.50 + 3866.80i 0.269902 + 0.467484i 0.968836 0.247702i $$-0.0796753\pi$$
−0.698934 + 0.715186i $$0.746342\pi$$
$$410$$ −1620.00 2805.92i −0.195137 0.337987i
$$411$$ 2655.00 4598.59i 0.318641 0.551903i
$$412$$ 1736.00 0.207589
$$413$$ −262.500 + 90.9327i −0.0312755 + 0.0108342i
$$414$$ 2268.00 0.269242
$$415$$ 715.500 1239.28i 0.0846326 0.146588i
$$416$$ 1440.00 + 2494.15i 0.169716 + 0.293957i
$$417$$ 2337.00 + 4047.80i 0.274445 + 0.475352i
$$418$$ 360.000 623.538i 0.0421248 0.0729623i
$$419$$ −1584.00 −0.184686 −0.0923430 0.995727i $$-0.529436\pi$$
−0.0923430 + 0.995727i $$0.529436\pi$$
$$420$$ −157.500 + 54.5596i −0.0182981 + 0.00633866i
$$421$$ −1330.00 −0.153967 −0.0769837 0.997032i $$-0.524529\pi$$
−0.0769837 + 0.997032i $$0.524529\pi$$
$$422$$ 1875.00 3247.60i 0.216288 0.374622i
$$423$$ 135.000 + 233.827i 0.0155176 + 0.0268772i
$$424$$ −3811.50 6601.71i −0.436563 0.756150i
$$425$$ 4872.00 8438.55i 0.556063 0.963129i
$$426$$ 3078.00 0.350069
$$427$$ 1652.00 + 1430.67i 0.187227 + 0.162143i
$$428$$ −1353.00 −0.152803
$$429$$ −1440.00 + 2494.15i −0.162060 + 0.280697i
$$430$$ −117.000 202.650i −0.0131215 0.0227271i
$$431$$ −4794.00 8303.45i −0.535775 0.927989i −0.999125 0.0418139i $$-0.986686\pi$$
0.463351 0.886175i $$-0.346647\pi$$
$$432$$ 958.500 1660.17i 0.106750 0.184896i
$$433$$ 494.000 0.0548271 0.0274135 0.999624i $$-0.491273\pi$$
0.0274135 + 0.999624i $$0.491273\pi$$
$$434$$ −2656.50 + 13803.6i −0.293816 + 1.52671i
$$435$$ 2673.00 0.294622
$$436$$ 185.000 320.429i 0.0203209 0.0351968i
$$437$$ −672.000 1163.94i −0.0735609 0.127411i
$$438$$ 1629.00 + 2821.51i 0.177709 + 0.307801i
$$439$$ 8004.50 13864.2i 0.870237 1.50729i 0.00848508 0.999964i $$-0.497299\pi$$
0.861752 0.507330i $$-0.169368\pi$$
$$440$$ 945.000 0.102389
$$441$$ 2425.50 1909.59i 0.261905 0.206197i
$$442$$ 16128.0 1.73559
$$443$$ −3886.50 + 6731.62i −0.416824 + 0.721961i −0.995618 0.0935130i $$-0.970190\pi$$
0.578794 + 0.815474i $$0.303524\pi$$
$$444$$ 474.000 + 820.992i 0.0506645 + 0.0877535i
$$445$$ 1359.00 + 2353.86i 0.144770 + 0.250749i
$$446$$ 637.500 1104.18i 0.0676827 0.117230i
$$447$$ 7362.00 0.778995
$$448$$ −1515.50 + 7874.77i −0.159823 + 0.830464i
$$449$$ 864.000 0.0908122 0.0454061 0.998969i $$-0.485542\pi$$
0.0454061 + 0.998969i $$0.485542\pi$$
$$450$$ −1566.00 + 2712.39i −0.164049 + 0.284141i
$$451$$ 2700.00 + 4676.54i 0.281903 + 0.488269i
$$452$$ 324.000 + 561.184i 0.0337161 + 0.0583980i
$$453$$ −1888.50 + 3270.98i −0.195871 + 0.339258i
$$454$$ −11565.0 −1.19553
$$455$$ −2688.00 2327.88i −0.276957 0.239852i
$$456$$ −1008.00 −0.103517
$$457$$ −1259.50 + 2181.52i −0.128921 + 0.223298i −0.923259 0.384179i $$-0.874485\pi$$
0.794338 + 0.607476i $$0.207818\pi$$
$$458$$ −3282.00 5684.59i −0.334842 0.579964i
$$459$$ −1134.00 1964.15i −0.115317 0.199735i
$$460$$ −126.000 + 218.238i −0.0127713 + 0.0221205i
$$461$$ −342.000 −0.0345521 −0.0172761 0.999851i $$-0.505499\pi$$
−0.0172761 + 0.999851i $$0.505499\pi$$
$$462$$ 2362.50 818.394i 0.237908 0.0824137i
$$463$$ −4336.00 −0.435229 −0.217614 0.976035i $$-0.569828\pi$$
−0.217614 + 0.976035i $$0.569828\pi$$
$$464$$ −10543.5 + 18261.9i −1.05489 + 1.82713i
$$465$$ −1138.50 1971.94i −0.113541 0.196659i
$$466$$ 1278.00 + 2213.56i 0.127043 + 0.220046i
$$467$$ −9318.00 + 16139.2i −0.923310 + 1.59922i −0.129052 + 0.991638i $$0.541194\pi$$
−0.794257 + 0.607581i $$0.792140\pi$$
$$468$$ −576.000 −0.0568923
$$469$$ −6475.00 + 2243.01i −0.637500 + 0.220837i
$$470$$ −270.000 −0.0264982
$$471$$ 294.000 509.223i 0.0287618 0.0498169i
$$472$$ 157.500 + 272.798i 0.0153592 + 0.0266029i
$$473$$ 195.000 + 337.750i 0.0189558 + 0.0328325i
$$474$$ 2101.50 3639.90i 0.203639 0.352714i
$$475$$ 1856.00 0.179282
$$476$$ −1176.00 1018.45i −0.113239 0.0980680i
$$477$$ 3267.00 0.313597
$$478$$ 8262.00 14310.2i 0.790575 1.36932i
$$479$$ −7539.00 13057.9i −0.719135 1.24558i −0.961343 0.275354i $$-0.911205\pi$$
0.242208 0.970224i $$-0.422128\pi$$
$$480$$ 202.500 + 350.740i 0.0192559 + 0.0333521i
$$481$$ −10112.0 + 17514.5i −0.958560 + 1.66028i
$$482$$ −2373.00 −0.224247
$$483$$ 882.000 4583.01i 0.0830898 0.431747i
$$484$$ −1106.00 −0.103869
$$485$$ 754.500 1306.83i 0.0706393 0.122351i
$$486$$ 364.500 + 631.333i 0.0340207 + 0.0589256i
$$487$$ −3110.50 5387.54i −0.289425 0.501300i 0.684247 0.729250i $$-0.260131\pi$$
−0.973673 + 0.227950i $$0.926798\pi$$
$$488$$ 1239.00 2146.01i 0.114932 0.199068i
$$489$$ −3756.00 −0.347346
$$490$$ 441.000 + 3055.34i 0.0406579 + 0.281686i
$$491$$ −7371.00 −0.677492 −0.338746 0.940878i $$-0.610003\pi$$
−0.338746 + 0.940878i $$0.610003\pi$$
$$492$$ −540.000 + 935.307i −0.0494819 + 0.0857051i
$$493$$ 12474.0 + 21605.6i 1.13956 + 1.97377i
$$494$$ 1536.00 + 2660.43i 0.139895 + 0.242304i
$$495$$ −202.500 + 350.740i −0.0183873 + 0.0318477i
$$496$$ 17963.0 1.62613
$$497$$ 1197.00 6219.79i 0.108034 0.561360i
$$498$$ −4293.00 −0.386293
$$499$$ −2137.00 + 3701.39i −0.191714 + 0.332058i −0.945818 0.324696i $$-0.894738\pi$$
0.754104 + 0.656755i $$0.228071\pi$$
$$500$$ −361.500 626.136i −0.0323335 0.0560033i
$$501$$ 3969.00 + 6874.51i 0.353936 + 0.613035i
$$502$$ 7897.50 13678.9i 0.702157 1.21617i
$$503$$ −2520.00 −0.223382 −0.111691 0.993743i $$-0.535627\pi$$
−0.111691 + 0.993743i $$0.535627\pi$$
$$504$$ −2646.00 2291.50i −0.233854 0.202523i
$$505$$ 3258.00 0.287087
$$506$$ 1890.00 3273.58i 0.166049 0.287605i
$$507$$ −2848.50 4933.75i −0.249519 0.432180i
$$508$$ −188.500 326.492i −0.0164633 0.0285152i
$$509$$ 7138.50 12364.2i 0.621628 1.07669i −0.367555 0.930002i $$-0.619805\pi$$
0.989183 0.146689i $$-0.0468616\pi$$
$$510$$ 2268.00 0.196919
$$511$$ 6335.00 2194.51i 0.548423 0.189979i
$$512$$ 8733.00 0.753804
$$513$$ 216.000 374.123i 0.0185899 0.0321987i
$$514$$ −10305.0 17848.8i −0.884308 1.53167i
$$515$$ 2604.00 + 4510.26i 0.222808 + 0.385914i
$$516$$ −39.0000 + 67.5500i −0.00332729 + 0.00576303i
$$517$$ 450.000 0.0382804
$$518$$ 16590.0 5746.94i 1.40719 0.487464i
$$519$$ −2358.00 −0.199431
$$520$$ −2016.00 + 3491.81i −0.170014 + 0.294473i
$$521$$ 3153.00 + 5461.16i 0.265135 + 0.459228i 0.967599 0.252492i $$-0.0812501\pi$$
−0.702464 + 0.711719i $$0.747917\pi$$
$$522$$ −4009.50 6944.66i −0.336190 0.582298i
$$523$$ −4036.00 + 6990.56i −0.337442 + 0.584466i −0.983951 0.178440i $$-0.942895\pi$$
0.646509 + 0.762906i $$0.276228\pi$$
$$524$$ −651.000 −0.0542730
$$525$$ 4872.00 + 4219.28i 0.405012 + 0.350751i
$$526$$ 666.000 0.0552072
$$527$$ 10626.0 18404.8i 0.878322 1.52130i
$$528$$ −1597.50 2766.95i −0.131671 0.228061i
$$529$$ 2555.50 + 4426.26i 0.210035 + 0.363792i
$$530$$ −1633.50 + 2829.30i −0.133877 + 0.231881i
$$531$$ −135.000 −0.0110330
$$532$$ 56.0000 290.985i 0.00456374 0.0237139i
$$533$$ −23040.0 −1.87237
$$534$$ 4077.00 7061.57i 0.330391 0.572255i
$$535$$ −2029.50 3515.20i −0.164005 0.284066i
$$536$$ 3885.00 + 6729.02i 0.313072 + 0.542256i
$$537$$ −4338.00 + 7513.64i −0.348601 + 0.603794i
$$538$$ −23553.0 −1.88744
$$539$$ −735.000 5092.23i −0.0587360 0.406935i
$$540$$ −81.0000 −0.00645497
$$541$$ 11429.0 19795.6i 0.908264 1.57316i 0.0917903 0.995778i $$-0.470741\pi$$
0.816474 0.577382i $$-0.195926\pi$$
$$542$$ 7774.50 + 13465.8i 0.616132 + 1.06717i
$$543$$ −2028.00 3512.60i −0.160276 0.277606i
$$544$$ −1890.00 + 3273.58i −0.148958 + 0.258003i
$$545$$ 1110.00 0.0872425
$$546$$ −2016.00 + 10475.4i −0.158016 + 0.821076i
$$547$$ −24724.0 −1.93258 −0.966291 0.257454i $$-0.917116\pi$$
−0.966291 + 0.257454i $$0.917116\pi$$
$$548$$ 885.000 1532.86i 0.0689878 0.119490i
$$549$$ 531.000 + 919.719i 0.0412796 + 0.0714985i
$$550$$ 2610.00 + 4520.65i 0.202347 + 0.350475i
$$551$$ −2376.00 + 4115.35i −0.183704 + 0.318185i
$$552$$ −5292.00 −0.408048
$$553$$ −6538.00 5662.07i −0.502756 0.435399i
$$554$$ 14880.0 1.14114
$$555$$ −1422.00 + 2462.98i −0.108758 + 0.188374i
$$556$$ 779.000 + 1349.27i 0.0594190 + 0.102917i
$$557$$ 4921.50 + 8524.29i 0.374382 + 0.648448i 0.990234 0.139413i $$-0.0445216\pi$$
−0.615853 + 0.787861i $$0.711188\pi$$
$$558$$ −3415.50 + 5915.82i −0.259121 + 0.448811i
$$559$$ −1664.00 −0.125903
$$560$$ 3727.50 1291.24i 0.281278 0.0974375i
$$561$$ −3780.00 −0.284477
$$562$$ −1161.00 + 2010.91i −0.0871420 + 0.150934i
$$563$$ 6685.50 + 11579.6i 0.500462 + 0.866826i 1.00000 0.000533812i $$0.000169918\pi$$
−0.499538 + 0.866292i $$0.666497\pi$$
$$564$$ 45.0000 + 77.9423i 0.00335965 + 0.00581908i
$$565$$ −972.000 + 1683.55i −0.0723758 + 0.125359i
$$566$$ −11094.0 −0.823879
$$567$$ 1417.50 491.036i 0.104990 0.0363696i
$$568$$ −7182.00 −0.530546
$$569$$ 2616.00 4531.04i 0.192739 0.333834i −0.753418 0.657542i $$-0.771596\pi$$
0.946157 + 0.323708i $$0.104930\pi$$
$$570$$ 216.000 + 374.123i 0.0158724 + 0.0274917i
$$571$$ 7199.00 + 12469.0i 0.527616 + 0.913858i 0.999482 + 0.0321874i $$0.0102474\pi$$
−0.471866 + 0.881670i $$0.656419\pi$$
$$572$$ −480.000 + 831.384i −0.0350871 + 0.0607726i
$$573$$ 11736.0 0.855634
$$574$$ 15120.0 + 13094.3i 1.09947 + 0.952170i
$$575$$ 9744.00 0.706701
$$576$$ −1948.50 + 3374.90i −0.140951 + 0.244133i
$$577$$ −9935.50 17208.8i −0.716846 1.24161i −0.962243 0.272191i $$-0.912252\pi$$
0.245397 0.969423i $$-0.421082\pi$$
$$578$$ 3214.50 + 5567.68i 0.231325 + 0.400666i
$$579$$ −2239.50 + 3878.93i −0.160743 + 0.278416i
$$580$$ 891.000 0.0637875
$$581$$ −1669.50 + 8674.98i −0.119213 + 0.619447i
$$582$$ −4527.00 −0.322423
$$583$$ 2722.50 4715.51i 0.193404 0.334985i
$$584$$ −3801.00 6583.53i −0.269326 0.466487i
$$585$$ −864.000 1496.49i −0.0610633 0.105765i
$$586$$ −9409.50 + 16297.7i −0.663315 + 1.14890i
$$587$$ −16137.0 −1.13466 −0.567330 0.823491i $$-0.692024\pi$$
−0.567330 + 0.823491i $$0.692024\pi$$
$$588$$ 808.500 636.529i 0.0567040 0.0446429i
$$589$$ 4048.00 0.283183
$$590$$ 67.5000 116.913i 0.00471005 0.00815805i
$$591$$ 6129.00 + 10615.7i 0.426588 + 0.738872i
$$592$$ −11218.0 19430.1i −0.778812 1.34894i
$$593$$ 10662.0 18467.1i 0.738340 1.27884i −0.214902 0.976636i $$-0.568943\pi$$
0.953242 0.302207i $$-0.0977235\pi$$
$$594$$ 1215.00 0.0839260
$$595$$ 882.000 4583.01i 0.0607705 0.315773i
$$596$$ 2454.00 0.168657
$$597$$ 5334.00 9238.76i 0.365672 0.633362i
$$598$$ 8064.00 + 13967.3i 0.551441 + 0.955123i
$$599$$ 4323.00 + 7487.66i 0.294880 + 0.510747i 0.974957 0.222394i $$-0.0713871\pi$$
−0.680077 + 0.733141i $$0.738054\pi$$
$$600$$ 3654.00 6328.91i 0.248623 0.430628i
$$601$$ 11195.0 0.759823 0.379911 0.925023i $$-0.375954\pi$$
0.379911 + 0.925023i $$0.375954\pi$$
$$602$$ 1092.00 + 945.700i 0.0739312 + 0.0640263i
$$603$$ −3330.00 −0.224889
$$604$$ −629.500 + 1090.33i −0.0424073 + 0.0734515i
$$605$$ −1659.00 2873.47i −0.111484 0.193096i
$$606$$ −4887.00 8464.53i −0.327592 0.567406i
$$607$$ 4485.50 7769.11i 0.299935 0.519503i −0.676185 0.736731i $$-0.736368\pi$$
0.976121 + 0.217228i $$0.0697015\pi$$
$$608$$ −720.000 −0.0480261
$$609$$ −15592.5 + 5401.40i −1.03750 + 0.359402i
$$610$$ −1062.00 −0.0704904
$$611$$ −960.000 + 1662.77i −0.0635637 + 0.110096i
$$612$$ −378.000 654.715i −0.0249669 0.0432439i
$$613$$ 6386.00 + 11060.9i 0.420764 + 0.728784i 0.996014 0.0891932i $$-0.0284288\pi$$
−0.575251 + 0.817977i $$0.695096\pi$$
$$614$$ −2526.00 + 4375.16i −0.166028 + 0.287569i
$$615$$ −3240.00 −0.212438
$$616$$ −5512.50 + 1909.59i −0.360560 + 0.124902i
$$617$$ 12762.0 0.832705 0.416352 0.909203i $$-0.363308\pi$$
0.416352 + 0.909203i $$0.363308\pi$$
$$618$$ 7812.00 13530.8i 0.508487 0.880725i
$$619$$ −6421.00 11121.5i −0.416933 0.722150i 0.578696 0.815543i $$-0.303562\pi$$
−0.995629 + 0.0933936i $$0.970229\pi$$
$$620$$ −379.500 657.313i −0.0245824 0.0425780i
$$621$$ 1134.00 1964.15i 0.0732783 0.126922i
$$622$$ 3960.00 0.255276
$$623$$ −12684.0 10984.7i −0.815688 0.706407i
$$624$$ 13632.0 0.874546
$$625$$ −6165.50 + 10679.0i −0.394592 + 0.683453i
$$626$$ −12754.5 22091.4i −0.814333 1.41047i
$$627$$ −360.000 623.538i −0.0229298 0.0397157i
$$628$$ 98.0000 169.741i 0.00622711 0.0107857i
$$629$$ −26544.0 −1.68264
$$630$$ −283.500 + 1473.11i −0.0179284 + 0.0931589i
$$631$$ 21365.0 1.34790 0.673952 0.738775i $$-0.264596\pi$$
0.673952 + 0.738775i $$0.264596\pi$$
$$632$$ −4903.50 + 8493.11i −0.308625 + 0.534554i
$$633$$ −1875.00 3247.60i −0.117732 0.203918i
$$634$$ −3865.50 6695.24i −0.242143 0.419404i
$$635$$ 565.500 979.475i 0.0353404 0.0612114i
$$636$$ 1089.00 0.0678957
$$637$$ 20384.0 + 8147.57i 1.26789 + 0.506779i
$$638$$ −13365.0 −0.829350
$$639$$ 1539.00 2665.63i 0.0952768 0.165024i
$$640$$ −2488.50 4310.21i −0.153698 0.266212i
$$641$$ −4137.00 7165.49i −0.254917 0.441529i 0.709956 0.704246i $$-0.248715\pi$$
−0.964873 + 0.262717i $$0.915381\pi$$
$$642$$ −6088.50 + 10545.6i −0.374290 + 0.648289i
$$643$$ 27998.0 1.71716 0.858580 0.512680i $$-0.171347\pi$$
0.858580 + 0.512680i $$0.171347\pi$$
$$644$$ 294.000 1527.67i 0.0179895 0.0934761i
$$645$$ −234.000 −0.0142849
$$646$$ −2016.00 + 3491.81i −0.122784 + 0.212668i
$$647$$ 8733.00 + 15126.0i 0.530649 + 0.919110i 0.999360 + 0.0357592i $$0.0113849\pi$$
−0.468712 + 0.883351i $$0.655282\pi$$
$$648$$ −850.500 1473.11i −0.0515599 0.0893043i
$$649$$ −112.500 + 194.856i −0.00680433 + 0.0117854i
$$650$$ −22272.0 −1.34397
$$651$$ 10626.0 + 9202.39i 0.639732 + 0.554024i
$$652$$ −1252.00 −0.0752026
$$653$$ −1078.50 + 1868.02i −0.0646324 + 0.111947i −0.896531 0.442981i $$-0.853921\pi$$
0.831898 + 0.554928i $$0.187254\pi$$
$$654$$ −1665.00 2883.86i −0.0995515 0.172428i
$$655$$ −976.500 1691.35i −0.0582519 0.100895i
$$656$$ 12780.0 22135.6i 0.760633 1.31745i
$$657$$ 3258.00 0.193465
$$658$$ 1575.00 545.596i 0.0933129 0.0323245i
$$659$$ 19944.0 1.17892 0.589460 0.807798i $$-0.299341\pi$$
0.589460 + 0.807798i $$0.299341\pi$$
$$660$$ −67.5000 + 116.913i −0.00398096 + 0.00689523i
$$661$$ −13753.0 23820.9i −0.809273 1.40170i −0.913368 0.407135i $$-0.866528\pi$$
0.104095 0.994567i $$-0.466806\pi$$
$$662$$ −726.000 1257.47i −0.0426236 0.0738262i
$$663$$ 8064.00 13967.3i 0.472368 0.818165i
$$664$$ 10017.0 0.585444
$$665$$ 840.000 290.985i 0.0489832 0.0169683i
$$666$$ 8532.00 0.496409
$$667$$ −12474.0 + 21605.6i −0.724131 + 1.25423i
$$668$$ 1323.00 + 2291.50i 0.0766294 + 0.132726i
$$669$$ −637.500 1104.18i −0.0368418 0.0638119i
$$670$$ 1665.00 2883.86i 0.0960068 0.166289i
$$671$$ 1770.00 0.101833
$$672$$ −1890.00 1636.79i −0.108495 0.0939590i
$$673$$ −19123.0 −1.09530 −0.547650 0.836707i $$-0.684478\pi$$
−0.547650 + 0.836707i $$0.684478\pi$$
$$674$$ −12538.5 + 21717.3i −0.716565 + 1.24113i
$$675$$ 1566.00 + 2712.39i 0.0892968 + 0.154667i
$$676$$ −949.500 1644.58i −0.0540225 0.0935698i
$$677$$ −6928.50 + 12000.5i −0.393329 + 0.681266i −0.992886 0.119066i $$-0.962010\pi$$
0.599557 + 0.800332i $$0.295343\pi$$
$$678$$ 5832.00 0.330349
$$679$$ −1760.50 + 9147.83i −0.0995019 + 0.517027i
$$680$$ −5292.00 −0.298440
$$681$$ −5782.50 + 10015.6i −0.325383 + 0.563580i
$$682$$ 5692.50 + 9859.70i 0.319615 + 0.553589i
$$683$$ 11122.5 + 19264.7i 0.623120 + 1.07927i 0.988901 + 0.148574i $$0.0474683\pi$$
−0.365782 + 0.930701i $$0.619198\pi$$
$$684$$ 72.0000 124.708i 0.00402484 0.00697122i
$$685$$ 5310.00 0.296182
$$686$$ −8746.50 16931.7i −0.486797 0.942353i
$$687$$ −6564.00 −0.364530
$$688$$ 923.000 1598.68i 0.0511469 0.0885890i
$$689$$ 11616.0 + 20119.5i 0.642285 + 1.11247i
$$690$$ 1134.00 + 1964.15i 0.0625661 + 0.108368i
$$691$$ 320.000 554.256i 0.0176170 0.0305136i −0.857082 0.515179i $$-0.827725\pi$$
0.874700 + 0.484666i $$0.161059\pi$$
$$692$$ −786.000 −0.0431781
$$693$$ 472.500 2455.18i 0.0259001 0.134581i
$$694$$ 5580.00 0.305207
$$695$$ −2337.00 + 4047.80i −0.127550 + 0.220924i
$$696$$ 9355.50 + 16204.2i 0.509511 + 0.882498i
$$697$$ −15120.0 26188.6i −0.821680 1.42319i
$$698$$ −2877.00 + 4983.11i −0.156012 + 0.270220i
$$699$$ 2556.00 0.138307
$$700$$ 1624.00 + 1406.43i 0.0876878 + 0.0759398i
$$701$$ −15561.0 −0.838418 −0.419209 0.907890i $$-0.637693\pi$$
−0.419209 + 0.907890i $$0.637693\pi$$
$$702$$ −2592.00 + 4489.48i −0.139357 + 0.241374i
$$703$$ −2528.00 4378.62i −0.135626 0.234912i
$$704$$ 3247.50 + 5624.83i 0.173856 + 0.301128i
$$705$$ −135.000 + 233.827i −0.00721191 + 0.0124914i
$$706$$ 9144.00 0.487449
$$707$$ −19005.0 + 6583.53i −1.01097 + 0.350211i
$$708$$ −45.0000 −0.00238871
$$709$$ −2767.00 + 4792.58i −0.146568 + 0.253864i −0.929957 0.367668i $$-0.880156\pi$$
0.783389 + 0.621532i $$0.213489\pi$$
$$710$$ 1539.00 + 2665.63i 0.0813488 + 0.140900i
$$711$$ −2101.50 3639.90i −0.110847 0.191993i
$$712$$ −9513.00 + 16477.0i −0.500723 + 0.867278i
$$713$$ 21252.0 1.11626
$$714$$ −13230.0 + 4583.01i −0.693446 + 0.240217i
$$715$$ −2880.00 −0.150638
$$716$$ −1446.00 + 2504.55i −0.0754742 + 0.130725i
$$717$$ −8262.00 14310.2i −0.430335 0.745362i
$$718$$ −45.0000 77.9423i −0.00233898 0.00405123i
$$719$$ 10923.0 18919.2i 0.566564 0.981317i −0.430339 0.902667i $$-0.641606\pi$$
0.996902 0.0786494i $$-0.0250607\pi$$
$$720$$ 1917.00 0.0992255
$$721$$ −24304.0 21047.9i −1.25538 1.08719i
$$722$$ 19809.0 1.02107
$$723$$ −1186.50 + 2055.08i −0.0610324 + 0.105711i
$$724$$ −676.000 1170.87i −0.0347007 0.0601035i
$$725$$ −17226.0 29836.3i −0.882424 1.52840i
$$726$$ −4977.00 + 8620.42i −0.254427 + 0.440680i
$$727$$ −11089.0 −0.565706 −0.282853 0.959163i $$-0.591281\pi$$
−0.282853 + 0.959163i $$0.591281\pi$$
$$728$$ 4704.00 24442.7i 0.239481 1.24438i
$$729$$ 729.000 0.0370370
$$730$$ −1629.00 + 2821.51i −0.0825918 + 0.143053i
$$731$$ −1092.00 1891.40i −0.0552518 0.0956990i
$$732$$ 177.000 + 306.573i 0.00893731 + 0.0154799i
$$733$$ −5881.00 + 10186.2i −0.296343 + 0.513282i −0.975296 0.220900i $$-0.929101\pi$$
0.678953 + 0.734182i $$0.262434\pi$$
$$734$$ 33933.0 1.70639
$$735$$ 2866.50 + 1145.75i 0.143854 + 0.0574989i
$$736$$ −3780.00 −0.189311
$$737$$ −2775.00 + 4806.44i −0.138695 + 0.240227i
$$738$$ 4860.00 + 8417.77i 0.242411 + 0.419868i
$$739$$ 11363.0 + 19681.3i 0.565622 + 0.979686i 0.996992 + 0.0775108i $$0.0246972\pi$$
−0.431369 + 0.902175i $$0.641969\pi$$
$$740$$ −474.000 + 820.992i −0.0235467 + 0.0407841i
$$741$$ 3072.00 0.152298
$$742$$ 3811.50 19805.1i 0.188578 0.979878i
$$743$$ 6678.00 0.329734 0.164867 0.986316i $$-0.447281\pi$$
0.164867 + 0.986316i $$0.447281\pi$$
$$744$$ 7969.50 13803.6i 0.392710 0.680193i
$$745$$ 3681.00 + 6375.68i 0.181022 + 0.313539i
$$746$$ 1812.00 + 3138.48i 0.0889303 + 0.154032i
$$747$$ −2146.50 + 3717.85i −0.105136 + 0.182100i
$$748$$ −1260.00 −0.0615911
$$749$$ 18942.0 + 16404.3i 0.924066 + 0.800265i
$$750$$ −6507.00 −0.316803
$$751$$ 9993.50 17309.2i 0.485577 0.841043i −0.514286 0.857619i $$-0.671943\pi$$
0.999863 + 0.0165754i $$0.00527637\pi$$
$$752$$ −1065.00 1844.63i −0.0516444 0.0894506i
$$753$$ −7897.50 13678.9i −0.382206 0.662000i
$$754$$ 28512.0 49384.2i 1.37712 2.38524i
$$755$$ −3777.00 −0.182065
$$756$$ 472.500 163.679i 0.0227310 0.00787426i
$$757$$ 314.000 0.0150760 0.00753799 0.999972i $$-0.497601\pi$$
0.00753799 + 0.999972i $$0.497601\pi$$
$$758$$ 11460.0 19849.3i 0.549137 0.951133i
$$759$$ −1890.00 3273.58i −0.0903856 0.156552i
$$760$$ −504.000 872.954i −0.0240553 0.0416649i
$$761$$ 5748.00 9955.83i 0.273804 0.474242i −0.696029 0.718014i $$-0.745051\pi$$
0.969833 + 0.243772i $$0.0783847\pi$$
$$762$$ −3393.00 −0.161306
$$763$$ −6475.00 + 2243.01i −0.307222 + 0.106425i
$$764$$ 3912.00 0.185250
$$765$$ 1134.00 1964.15i 0.0535946 0.0928285i
$$766$$ 19125.0 + 33125.5i 0.902107 + 1.56250i
$$767$$ −480.000 831.384i −0.0225969 0.0391389i
$$768$$ −2269.50 + 3930.89i −0.106632 + 0.184692i
$$769$$ 2765.00 0.129660 0.0648299 0.997896i $$-0.479350\pi$$
0.0648299 + 0.997896i $$0.479350\pi$$
$$770$$ 1890.00 + 1636.79i 0.0884557 + 0.0766049i
$$771$$ −20610.0 −0.962712
$$772$$ −746.500 + 1292.98i −0.0348020 + 0.0602788i