Properties

Label 21.3.f
Level $21$
Weight $3$
Character orbit 21.f
Rep. character $\chi_{21}(10,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $6$
Newform subspaces $3$
Sturm bound $8$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 21.f (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(8\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(21, [\chi])\).

Total New Old
Modular forms 14 6 8
Cusp forms 6 6 0
Eisenstein series 8 0 8

Trace form

\( 6 q - 2 q^{2} - 3 q^{3} - 2 q^{4} - 6 q^{5} - q^{7} + 8 q^{8} + 9 q^{9} - 30 q^{10} - 14 q^{11} + 24 q^{12} + 22 q^{14} - 24 q^{15} + 22 q^{16} + 48 q^{17} + 6 q^{18} + 33 q^{19} - 36 q^{21} + 28 q^{22}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(21, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
21.3.f.a 21.f 7.d $2$ $0.572$ \(\Q(\sqrt{-3}) \) None 21.3.f.a \(-3\) \(-3\) \(9\) \(13\) $\mathrm{SU}(2)[C_{6}]$ \(q-3\zeta_{6}q^{2}+(-1-\zeta_{6})q^{3}+(-5+5\zeta_{6})q^{4}+\cdots\)
21.3.f.b 21.f 7.d $2$ $0.572$ \(\Q(\sqrt{-3}) \) None 21.3.f.b \(-1\) \(3\) \(-9\) \(-7\) $\mathrm{SU}(2)[C_{6}]$ \(q-\zeta_{6}q^{2}+(1+\zeta_{6})q^{3}+(3-3\zeta_{6})q^{4}+\cdots\)
21.3.f.c 21.f 7.d $2$ $0.572$ \(\Q(\sqrt{-3}) \) None 21.3.f.c \(2\) \(-3\) \(-6\) \(-7\) $\mathrm{SU}(2)[C_{6}]$ \(q+2\zeta_{6}q^{2}+(-1-\zeta_{6})q^{3}+(-4+2\zeta_{6})q^{5}+\cdots\)