# Properties

 Label 21.3.b.a Level $21$ Weight $3$ Character orbit 21.b Analytic conductor $0.572$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$21 = 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 21.b (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.572208555157$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: 4.0.65856.1 Defining polynomial: $$x^{4} + 14 x^{2} + 21$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{2} + ( -\beta_{1} - \beta_{2} + \beta_{3} ) q^{3} + ( -3 + 2 \beta_{2} ) q^{4} + ( -1 + \beta_{2} - 2 \beta_{3} ) q^{5} + ( 3 + \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{6} -\beta_{2} q^{7} + ( 2 - 5 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} ) q^{8} + ( -6 - \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{9} +O(q^{10})$$ $$q + \beta_{1} q^{2} + ( -\beta_{1} - \beta_{2} + \beta_{3} ) q^{3} + ( -3 + 2 \beta_{2} ) q^{4} + ( -1 + \beta_{2} - 2 \beta_{3} ) q^{5} + ( 3 + \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{6} -\beta_{2} q^{7} + ( 2 - 5 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} ) q^{8} + ( -6 - \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{9} + ( 7 + \beta_{2} ) q^{10} + 2 \beta_{1} q^{11} + ( -6 + 7 \beta_{1} + \beta_{2} - \beta_{3} ) q^{12} + ( -9 + \beta_{2} ) q^{13} + ( -1 + 3 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{14} + ( 9 - \beta_{1} + 2 \beta_{2} + 4 \beta_{3} ) q^{15} + ( 9 - 4 \beta_{2} ) q^{16} + ( 2 - 2 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} ) q^{17} + ( 15 - 8 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{18} + ( 3 - 5 \beta_{2} ) q^{19} + ( -3 + 4 \beta_{1} + 3 \beta_{2} - 6 \beta_{3} ) q^{20} + ( 3 - 2 \beta_{1} + \beta_{2} - \beta_{3} ) q^{21} + ( -14 + 4 \beta_{2} ) q^{22} + ( -2 + 8 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} ) q^{23} + ( -33 - 3 \beta_{1} + 6 \beta_{2} - 3 \beta_{3} ) q^{24} + ( -3 - 10 \beta_{2} ) q^{25} + ( 1 - 12 \beta_{1} - \beta_{2} + 2 \beta_{3} ) q^{26} + ( 3 + 5 \beta_{1} + 8 \beta_{2} + \beta_{3} ) q^{27} + ( -14 + 3 \beta_{2} ) q^{28} + ( -2 - 2 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} ) q^{29} + ( -3 - 5 \beta_{1} - 8 \beta_{2} + 8 \beta_{3} ) q^{30} + ( 34 + 2 \beta_{2} ) q^{31} + ( 4 + \beta_{1} - 4 \beta_{2} + 8 \beta_{3} ) q^{32} + ( 6 + 2 \beta_{1} - 4 \beta_{2} - 2 \beta_{3} ) q^{33} -6 \beta_{2} q^{34} + ( 3 - 2 \beta_{1} - 3 \beta_{2} + 6 \beta_{3} ) q^{35} + ( 24 + 13 \beta_{1} - 8 \beta_{2} - 10 \beta_{3} ) q^{36} + ( 4 + 14 \beta_{2} ) q^{37} + ( -5 + 18 \beta_{1} + 5 \beta_{2} - 10 \beta_{3} ) q^{38} + ( -3 + 11 \beta_{1} + 8 \beta_{2} - 8 \beta_{3} ) q^{39} + ( 21 + 15 \beta_{2} ) q^{40} + ( 8 - 22 \beta_{1} - 8 \beta_{2} + 16 \beta_{3} ) q^{41} + ( 18 + 2 \beta_{1} - 4 \beta_{2} + \beta_{3} ) q^{42} + ( -40 - 6 \beta_{2} ) q^{43} + ( 4 - 18 \beta_{1} - 4 \beta_{2} + 8 \beta_{3} ) q^{44} + ( -33 + 2 \beta_{1} - 13 \beta_{2} + 4 \beta_{3} ) q^{45} + ( -42 + 18 \beta_{2} ) q^{46} + ( 4 + 8 \beta_{1} - 4 \beta_{2} + 8 \beta_{3} ) q^{47} + ( 12 - 17 \beta_{1} - 5 \beta_{2} + 5 \beta_{3} ) q^{48} + 7 q^{49} + ( -10 + 27 \beta_{1} + 10 \beta_{2} - 20 \beta_{3} ) q^{50} + ( -24 - 6 \beta_{3} ) q^{51} + ( 41 - 21 \beta_{2} ) q^{52} + ( -16 + 10 \beta_{1} + 16 \beta_{2} - 32 \beta_{3} ) q^{53} + ( -30 - 23 \beta_{1} + \beta_{2} + 17 \beta_{3} ) q^{54} + ( 14 + 2 \beta_{2} ) q^{55} + ( -1 - 11 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{56} + ( 15 - 13 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{57} + ( 28 - 2 \beta_{2} ) q^{58} + ( -1 - 26 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{59} + ( 39 + \beta_{1} - 2 \beta_{2} + 8 \beta_{3} ) q^{60} + ( -39 + 7 \beta_{2} ) q^{61} + ( 2 + 28 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} ) q^{62} + ( -3 - 5 \beta_{1} + \beta_{2} + 8 \beta_{3} ) q^{63} + ( 1 - 18 \beta_{2} ) q^{64} + ( 6 + 2 \beta_{1} - 6 \beta_{2} + 12 \beta_{3} ) q^{65} + ( -12 + 22 \beta_{1} + 10 \beta_{2} - 10 \beta_{3} ) q^{66} + ( -6 - 8 \beta_{2} ) q^{67} + ( 2 + 10 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} ) q^{68} + ( 42 + 6 \beta_{1} - 12 \beta_{2} ) q^{69} + ( -7 - 7 \beta_{2} ) q^{70} + ( 6 + 18 \beta_{1} - 6 \beta_{2} + 12 \beta_{3} ) q^{71} + ( -9 + 36 \beta_{1} + 36 \beta_{2} - 18 \beta_{3} ) q^{72} + ( -8 + 26 \beta_{2} ) q^{73} + ( 14 - 38 \beta_{1} - 14 \beta_{2} + 28 \beta_{3} ) q^{74} + ( 30 - 17 \beta_{1} + 13 \beta_{2} - 13 \beta_{3} ) q^{75} + ( -79 + 21 \beta_{2} ) q^{76} + ( -2 + 6 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} ) q^{77} + ( -45 - 11 \beta_{1} + 22 \beta_{2} + 8 \beta_{3} ) q^{78} + ( 32 - 36 \beta_{2} ) q^{79} + ( 3 - 8 \beta_{1} - 3 \beta_{2} + 6 \beta_{3} ) q^{80} + ( -15 + 20 \beta_{1} - 22 \beta_{2} + 4 \beta_{3} ) q^{81} + ( 98 - 52 \beta_{2} ) q^{82} + ( -9 - 18 \beta_{1} + 9 \beta_{2} - 18 \beta_{3} ) q^{83} + ( -9 + 20 \beta_{1} + 11 \beta_{2} - 11 \beta_{3} ) q^{84} + ( 42 + 18 \beta_{2} ) q^{85} + ( -6 - 22 \beta_{1} + 6 \beta_{2} - 12 \beta_{3} ) q^{86} + ( 12 - 4 \beta_{1} + 8 \beta_{2} + 10 \beta_{3} ) q^{87} + ( 42 - 24 \beta_{2} ) q^{88} + ( -16 + 42 \beta_{1} + 16 \beta_{2} - 32 \beta_{3} ) q^{89} + ( -39 - 2 \beta_{1} + 13 \beta_{2} - 22 \beta_{3} ) q^{90} + ( -7 + 9 \beta_{2} ) q^{91} + ( 10 - 64 \beta_{1} - 10 \beta_{2} + 20 \beta_{3} ) q^{92} + ( -6 - 30 \beta_{1} - 36 \beta_{2} + 36 \beta_{3} ) q^{93} + ( -84 + 12 \beta_{2} ) q^{94} + ( 12 - 10 \beta_{1} - 12 \beta_{2} + 24 \beta_{3} ) q^{95} + ( -33 + 5 \beta_{1} - 10 \beta_{2} - 17 \beta_{3} ) q^{96} + ( -2 + 8 \beta_{2} ) q^{97} + 7 \beta_{1} q^{98} + ( 30 - 16 \beta_{1} - 4 \beta_{2} + 4 \beta_{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 2q^{3} - 12q^{4} + 14q^{6} - 20q^{9} + O(q^{10})$$ $$4q - 2q^{3} - 12q^{4} + 14q^{6} - 20q^{9} + 28q^{10} - 22q^{12} - 36q^{13} + 28q^{15} + 36q^{16} + 56q^{18} + 12q^{19} + 14q^{21} - 56q^{22} - 126q^{24} - 12q^{25} + 10q^{27} - 56q^{28} - 28q^{30} + 136q^{31} + 28q^{33} + 116q^{36} + 16q^{37} + 4q^{39} + 84q^{40} + 70q^{42} - 160q^{43} - 140q^{45} - 168q^{46} + 38q^{48} + 28q^{49} - 84q^{51} + 164q^{52} - 154q^{54} + 56q^{55} + 64q^{57} + 112q^{58} + 140q^{60} - 156q^{61} - 28q^{63} + 4q^{64} - 28q^{66} - 24q^{67} + 168q^{69} - 28q^{70} - 32q^{73} + 146q^{75} - 316q^{76} - 196q^{78} + 128q^{79} - 68q^{81} + 392q^{82} - 14q^{84} + 168q^{85} + 28q^{87} + 168q^{88} - 112q^{90} - 28q^{91} - 96q^{93} - 336q^{94} - 98q^{96} - 8q^{97} + 112q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 14 x^{2} + 21$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{2} + 7$$$$)/2$$ $$\beta_{3}$$ $$=$$ $$($$$$\nu^{3} + \nu^{2} + 13 \nu + 5$$$$)/4$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$2 \beta_{2} - 7$$ $$\nu^{3}$$ $$=$$ $$4 \beta_{3} - 2 \beta_{2} - 13 \beta_{1} + 2$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/21\mathbb{Z}\right)^\times$$.

 $$n$$ $$8$$ $$10$$ $$\chi(n)$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
8.1
 − 3.50592i − 1.30710i 1.30710i 3.50592i
3.50592i 0.822876 + 2.88494i −8.29150 1.24197i 10.1144 2.88494i 2.64575 15.0457i −7.64575 + 4.74789i 4.35425
8.2 1.30710i −1.82288 2.38267i 2.29150 7.37953i −3.11438 + 2.38267i −2.64575 8.22359i −2.35425 + 8.68663i 9.64575
8.3 1.30710i −1.82288 + 2.38267i 2.29150 7.37953i −3.11438 2.38267i −2.64575 8.22359i −2.35425 8.68663i 9.64575
8.4 3.50592i 0.822876 2.88494i −8.29150 1.24197i 10.1144 + 2.88494i 2.64575 15.0457i −7.64575 4.74789i 4.35425
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 21.3.b.a 4
3.b odd 2 1 inner 21.3.b.a 4
4.b odd 2 1 336.3.d.c 4
5.b even 2 1 525.3.c.a 4
5.c odd 4 2 525.3.f.a 8
7.b odd 2 1 147.3.b.f 4
7.c even 3 2 147.3.h.e 8
7.d odd 6 2 147.3.h.c 8
8.b even 2 1 1344.3.d.f 4
8.d odd 2 1 1344.3.d.b 4
9.c even 3 2 567.3.r.c 8
9.d odd 6 2 567.3.r.c 8
12.b even 2 1 336.3.d.c 4
15.d odd 2 1 525.3.c.a 4
15.e even 4 2 525.3.f.a 8
21.c even 2 1 147.3.b.f 4
21.g even 6 2 147.3.h.c 8
21.h odd 6 2 147.3.h.e 8
24.f even 2 1 1344.3.d.b 4
24.h odd 2 1 1344.3.d.f 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.3.b.a 4 1.a even 1 1 trivial
21.3.b.a 4 3.b odd 2 1 inner
147.3.b.f 4 7.b odd 2 1
147.3.b.f 4 21.c even 2 1
147.3.h.c 8 7.d odd 6 2
147.3.h.c 8 21.g even 6 2
147.3.h.e 8 7.c even 3 2
147.3.h.e 8 21.h odd 6 2
336.3.d.c 4 4.b odd 2 1
336.3.d.c 4 12.b even 2 1
525.3.c.a 4 5.b even 2 1
525.3.c.a 4 15.d odd 2 1
525.3.f.a 8 5.c odd 4 2
525.3.f.a 8 15.e even 4 2
567.3.r.c 8 9.c even 3 2
567.3.r.c 8 9.d odd 6 2
1344.3.d.b 4 8.d odd 2 1
1344.3.d.b 4 24.f even 2 1
1344.3.d.f 4 8.b even 2 1
1344.3.d.f 4 24.h odd 2 1

## Hecke kernels

This newform subspace is the entire newspace $$S_{3}^{\mathrm{new}}(21, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$21 + 14 T^{2} + T^{4}$$
$3$ $$81 + 18 T + 12 T^{2} + 2 T^{3} + T^{4}$$
$5$ $$84 + 56 T^{2} + T^{4}$$
$7$ $$( -7 + T^{2} )^{2}$$
$11$ $$336 + 56 T^{2} + T^{4}$$
$13$ $$( 74 + 18 T + T^{2} )^{2}$$
$17$ $$3024 + 168 T^{2} + T^{4}$$
$19$ $$( -166 - 6 T + T^{2} )^{2}$$
$23$ $$12096 + 672 T^{2} + T^{4}$$
$29$ $$27216 + 392 T^{2} + T^{4}$$
$31$ $$( 1128 - 68 T + T^{2} )^{2}$$
$37$ $$( -1356 - 8 T + T^{2} )^{2}$$
$41$ $$4139856 + 5432 T^{2} + T^{4}$$
$43$ $$( 1348 + 80 T + T^{2} )^{2}$$
$47$ $$1741824 + 2688 T^{2} + T^{4}$$
$53$ $$2543184 + 11256 T^{2} + T^{4}$$
$59$ $$14606676 + 10248 T^{2} + T^{4}$$
$61$ $$( 1178 + 78 T + T^{2} )^{2}$$
$67$ $$( -412 + 12 T + T^{2} )^{2}$$
$71$ $$22888656 + 9576 T^{2} + T^{4}$$
$73$ $$( -4668 + 16 T + T^{2} )^{2}$$
$79$ $$( -8048 - 64 T + T^{2} )^{2}$$
$83$ $$44641044 + 13608 T^{2} + T^{4}$$
$89$ $$64754256 + 20216 T^{2} + T^{4}$$
$97$ $$( -444 + 4 T + T^{2} )^{2}$$