Properties

Label 21.3
Level 21
Weight 3
Dimension 18
Nonzero newspaces 4
Newform subspaces 7
Sturm bound 96
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 21 = 3 \cdot 7 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 7 \)
Sturm bound: \(96\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(21))\).

Total New Old
Modular forms 44 26 18
Cusp forms 20 18 2
Eisenstein series 24 8 16

Trace form

\( 18 q - 6 q^{3} - 22 q^{4} - 6 q^{5} - 6 q^{6} + 2 q^{7} - 6 q^{8} - 24 q^{9} - 12 q^{10} + 6 q^{11} + 18 q^{12} + 2 q^{13} + 24 q^{14} + 48 q^{15} + 90 q^{16} + 48 q^{17} + 96 q^{18} + 2 q^{19} - 24 q^{21}+ \cdots - 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(21))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
21.3.b \(\chi_{21}(8, \cdot)\) 21.3.b.a 4 1
21.3.d \(\chi_{21}(13, \cdot)\) 21.3.d.a 2 1
21.3.f \(\chi_{21}(10, \cdot)\) 21.3.f.a 2 2
21.3.f.b 2
21.3.f.c 2
21.3.h \(\chi_{21}(2, \cdot)\) 21.3.h.a 2 2
21.3.h.b 4

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(21))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(21)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)