Properties

Label 21.12.c
Level $21$
Weight $12$
Character orbit 21.c
Rep. character $\chi_{21}(20,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 21.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(21, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 28 28 0
Eisenstein series 4 4 0

Trace form

\( 28 q - 28676 q^{4} + 29736 q^{7} + 22476 q^{9} + 2273856 q^{15} + 27753348 q^{16} - 26666124 q^{18} + 32167884 q^{21} - 48860944 q^{22} + 314067988 q^{25} - 239159788 q^{28} + 577648716 q^{30} - 771897168 q^{36}+ \cdots - 342176667360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(21, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
21.12.c.a 21.c 21.c $28$ $16.135$ None 21.12.c.a \(0\) \(0\) \(0\) \(29736\) $\mathrm{SU}(2)[C_{2}]$