Properties

Label 21.11.h.a.2.1
Level $21$
Weight $11$
Character 21.2
Analytic conductor $13.343$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 21.h (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(13.3425023061\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 2.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 21.2
Dual form 21.11.h.a.11.1

$q$-expansion

\(f(q)\) \(=\) \(q+(121.500 + 210.444i) q^{3} +(-512.000 - 886.810i) q^{4} +(5453.50 + 15897.6i) q^{7} +(-29524.5 + 51137.9i) q^{9} +O(q^{10})\) \(q+(121.500 + 210.444i) q^{3} +(-512.000 - 886.810i) q^{4} +(5453.50 + 15897.6i) q^{7} +(-29524.5 + 51137.9i) q^{9} +(124416. - 215495. i) q^{12} -560257. q^{13} +(-524288. + 908093. i) q^{16} +(-2.46313e6 + 4.26626e6i) q^{19} +(-2.68296e6 + 3.07922e6i) q^{21} +(-4.88281e6 - 8.45728e6i) q^{25} -1.43489e7 q^{27} +(1.13060e7 - 1.29758e7i) q^{28} +(2.49218e7 + 4.31658e7i) q^{31} +6.04662e7 q^{36} +(4.71595e7 - 8.16826e7i) q^{37} +(-6.80712e7 - 1.17903e8i) q^{39} +2.11109e8 q^{43} -2.54804e8 q^{48} +(-2.22994e8 + 1.73395e8i) q^{49} +(2.86852e8 + 4.96842e8i) q^{52} -1.19708e9 q^{57} +(9.86124e7 - 1.70802e8i) q^{61} +(-9.73984e8 - 1.90489e8i) q^{63} +1.07374e9 q^{64} +(6.30441e8 + 1.09196e9i) q^{67} +(-9.78842e8 - 1.69540e9i) q^{73} +(1.18652e9 - 2.05512e9i) q^{75} +5.04448e9 q^{76} +(-1.05044e9 + 1.81942e9i) q^{79} +(-1.74339e9 - 3.01964e9i) q^{81} +(4.10436e9 + 8.02718e8i) q^{84} +(-3.05536e9 - 8.90676e9i) q^{91} +(-6.05599e9 + 1.04893e10i) q^{93} +8.84916e8 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 243q^{3} - 1024q^{4} + 10907q^{7} - 59049q^{9} + O(q^{10}) \) \( 2q + 243q^{3} - 1024q^{4} + 10907q^{7} - 59049q^{9} + 248832q^{12} - 1120514q^{13} - 1048576q^{16} - 4926251q^{19} - 5365926q^{21} - 9765625q^{25} - 28697814q^{27} + 22611968q^{28} + 49843573q^{31} + 120932352q^{36} + 94318993q^{37} - 136142451q^{39} + 422217478q^{43} - 509607936q^{48} - 445987849q^{49} + 573703168q^{52} - 2394157986q^{57} + 197224726q^{61} - 1947967461q^{63} + 2147483648q^{64} + 1260882493q^{67} - 1957684943q^{73} + 2373046875q^{75} + 10088962048q^{76} - 2100881651q^{79} - 3486784401q^{81} + 8208718848q^{84} - 6110723099q^{91} - 12111988239q^{93} + 1769832964q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).

\(n\) \(8\) \(10\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(3\) 121.500 + 210.444i 0.500000 + 0.866025i
\(4\) −512.000 886.810i −0.500000 0.866025i
\(5\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) 0 0
\(7\) 5453.50 + 15897.6i 0.324478 + 0.945893i
\(8\) 0 0
\(9\) −29524.5 + 51137.9i −0.500000 + 0.866025i
\(10\) 0 0
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 124416. 215495.i 0.500000 0.866025i
\(13\) −560257. −1.50893 −0.754467 0.656337i \(-0.772105\pi\)
−0.754467 + 0.656337i \(0.772105\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −524288. + 908093.i −0.500000 + 0.866025i
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0 0
\(19\) −2.46313e6 + 4.26626e6i −0.994761 + 1.72298i −0.408844 + 0.912604i \(0.634068\pi\)
−0.585916 + 0.810372i \(0.699265\pi\)
\(20\) 0 0
\(21\) −2.68296e6 + 3.07922e6i −0.656929 + 0.753953i
\(22\) 0 0
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0 0
\(25\) −4.88281e6 8.45728e6i −0.500000 0.866025i
\(26\) 0 0
\(27\) −1.43489e7 −1.00000
\(28\) 1.13060e7 1.29758e7i 0.656929 0.753953i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 2.49218e7 + 4.31658e7i 0.870504 + 1.50776i 0.861476 + 0.507798i \(0.169540\pi\)
0.00902749 + 0.999959i \(0.497126\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 6.04662e7 1.00000
\(37\) 4.71595e7 8.16826e7i 0.680081 1.17793i −0.294875 0.955536i \(-0.595278\pi\)
0.974956 0.222399i \(-0.0713887\pi\)
\(38\) 0 0
\(39\) −6.80712e7 1.17903e8i −0.754467 1.30678i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 2.11109e8 1.43603 0.718016 0.696027i \(-0.245051\pi\)
0.718016 + 0.696027i \(0.245051\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) −2.54804e8 −1.00000
\(49\) −2.22994e8 + 1.73395e8i −0.789428 + 0.613843i
\(50\) 0 0
\(51\) 0 0
\(52\) 2.86852e8 + 4.96842e8i 0.754467 + 1.30678i
\(53\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.19708e9 −1.98952
\(58\) 0 0
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 0 0
\(61\) 9.86124e7 1.70802e8i 0.116757 0.202229i −0.801724 0.597695i \(-0.796084\pi\)
0.918481 + 0.395466i \(0.129417\pi\)
\(62\) 0 0
\(63\) −9.73984e8 1.90489e8i −0.981407 0.191941i
\(64\) 1.07374e9 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 6.30441e8 + 1.09196e9i 0.466950 + 0.808782i 0.999287 0.0377510i \(-0.0120194\pi\)
−0.532337 + 0.846533i \(0.678686\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −9.78842e8 1.69540e9i −0.472170 0.817823i 0.527323 0.849665i \(-0.323196\pi\)
−0.999493 + 0.0318424i \(0.989863\pi\)
\(74\) 0 0
\(75\) 1.18652e9 2.05512e9i 0.500000 0.866025i
\(76\) 5.04448e9 1.98952
\(77\) 0 0
\(78\) 0 0
\(79\) −1.05044e9 + 1.81942e9i −0.341378 + 0.591285i −0.984689 0.174321i \(-0.944227\pi\)
0.643310 + 0.765605i \(0.277560\pi\)
\(80\) 0 0
\(81\) −1.74339e9 3.01964e9i −0.500000 0.866025i
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 4.10436e9 + 8.02718e8i 0.981407 + 0.191941i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0 0
\(91\) −3.05536e9 8.90676e9i −0.489616 1.42729i
\(92\) 0 0
\(93\) −6.05599e9 + 1.04893e10i −0.870504 + 1.50776i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.84916e8 0.103049 0.0515245 0.998672i \(-0.483592\pi\)
0.0515245 + 0.998672i \(0.483592\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.00000e9 + 8.66025e9i −0.500000 + 0.866025i
\(101\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(102\) 0 0
\(103\) −1.07685e10 + 1.86516e10i −0.928902 + 1.60891i −0.143740 + 0.989616i \(0.545913\pi\)
−0.785162 + 0.619290i \(0.787421\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 7.34664e9 + 1.27248e10i 0.500000 + 0.866025i
\(109\) −1.53268e10 2.65469e10i −0.996139 1.72536i −0.574096 0.818788i \(-0.694646\pi\)
−0.422043 0.906576i \(-0.638687\pi\)
\(110\) 0 0
\(111\) 2.29195e10 1.36016
\(112\) −1.72957e10 3.38265e9i −0.981407 0.191941i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.65413e10 2.86504e10i 0.754467 1.30678i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.29687e10 + 2.24625e10i −0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 2.55199e10 4.42018e10i 0.870504 1.50776i
\(125\) 0 0
\(126\) 0 0
\(127\) 5.44093e10 1.64685 0.823426 0.567424i \(-0.192060\pi\)
0.823426 + 0.567424i \(0.192060\pi\)
\(128\) 0 0
\(129\) 2.56497e10 + 4.44266e10i 0.718016 + 1.24364i
\(130\) 0 0
\(131\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) −8.12560e10 1.58918e10i −1.95253 0.381870i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) 0 0
\(139\) 1.02935e11 1.98377 0.991883 0.127156i \(-0.0405849\pi\)
0.991883 + 0.127156i \(0.0405849\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −3.09587e10 5.36220e10i −0.500000 0.866025i
\(145\) 0 0
\(146\) 0 0
\(147\) −6.35838e10 2.58602e10i −0.926318 0.376743i
\(148\) −9.65826e10 −1.36016
\(149\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) 0 0
\(151\) −5.02493e9 8.70343e9i −0.0640096 0.110868i 0.832245 0.554409i \(-0.187055\pi\)
−0.896254 + 0.443541i \(0.853722\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −6.97049e10 + 1.20732e11i −0.754467 + 1.30678i
\(157\) 8.94251e10 + 1.54889e11i 0.937479 + 1.62376i 0.770153 + 0.637859i \(0.220180\pi\)
0.167325 + 0.985902i \(0.446487\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.14947e11 + 1.99093e11i −0.998983 + 1.73029i −0.460437 + 0.887692i \(0.652307\pi\)
−0.538546 + 0.842596i \(0.681026\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.76029e11 1.27688
\(170\) 0 0
\(171\) −1.45445e11 2.51918e11i −0.994761 1.72298i
\(172\) −1.08088e11 1.87213e11i −0.718016 1.24364i
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 1.07822e11 1.23747e11i 0.656929 0.753953i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) 3.39127e11 1.74570 0.872849 0.487991i \(-0.162270\pi\)
0.872849 + 0.487991i \(0.162270\pi\)
\(182\) 0 0
\(183\) 4.79256e10 0.233514
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −7.82518e10 2.28114e11i −0.324478 0.945893i
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 1.30460e11 + 2.25963e11i 0.500000 + 0.866025i
\(193\) 5.23711e10 + 9.07094e10i 0.195571 + 0.338740i 0.947088 0.320975i \(-0.104011\pi\)
−0.751516 + 0.659715i \(0.770677\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 2.67942e11 + 1.08975e11i 0.926318 + 0.376743i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −1.04037e11 1.80197e11i −0.333366 0.577408i 0.649803 0.760102i \(-0.274851\pi\)
−0.983170 + 0.182695i \(0.941518\pi\)
\(200\) 0 0
\(201\) −1.53197e11 + 2.65345e11i −0.466950 + 0.808782i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 2.93736e11 5.08766e11i 0.754467 1.30678i
\(209\) 0 0
\(210\) 0 0
\(211\) −7.52947e11 −1.80033 −0.900165 0.435548i \(-0.856555\pi\)
−0.900165 + 0.435548i \(0.856555\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −5.50323e11 + 6.31602e11i −1.14372 + 1.31264i
\(218\) 0 0
\(219\) 2.37859e11 4.11983e11i 0.472170 0.817823i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.01050e12 −1.83236 −0.916181 0.400764i \(-0.868745\pi\)
−0.916181 + 0.400764i \(0.868745\pi\)
\(224\) 0 0
\(225\) 5.76650e11 1.00000
\(226\) 0 0
\(227\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(228\) 6.12904e11 + 1.06158e12i 0.994761 + 1.72298i
\(229\) −4.35317e11 + 7.53991e11i −0.691239 + 1.19726i 0.280193 + 0.959944i \(0.409601\pi\)
−0.971432 + 0.237317i \(0.923732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −5.10514e11 −0.682757
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −2.80808e10 4.86373e10i −0.0345401 0.0598252i 0.848239 0.529614i \(-0.177663\pi\)
−0.882779 + 0.469789i \(0.844330\pi\)
\(242\) 0 0
\(243\) 4.23644e11 7.33773e11i 0.500000 0.866025i
\(244\) −2.01958e11 −0.233514
\(245\) 0 0
\(246\) 0 0
\(247\) 1.37998e12 2.39020e12i 1.50103 2.59986i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 3.29752e11 + 9.61269e11i 0.324478 + 0.945893i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −5.49756e11 9.52205e11i −0.500000 0.866025i
\(257\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) 0 0
\(259\) 1.55574e12 + 3.04268e11i 1.33487 + 0.261070i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 6.45572e11 1.11816e12i 0.466950 0.808782i
\(269\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(270\) 0 0
\(271\) −1.07601e12 + 1.86371e12i −0.736157 + 1.27506i 0.218058 + 0.975936i \(0.430028\pi\)
−0.954214 + 0.299125i \(0.903305\pi\)
\(272\) 0 0
\(273\) 1.50315e12 1.72515e12i 0.991263 1.13767i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.35818e12 + 2.35244e12i 0.832836 + 1.44252i 0.895780 + 0.444498i \(0.146618\pi\)
−0.0629434 + 0.998017i \(0.520049\pi\)
\(278\) 0 0
\(279\) −2.94321e12 −1.74101
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) −9.09893e11 1.57598e12i −0.501254 0.868198i −0.999999 0.00144882i \(-0.999539\pi\)
0.498745 0.866749i \(-0.333795\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00800e12 + 1.74590e12i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) 1.07517e11 + 1.86226e11i 0.0515245 + 0.0892430i
\(292\) −1.00233e12 + 1.73609e12i −0.472170 + 0.817823i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −2.43000e12 −1.00000
\(301\) 1.15128e12 + 3.35613e12i 0.465960 + 1.35833i
\(302\) 0 0
\(303\) 0 0
\(304\) −2.58277e12 4.47350e12i −0.994761 1.72298i
\(305\) 0 0
\(306\) 0 0
\(307\) 4.80080e12 1.76044 0.880221 0.474564i \(-0.157394\pi\)
0.880221 + 0.474564i \(0.157394\pi\)
\(308\) 0 0
\(309\) −5.23350e12 −1.85780
\(310\) 0 0
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) −2.90787e11 + 5.03657e11i −0.0967949 + 0.167654i −0.910356 0.413825i \(-0.864192\pi\)
0.813561 + 0.581479i \(0.197526\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.15130e12 0.682757
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −1.78523e12 + 3.09212e12i −0.500000 + 0.866025i
\(325\) 2.73563e12 + 4.73825e12i 0.754467 + 1.30678i
\(326\) 0 0
\(327\) 3.72442e12 6.45089e12i 0.996139 1.72536i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3.82406e12 6.62346e12i 0.962463 1.66704i 0.246182 0.969224i \(-0.420824\pi\)
0.716281 0.697812i \(-0.245843\pi\)
\(332\) 0 0
\(333\) 2.78472e12 + 4.82328e12i 0.680081 + 1.17793i
\(334\) 0 0
\(335\) 0 0
\(336\) −1.38957e12 4.05078e12i −0.324478 0.945893i
\(337\) −1.76722e12 −0.406575 −0.203288 0.979119i \(-0.565163\pi\)
−0.203288 + 0.979119i \(0.565163\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −3.97267e12 2.59946e12i −0.836782 0.547536i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) 7.92571e12 1.53077 0.765387 0.643571i \(-0.222548\pi\)
0.765387 + 0.643571i \(0.222548\pi\)
\(350\) 0 0
\(351\) 8.03908e12 1.50893
\(352\) 0 0
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) 0 0
\(361\) −9.06844e12 1.57070e13i −1.47910 2.56187i
\(362\) 0 0
\(363\) −6.30279e12 −1.00000
\(364\) −6.33426e12 + 7.26979e12i −0.991263 + 1.13767i
\(365\) 0 0
\(366\) 0 0
\(367\) 3.32140e12 + 5.75283e12i 0.498874 + 0.864074i 0.999999 0.00130024i \(-0.000413881\pi\)
−0.501126 + 0.865375i \(0.667081\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 1.24027e13 1.74101
\(373\) −6.91658e12 + 1.19799e13i −0.957960 + 1.65923i −0.230515 + 0.973069i \(0.574041\pi\)
−0.727445 + 0.686166i \(0.759292\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.56347e13 −1.99938 −0.999688 0.0249920i \(-0.992044\pi\)
−0.999688 + 0.0249920i \(0.992044\pi\)
\(380\) 0 0
\(381\) 6.61073e12 + 1.14501e13i 0.823426 + 1.42622i
\(382\) 0 0
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.23288e12 + 1.07957e13i −0.718016 + 1.24364i
\(388\) −4.53077e11 7.84753e11i −0.0515245 0.0892430i
\(389\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.65541e12 + 4.59931e12i −0.269265 + 0.466380i −0.968672 0.248343i \(-0.920114\pi\)
0.699407 + 0.714723i \(0.253447\pi\)
\(398\) 0 0
\(399\) −6.52827e12 1.90307e13i −0.645556 1.88187i
\(400\) 1.02400e13 1.00000
\(401\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 0 0
\(403\) −1.39626e13 2.41839e13i −1.31353 2.27511i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −1.92050e12 3.32640e12i −0.167802 0.290642i 0.769845 0.638231i \(-0.220334\pi\)
−0.937647 + 0.347589i \(0.887000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.20539e13 1.85780
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.25066e13 + 2.16621e13i 0.991883 + 1.71799i
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −2.67749e12 −0.202449 −0.101225 0.994864i \(-0.532276\pi\)
−0.101225 + 0.994864i \(0.532276\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 3.25312e12 + 6.36236e11i 0.229172 + 0.0448207i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) 7.52296e12 1.30301e13i 0.500000 0.866025i
\(433\) 2.56872e13 1.68763 0.843815 0.536634i \(-0.180304\pi\)
0.843815 + 0.536634i \(0.180304\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.56947e13 + 2.71840e13i −0.996139 + 1.72536i
\(437\) 0 0
\(438\) 0 0
\(439\) 8.33172e12 1.44310e13i 0.510989 0.885060i −0.488929 0.872323i \(-0.662612\pi\)
0.999919 0.0127363i \(-0.00405421\pi\)
\(440\) 0 0
\(441\) −2.28330e12 1.65229e13i −0.136889 0.990586i
\(442\) 0 0
\(443\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) −1.17348e13 2.03253e13i −0.680081 1.17793i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 5.85565e12 + 1.70699e13i 0.324478 + 0.945893i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 1.22106e12 2.11493e12i 0.0640096 0.110868i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.92304e13 3.33080e13i 0.964732 1.67096i 0.254398 0.967100i \(-0.418123\pi\)
0.710334 0.703865i \(-0.248544\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −3.40144e13 −1.59867 −0.799333 0.600889i \(-0.794813\pi\)
−0.799333 + 0.600889i \(0.794813\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) −3.38766e13 −1.50893
\(469\) −1.39214e13 + 1.59775e13i −0.613506 + 0.704117i
\(470\) 0 0
\(471\) −2.17303e13 + 3.76380e13i −0.937479 + 1.62376i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 4.81079e13 1.98952
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(480\) 0 0
\(481\) −2.64214e13 + 4.57633e13i −1.02620 + 1.77743i
\(482\) 0 0
\(483\) 0 0
\(484\) 2.65599e13 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) 2.64619e13 + 4.58333e13i 0.965997 + 1.67316i 0.706911 + 0.707303i \(0.250088\pi\)
0.259087 + 0.965854i \(0.416578\pi\)
\(488\) 0 0
\(489\) −5.58640e13 −1.99797
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −5.22648e13 −1.74101
\(497\) 0 0
\(498\) 0 0
\(499\) 2.85763e13 4.94956e13i 0.923640 1.59979i 0.129907 0.991526i \(-0.458532\pi\)
0.793733 0.608266i \(-0.208135\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.13876e13 + 3.70444e13i 0.638442 + 1.10581i
\(508\) −2.78576e13 4.82507e13i −0.823426 1.42622i
\(509\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) 2.16148e13 2.48072e13i 0.620364 0.711988i
\(512\) 0 0
\(513\) 3.53432e13 6.12161e13i 0.994761 1.72298i
\(514\) 0 0
\(515\) 0 0
\(516\) 2.62653e13 4.54928e13i 0.718016 1.24364i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) −2.96510e13 + 5.13571e13i −0.757760 + 1.31248i 0.186231 + 0.982506i \(0.440373\pi\)
−0.943991 + 0.329972i \(0.892961\pi\)
\(524\) 0 0
\(525\) 3.91422e13 + 7.65532e12i 0.981407 + 0.191941i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −2.07133e13 3.58764e13i −0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 2.75101e13 + 8.01953e13i 0.645556 + 1.88187i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.17759e13 7.23580e13i 0.901446 1.56135i 0.0758283 0.997121i \(-0.475840\pi\)
0.825618 0.564230i \(-0.190827\pi\)
\(542\) 0 0
\(543\) 4.12039e13 + 7.13672e13i 0.872849 + 1.51182i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.58525e13 1.34473 0.672365 0.740219i \(-0.265278\pi\)
0.672365 + 0.740219i \(0.265278\pi\)
\(548\) 0 0
\(549\) 5.82296e12 + 1.00857e13i 0.116757 + 0.202229i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −3.46530e13 6.77733e12i −0.670062 0.131049i
\(554\) 0 0
\(555\) 0 0
\(556\) −5.27029e13 9.12841e13i −0.991883 1.71799i
\(557\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) 0 0
\(559\) −1.18275e14 −2.16688
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.84976e13 4.41834e13i 0.656929 0.753953i
\(568\) 0 0
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 4.33658e13 + 7.51117e13i 0.714441 + 1.23745i 0.963175 + 0.268877i \(0.0866524\pi\)
−0.248733 + 0.968572i \(0.580014\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −3.17017e13 + 5.49089e13i −0.500000 + 0.866025i
\(577\) −1.93774e13 3.35627e13i −0.302982 0.524780i 0.673828 0.738888i \(-0.264649\pi\)
−0.976810 + 0.214108i \(0.931316\pi\)
\(578\) 0 0
\(579\) −1.27262e13 + 2.20424e13i −0.195571 + 0.338740i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 9.62181e12 + 6.96272e13i 0.136889 + 0.990586i
\(589\) −2.45542e14 −3.46377
\(590\) 0 0
\(591\) 0 0
\(592\) 4.94503e13 + 8.56505e13i 0.680081 + 1.17793i
\(593\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.52810e13 4.37879e13i 0.333366 0.577408i
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0 0
\(601\) 1.47133e14 1.87645 0.938225 0.346026i \(-0.112469\pi\)
0.938225 + 0.346026i \(0.112469\pi\)
\(602\) 0 0
\(603\) −7.44539e13 −0.933900
\(604\) −5.14553e12 + 8.91231e12i −0.0640096 + 0.110868i
\(605\) 0 0
\(606\) 0 0
\(607\) −4.05366e13 + 7.02114e13i −0.491930 + 0.852048i −0.999957 0.00929320i \(-0.997042\pi\)
0.508027 + 0.861341i \(0.330375\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −3.86337e13 6.69156e13i −0.446339 0.773081i 0.551806 0.833973i \(-0.313939\pi\)
−0.998144 + 0.0608915i \(0.980606\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 1.61388e13 + 2.79533e13i 0.177590 + 0.307595i 0.941055 0.338255i \(-0.109837\pi\)
−0.763464 + 0.645850i \(0.776503\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 1.42756e14 1.50893
\(625\) −4.76837e13 + 8.25906e13i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 9.15713e13 1.58606e14i 0.937479 1.62376i
\(629\) 0 0
\(630\) 0 0
\(631\) 6.37959e13 0.637743 0.318872 0.947798i \(-0.396696\pi\)
0.318872 + 0.947798i \(0.396696\pi\)
\(632\) 0 0
\(633\) −9.14831e13 1.58453e14i −0.900165 1.55913i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.24934e14 9.71460e13i 1.19120 0.926249i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(642\) 0 0
\(643\) −4.06767e13 −0.370076 −0.185038 0.982731i \(-0.559241\pi\)
−0.185038 + 0.982731i \(0.559241\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −1.99781e14 3.90726e13i −1.70864 0.334170i
\(652\) 2.35411e14 1.99797
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.15599e14 0.944340
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 1.25946e14 + 2.18145e14i 0.998108 + 1.72877i 0.552298 + 0.833647i \(0.313751\pi\)
0.445811 + 0.895127i \(0.352916\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −1.22776e14 2.12654e14i −0.916181 1.58687i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 2.35641e13 0.170677 0.0853386 0.996352i \(-0.472803\pi\)
0.0853386 + 0.996352i \(0.472803\pi\)
\(674\) 0 0
\(675\) 7.00630e13 + 1.21353e14i 0.500000 + 0.866025i
\(676\) −9.01271e13 1.56105e14i −0.638442 1.10581i
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 0 0
\(679\) 4.82589e12 + 1.40681e13i 0.0334371 + 0.0974733i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) −1.48936e14 + 2.57964e14i −0.994761 + 1.72298i
\(685\) 0 0
\(686\) 0 0
\(687\) −2.11564e14 −1.38248
\(688\) −1.10682e14 + 1.91706e14i −0.718016 + 1.24364i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.32905e14 2.30199e14i 0.843629 1.46121i −0.0431768 0.999067i \(-0.513748\pi\)
0.886806 0.462142i \(-0.152919\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.64945e14 3.22594e13i −0.981407 0.191941i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 2.32320e14 + 4.02389e14i 1.35304 + 2.34353i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −7.85204e13 + 1.36001e14i −0.438280 + 0.759123i −0.997557 0.0698577i \(-0.977745\pi\)
0.559277 + 0.828981i \(0.311079\pi\)
\(710\) 0 0
\(711\) −6.20275e13 1.07435e14i −0.341378 0.591285i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) 0 0
\(721\) −3.55243e14 6.94773e13i −1.82326 0.356588i
\(722\) 0 0
\(723\) 6.82362e12 1.18189e13i 0.0345401 0.0598252i
\(724\) −1.73633e14 3.00741e14i −0.872849 1.51182i
\(725\) 0 0
\(726\) 0 0
\(727\) −1.60012e14 −0.787915 −0.393958 0.919129i \(-0.628894\pi\)
−0.393958 + 0.919129i \(0.628894\pi\)
\(728\) 0 0
\(729\) 2.05891e14 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) −2.45379e13 4.25009e13i −0.116757 0.202229i
\(733\) 5.73405e13 9.93166e13i 0.270983 0.469356i −0.698131 0.715970i \(-0.745985\pi\)
0.969114 + 0.246614i \(0.0793181\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.38267e14 + 2.39486e14i 0.627331 + 1.08657i 0.988085 + 0.153908i \(0.0491859\pi\)
−0.360754 + 0.932661i \(0.617481\pi\)
\(740\) 0 0
\(741\) 6.70672e14 3.00206
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.34354e14 + 2.32707e14i −0.562405 + 0.974114i 0.434881 + 0.900488i \(0.356791\pi\)
−0.997286 + 0.0736263i \(0.976543\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −1.62229e14 + 1.86189e14i −0.656929 + 0.753953i
\(757\) −1.03050e14 −0.414542 −0.207271 0.978284i \(-0.566458\pi\)
−0.207271 + 0.978284i \(0.566458\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 3.38447e14 3.88434e14i 1.30878 1.50208i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 1.33591e14 2.31386e14i 0.500000 0.866025i
\(769\) 8.72349e13 0.324383 0.162192 0.986759i \(-0.448144\pi\)
0.162192 + 0.986759i \(0.448144\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.36280e13 9.28865e13i 0.195571 0.338740i
\(773\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(774\) 0 0
\(775\) 2.43377e14 4.21541e14i 0.870504 1.50776i
\(776\) 0 0
\(777\) 1.24992e14 + 3.64366e14i 0.441342 + 1.28657i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −4.05462e13 2.93408e14i −0.136889 0.990586i
\(785\) 0 0
\(786\) 0 0
\(787\) −2.46101e14 4.26259e14i −0.815153 1.41189i −0.909218 0.416321i \(-0.863319\pi\)
0.0940643 0.995566i \(-0.470014\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\)