Properties

Label 21.10.c
Level $21$
Weight $10$
Character orbit 21.c
Rep. character $\chi_{21}(20,\cdot)$
Character field $\Q$
Dimension $22$
Newform subspaces $2$
Sturm bound $26$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 21.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(26\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(21, [\chi])\).

Total New Old
Modular forms 26 26 0
Cusp forms 22 22 0
Eisenstein series 4 4 0

Trace form

\( 22 q - 5124 q^{4} + 5104 q^{7} + 32946 q^{9} - 198348 q^{15} + 1277060 q^{16} + 1669524 q^{18} - 1372314 q^{21} - 2268944 q^{22} + 2882362 q^{25} - 2158092 q^{28} - 12610356 q^{30} + 12847248 q^{36} - 18876724 q^{37}+ \cdots + 5421406848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(21, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
21.10.c.a 21.c 21.c $2$ $10.816$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 21.10.c.a \(0\) \(0\) \(0\) \(12580\) $\mathrm{U}(1)[D_{2}]$ \(q-3\beta q^{3}+512 q^{4}+(-19\beta+6290)q^{7}+\cdots\)
21.10.c.b 21.c 21.c $20$ $10.816$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 21.10.c.b \(0\) \(0\) \(0\) \(-7476\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+\beta _{1}q^{3}+(-307-\beta _{3})q^{4}+\cdots\)