Defining parameters
Level: | \( N \) | \(=\) | \( 21 = 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 21.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(26\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(21, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 26 | 26 | 0 |
Cusp forms | 22 | 22 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(21, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
21.10.c.a | $2$ | $10.816$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(12580\) | \(q-3\beta q^{3}+512 q^{4}+(-19\beta+6290)q^{7}+\cdots\) |
21.10.c.b | $20$ | $10.816$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-7476\) | \(q+\beta _{2}q^{2}+\beta _{1}q^{3}+(-307-\beta _{3})q^{4}+\cdots\) |