Defining parameters
Level: | \( N \) | \(=\) | \( 21 = 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 21.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(26\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(21))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 26 | 8 | 18 |
Cusp forms | 22 | 8 | 14 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(3\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(21))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 7 | |||||||
21.10.a.a | $1$ | $10.816$ | \(\Q\) | None | \(-24\) | \(81\) | \(-144\) | \(2401\) | $-$ | $-$ | \(q-24q^{2}+3^{4}q^{3}+2^{6}q^{4}-12^{2}q^{5}+\cdots\) | |
21.10.a.b | $2$ | $10.816$ | \(\Q(\sqrt{2353}) \) | None | \(9\) | \(-162\) | \(1170\) | \(-4802\) | $+$ | $+$ | \(q+(5-\beta )q^{2}-3^{4}q^{3}+(101-9\beta )q^{4}+\cdots\) | |
21.10.a.c | $2$ | $10.816$ | \(\Q(\sqrt{345}) \) | None | \(30\) | \(-162\) | \(1128\) | \(4802\) | $+$ | $-$ | \(q+(15-\beta )q^{2}-3^{4}q^{3}+(58-30\beta )q^{4}+\cdots\) | |
21.10.a.d | $3$ | $10.816$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(-13\) | \(243\) | \(2398\) | \(-7203\) | $-$ | $+$ | \(q+(-4-\beta _{1})q^{2}+3^{4}q^{3}+(555+7\beta _{1}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(21))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(21)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)