Defining parameters
Level: | \( N \) | \(=\) | \( 209 = 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 209.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(80\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(209))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 62 | 46 | 16 |
Cusp forms | 58 | 46 | 12 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(11\) | \(19\) | Fricke | Dim. |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(13\) |
\(+\) | \(-\) | \(-\) | \(8\) |
\(-\) | \(+\) | \(-\) | \(10\) |
\(-\) | \(-\) | \(+\) | \(15\) |
Plus space | \(+\) | \(28\) | |
Minus space | \(-\) | \(18\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(209))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 11 | 19 | |||||||
209.4.a.a | $8$ | $12.331$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-1\) | \(-12\) | \(-59\) | $+$ | $-$ | \(q-\beta _{1}q^{2}+\beta _{3}q^{3}+(3+\beta _{2})q^{4}+(-2+\cdots)q^{5}+\cdots\) | |
209.4.a.b | $10$ | $12.331$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-6\) | \(-9\) | \(-10\) | \(-53\) | $-$ | $+$ | \(q+(-1+\beta _{1})q^{2}+(-1+\beta _{4})q^{3}+(2+\cdots)q^{4}+\cdots\) | |
209.4.a.c | $13$ | $12.331$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(-2\) | \(11\) | \(8\) | \(39\) | $+$ | $+$ | \(q-\beta _{1}q^{2}+(1+\beta _{5})q^{3}+(6+\beta _{2})q^{4}+\cdots\) | |
209.4.a.d | $15$ | $12.331$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(4\) | \(3\) | \(10\) | \(73\) | $-$ | $-$ | \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(5+\beta _{2})q^{4}+(1+\beta _{6}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(209))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(209)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)