Newspace parameters
Level: | \( N \) | \(=\) | \( 209 = 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 209.j (of order \(9\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.66887340224\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −2.48446 | − | 0.904268i | −0.198191 | − | 1.12400i | 3.82273 | + | 3.20765i | −1.47046 | + | 1.23386i | −0.523997 | + | 2.97173i | 0.903436 | − | 1.56480i | −3.95293 | − | 6.84667i | 1.59499 | − | 0.580530i | 4.76904 | − | 1.73579i |
23.2 | −1.53574 | − | 0.558963i | −0.0856969 | − | 0.486011i | 0.513960 | + | 0.431264i | −0.273084 | + | 0.229145i | −0.140054 | + | 0.794287i | −2.27250 | + | 3.93608i | 1.08605 | + | 1.88109i | 2.59021 | − | 0.942761i | 0.547469 | − | 0.199262i |
23.3 | −0.902342 | − | 0.328426i | 0.466687 | + | 2.64671i | −0.825731 | − | 0.692870i | 1.99678 | − | 1.67550i | 0.448137 | − | 2.54151i | 2.18176 | − | 3.77893i | 1.47779 | + | 2.55960i | −3.96821 | + | 1.44431i | −2.35206 | + | 0.856080i |
23.4 | −0.268629 | − | 0.0977731i | −0.489784 | − | 2.77770i | −1.46949 | − | 1.23305i | 1.80064 | − | 1.51092i | −0.140014 | + | 0.794061i | −0.216960 | + | 0.375785i | 0.560058 | + | 0.970049i | −4.65667 | + | 1.69489i | −0.631433 | + | 0.229823i |
23.5 | 0.456501 | + | 0.166153i | 0.423835 | + | 2.40369i | −1.35130 | − | 1.13388i | −1.55871 | + | 1.30791i | −0.205898 | + | 1.16771i | −1.39807 | + | 2.42152i | −0.914272 | − | 1.58357i | −2.77900 | + | 1.01147i | −0.928864 | + | 0.338079i |
23.6 | 1.28226 | + | 0.466703i | 0.0764514 | + | 0.433577i | −0.105719 | − | 0.0887087i | 2.67296 | − | 2.24288i | −0.104322 | + | 0.591638i | −0.946420 | + | 1.63925i | −1.45871 | − | 2.52655i | 2.63693 | − | 0.959765i | 4.47417 | − | 1.62847i |
23.7 | 2.13434 | + | 0.776837i | 0.114559 | + | 0.649697i | 2.41985 | + | 2.03050i | −3.35396 | + | 2.81431i | −0.260200 | + | 1.47567i | 1.56295 | − | 2.70710i | 1.31611 | + | 2.27956i | 2.41010 | − | 0.877203i | −9.34475 | + | 3.40121i |
23.8 | 2.25776 | + | 0.821757i | −0.481509 | − | 2.73077i | 2.89010 | + | 2.42508i | 0.185826 | − | 0.155927i | 1.15690 | − | 6.56111i | −0.753892 | + | 1.30578i | 2.12966 | + | 3.68868i | −4.40619 | + | 1.60372i | 0.547685 | − | 0.199341i |
100.1 | −2.48446 | + | 0.904268i | −0.198191 | + | 1.12400i | 3.82273 | − | 3.20765i | −1.47046 | − | 1.23386i | −0.523997 | − | 2.97173i | 0.903436 | + | 1.56480i | −3.95293 | + | 6.84667i | 1.59499 | + | 0.580530i | 4.76904 | + | 1.73579i |
100.2 | −1.53574 | + | 0.558963i | −0.0856969 | + | 0.486011i | 0.513960 | − | 0.431264i | −0.273084 | − | 0.229145i | −0.140054 | − | 0.794287i | −2.27250 | − | 3.93608i | 1.08605 | − | 1.88109i | 2.59021 | + | 0.942761i | 0.547469 | + | 0.199262i |
100.3 | −0.902342 | + | 0.328426i | 0.466687 | − | 2.64671i | −0.825731 | + | 0.692870i | 1.99678 | + | 1.67550i | 0.448137 | + | 2.54151i | 2.18176 | + | 3.77893i | 1.47779 | − | 2.55960i | −3.96821 | − | 1.44431i | −2.35206 | − | 0.856080i |
100.4 | −0.268629 | + | 0.0977731i | −0.489784 | + | 2.77770i | −1.46949 | + | 1.23305i | 1.80064 | + | 1.51092i | −0.140014 | − | 0.794061i | −0.216960 | − | 0.375785i | 0.560058 | − | 0.970049i | −4.65667 | − | 1.69489i | −0.631433 | − | 0.229823i |
100.5 | 0.456501 | − | 0.166153i | 0.423835 | − | 2.40369i | −1.35130 | + | 1.13388i | −1.55871 | − | 1.30791i | −0.205898 | − | 1.16771i | −1.39807 | − | 2.42152i | −0.914272 | + | 1.58357i | −2.77900 | − | 1.01147i | −0.928864 | − | 0.338079i |
100.6 | 1.28226 | − | 0.466703i | 0.0764514 | − | 0.433577i | −0.105719 | + | 0.0887087i | 2.67296 | + | 2.24288i | −0.104322 | − | 0.591638i | −0.946420 | − | 1.63925i | −1.45871 | + | 2.52655i | 2.63693 | + | 0.959765i | 4.47417 | + | 1.62847i |
100.7 | 2.13434 | − | 0.776837i | 0.114559 | − | 0.649697i | 2.41985 | − | 2.03050i | −3.35396 | − | 2.81431i | −0.260200 | − | 1.47567i | 1.56295 | + | 2.70710i | 1.31611 | − | 2.27956i | 2.41010 | + | 0.877203i | −9.34475 | − | 3.40121i |
100.8 | 2.25776 | − | 0.821757i | −0.481509 | + | 2.73077i | 2.89010 | − | 2.42508i | 0.185826 | + | 0.155927i | 1.15690 | + | 6.56111i | −0.753892 | − | 1.30578i | 2.12966 | − | 3.68868i | −4.40619 | − | 1.60372i | 0.547685 | + | 0.199341i |
111.1 | −1.72255 | − | 1.44539i | 2.01001 | − | 0.731585i | 0.530725 | + | 3.00989i | 0.706666 | − | 4.00770i | −4.51977 | − | 1.64506i | 0.415979 | + | 0.720498i | 1.18764 | − | 2.05705i | 1.20680 | − | 1.01263i | −7.00996 | + | 5.88206i |
111.2 | −0.978552 | − | 0.821102i | 0.838053 | − | 0.305026i | −0.0639420 | − | 0.362633i | −0.608001 | + | 3.44815i | −1.07054 | − | 0.389643i | 2.22321 | + | 3.85071i | −1.51260 | + | 2.61989i | −1.68884 | + | 1.41711i | 3.42624 | − | 2.87496i |
111.3 | −0.925337 | − | 0.776450i | 3.04091 | − | 1.10680i | −0.0939224 | − | 0.532660i | −0.404489 | + | 2.29397i | −3.67324 | − | 1.33695i | −2.44265 | − | 4.23079i | −1.53462 | + | 2.65803i | 5.72397 | − | 4.80298i | 2.15544 | − | 1.80863i |
111.4 | −0.728147 | − | 0.610988i | −1.24034 | + | 0.451446i | −0.190404 | − | 1.07984i | 0.399689 | − | 2.26675i | 1.17898 | + | 0.429112i | 0.119508 | + | 0.206994i | −1.47165 | + | 2.54898i | −0.963502 | + | 0.808474i | −1.67599 | + | 1.40632i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 209.2.j.c | ✓ | 48 |
19.e | even | 9 | 1 | inner | 209.2.j.c | ✓ | 48 |
19.e | even | 9 | 1 | 3971.2.a.u | 24 | ||
19.f | odd | 18 | 1 | 3971.2.a.w | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
209.2.j.c | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
209.2.j.c | ✓ | 48 | 19.e | even | 9 | 1 | inner |
3971.2.a.u | 24 | 19.e | even | 9 | 1 | ||
3971.2.a.w | 24 | 19.f | odd | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{48} + 3 T_{2}^{46} - 7 T_{2}^{45} - 21 T_{2}^{44} + 51 T_{2}^{43} + 263 T_{2}^{42} - 78 T_{2}^{41} + 1155 T_{2}^{40} - 2687 T_{2}^{39} + 1800 T_{2}^{38} + 4572 T_{2}^{37} + 51010 T_{2}^{36} - 16872 T_{2}^{35} + 184158 T_{2}^{34} + \cdots + 3249 \)
acting on \(S_{2}^{\mathrm{new}}(209, [\chi])\).