Properties

Label 209.2.j.a.23.1
Level $209$
Weight $2$
Character 209.23
Analytic conductor $1.669$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(23,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.j (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 23.1
Root \(-0.173648 - 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 209.23
Dual form 209.2.j.a.100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.26604 + 0.460802i) q^{2} +(-0.347296 - 1.96962i) q^{3} +(-0.141559 - 0.118782i) q^{4} +(-0.358441 + 0.300767i) q^{5} +(0.467911 - 2.65366i) q^{6} +(1.17365 - 2.03282i) q^{7} +(-1.47178 - 2.54920i) q^{8} +(-0.939693 + 0.342020i) q^{9} +O(q^{10})\) \(q+(1.26604 + 0.460802i) q^{2} +(-0.347296 - 1.96962i) q^{3} +(-0.141559 - 0.118782i) q^{4} +(-0.358441 + 0.300767i) q^{5} +(0.467911 - 2.65366i) q^{6} +(1.17365 - 2.03282i) q^{7} +(-1.47178 - 2.54920i) q^{8} +(-0.939693 + 0.342020i) q^{9} +(-0.592396 + 0.215615i) q^{10} +(-0.500000 - 0.866025i) q^{11} +(-0.184793 + 0.320070i) q^{12} +(-0.819078 + 4.64522i) q^{13} +(2.42262 - 2.03282i) q^{14} +(0.716881 + 0.601535i) q^{15} +(-0.624485 - 3.54163i) q^{16} +(4.37211 + 1.59132i) q^{17} -1.34730 q^{18} +(4.34002 - 0.405223i) q^{19} +0.0864665 q^{20} +(-4.41147 - 1.60565i) q^{21} +(-0.233956 - 1.32683i) q^{22} +(0.315207 + 0.264490i) q^{23} +(-4.50980 + 3.78417i) q^{24} +(-0.830222 + 4.70842i) q^{25} +(-3.17752 + 5.50362i) q^{26} +(-2.00000 - 3.46410i) q^{27} +(-0.407604 + 0.148356i) q^{28} +(3.10607 - 1.13052i) q^{29} +(0.630415 + 1.09191i) q^{30} +(-1.96064 + 3.39592i) q^{31} +(-0.180922 + 1.02606i) q^{32} +(-1.53209 + 1.28558i) q^{33} +(4.80200 + 4.02936i) q^{34} +(0.190722 + 1.08164i) q^{35} +(0.173648 + 0.0632028i) q^{36} -4.87939 q^{37} +(5.68139 + 1.48686i) q^{38} +9.43376 q^{39} +(1.29426 + 0.471073i) q^{40} +(0.205737 + 1.16679i) q^{41} +(-4.84524 - 4.06564i) q^{42} +(-5.23783 + 4.39506i) q^{43} +(-0.0320889 + 0.181985i) q^{44} +(0.233956 - 0.405223i) q^{45} +(0.277189 + 0.480105i) q^{46} +(9.09627 - 3.31077i) q^{47} +(-6.75877 + 2.45999i) q^{48} +(0.745100 + 1.29055i) q^{49} +(-3.22075 + 5.57851i) q^{50} +(1.61587 - 9.16404i) q^{51} +(0.667718 - 0.560282i) q^{52} +(6.34002 + 5.31991i) q^{53} +(-0.935822 - 5.30731i) q^{54} +(0.439693 + 0.160035i) q^{55} -6.90941 q^{56} +(-2.30541 - 8.40744i) q^{57} +4.45336 q^{58} +(-4.16637 - 1.51644i) q^{59} +(-0.0300295 - 0.170306i) q^{60} +(-7.85117 - 6.58791i) q^{61} +(-4.04710 + 3.39592i) q^{62} +(-0.407604 + 2.31164i) q^{63} +(-4.29813 + 7.44459i) q^{64} +(-1.10354 - 1.91139i) q^{65} +(-2.53209 + 0.921605i) q^{66} +(4.89053 - 1.78001i) q^{67} +(-0.429892 - 0.744596i) q^{68} +(0.411474 - 0.712694i) q^{69} +(-0.256959 + 1.45729i) q^{70} +(-6.68345 + 5.60808i) q^{71} +(2.25490 + 1.89209i) q^{72} +(-2.35710 - 13.3678i) q^{73} +(-6.17752 - 2.24843i) q^{74} +9.56212 q^{75} +(-0.662504 - 0.458155i) q^{76} -2.34730 q^{77} +(11.9436 + 4.34710i) q^{78} +(0.103541 + 0.587208i) q^{79} +(1.28905 + 1.08164i) q^{80} +(-8.42649 + 7.07066i) q^{81} +(-0.277189 + 1.57202i) q^{82} +(7.05690 - 12.2229i) q^{83} +(0.433763 + 0.751299i) q^{84} +(-2.04576 + 0.744596i) q^{85} +(-8.65657 + 3.15074i) q^{86} +(-3.30541 - 5.72513i) q^{87} +(-1.47178 + 2.54920i) q^{88} +(1.51842 - 8.61138i) q^{89} +(0.482926 - 0.405223i) q^{90} +(8.48158 + 7.11689i) q^{91} +(-0.0132037 - 0.0748822i) q^{92} +(7.36959 + 2.68231i) q^{93} +13.0419 q^{94} +(-1.43376 + 1.45059i) q^{95} +2.08378 q^{96} +(7.73783 + 2.81634i) q^{97} +(0.348641 + 1.97724i) q^{98} +(0.766044 + 0.642788i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8} - 3 q^{11} + 6 q^{12} + 12 q^{13} - 12 q^{14} - 12 q^{15} + 9 q^{16} - 3 q^{17} - 6 q^{18} + 6 q^{19} - 30 q^{20} - 6 q^{21} - 6 q^{22} + 9 q^{23} - 30 q^{24} + 18 q^{25} + 6 q^{26} - 12 q^{27} - 6 q^{28} - 6 q^{29} + 18 q^{30} - 3 q^{31} - 18 q^{32} - 9 q^{34} + 21 q^{35} - 18 q^{37} - 15 q^{38} + 24 q^{39} + 18 q^{40} - 9 q^{41} + 24 q^{42} - 12 q^{43} + 9 q^{44} + 6 q^{45} - 9 q^{46} + 27 q^{47} - 18 q^{48} + 3 q^{49} + 21 q^{50} - 12 q^{51} - 24 q^{52} + 18 q^{53} - 24 q^{54} - 3 q^{55} + 30 q^{56} - 18 q^{57} - 6 q^{59} + 60 q^{60} - 21 q^{61} + 15 q^{62} - 6 q^{63} - 12 q^{64} + 3 q^{65} - 6 q^{66} + 12 q^{67} + 6 q^{68} - 18 q^{69} - 54 q^{70} - 42 q^{71} + 15 q^{72} - 15 q^{73} - 12 q^{74} - 12 q^{75} - 9 q^{76} - 12 q^{77} + 42 q^{78} - 9 q^{79} + 51 q^{80} + 9 q^{82} + 6 q^{83} - 30 q^{84} + 18 q^{85} - 30 q^{86} - 24 q^{87} + 6 q^{88} + 21 q^{89} - 18 q^{90} + 39 q^{91} - 45 q^{92} + 30 q^{93} + 72 q^{94} + 24 q^{95} + 27 q^{97} - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26604 + 0.460802i 0.895229 + 0.325837i 0.748339 0.663316i \(-0.230852\pi\)
0.146889 + 0.989153i \(0.453074\pi\)
\(3\) −0.347296 1.96962i −0.200512 1.13716i −0.904348 0.426796i \(-0.859642\pi\)
0.703836 0.710362i \(-0.251469\pi\)
\(4\) −0.141559 0.118782i −0.0707796 0.0593912i
\(5\) −0.358441 + 0.300767i −0.160300 + 0.134507i −0.719409 0.694586i \(-0.755587\pi\)
0.559110 + 0.829094i \(0.311143\pi\)
\(6\) 0.467911 2.65366i 0.191024 1.08335i
\(7\) 1.17365 2.03282i 0.443597 0.768333i −0.554356 0.832280i \(-0.687035\pi\)
0.997953 + 0.0639466i \(0.0203687\pi\)
\(8\) −1.47178 2.54920i −0.520353 0.901278i
\(9\) −0.939693 + 0.342020i −0.313231 + 0.114007i
\(10\) −0.592396 + 0.215615i −0.187332 + 0.0681833i
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) −0.184793 + 0.320070i −0.0533450 + 0.0923963i
\(13\) −0.819078 + 4.64522i −0.227171 + 1.28835i 0.631319 + 0.775523i \(0.282514\pi\)
−0.858490 + 0.512829i \(0.828597\pi\)
\(14\) 2.42262 2.03282i 0.647472 0.543294i
\(15\) 0.716881 + 0.601535i 0.185098 + 0.155316i
\(16\) −0.624485 3.54163i −0.156121 0.885408i
\(17\) 4.37211 + 1.59132i 1.06039 + 0.385951i 0.812576 0.582855i \(-0.198065\pi\)
0.247817 + 0.968807i \(0.420287\pi\)
\(18\) −1.34730 −0.317561
\(19\) 4.34002 0.405223i 0.995669 0.0929645i
\(20\) 0.0864665 0.0193345
\(21\) −4.41147 1.60565i −0.962663 0.350381i
\(22\) −0.233956 1.32683i −0.0498795 0.282881i
\(23\) 0.315207 + 0.264490i 0.0657253 + 0.0551501i 0.675059 0.737764i \(-0.264118\pi\)
−0.609333 + 0.792914i \(0.708563\pi\)
\(24\) −4.50980 + 3.78417i −0.920559 + 0.772441i
\(25\) −0.830222 + 4.70842i −0.166044 + 0.941685i
\(26\) −3.17752 + 5.50362i −0.623163 + 1.07935i
\(27\) −2.00000 3.46410i −0.384900 0.666667i
\(28\) −0.407604 + 0.148356i −0.0770299 + 0.0280366i
\(29\) 3.10607 1.13052i 0.576782 0.209932i −0.0371239 0.999311i \(-0.511820\pi\)
0.613906 + 0.789379i \(0.289597\pi\)
\(30\) 0.630415 + 1.09191i 0.115097 + 0.199355i
\(31\) −1.96064 + 3.39592i −0.352141 + 0.609926i −0.986624 0.163011i \(-0.947880\pi\)
0.634483 + 0.772936i \(0.281213\pi\)
\(32\) −0.180922 + 1.02606i −0.0319828 + 0.181384i
\(33\) −1.53209 + 1.28558i −0.266702 + 0.223790i
\(34\) 4.80200 + 4.02936i 0.823537 + 0.691029i
\(35\) 0.190722 + 1.08164i 0.0322380 + 0.182831i
\(36\) 0.173648 + 0.0632028i 0.0289414 + 0.0105338i
\(37\) −4.87939 −0.802166 −0.401083 0.916042i \(-0.631366\pi\)
−0.401083 + 0.916042i \(0.631366\pi\)
\(38\) 5.68139 + 1.48686i 0.921643 + 0.241201i
\(39\) 9.43376 1.51061
\(40\) 1.29426 + 0.471073i 0.204641 + 0.0744832i
\(41\) 0.205737 + 1.16679i 0.0321307 + 0.182222i 0.996649 0.0817922i \(-0.0260644\pi\)
−0.964519 + 0.264015i \(0.914953\pi\)
\(42\) −4.84524 4.06564i −0.747636 0.627341i
\(43\) −5.23783 + 4.39506i −0.798761 + 0.670240i −0.947897 0.318577i \(-0.896795\pi\)
0.149136 + 0.988817i \(0.452351\pi\)
\(44\) −0.0320889 + 0.181985i −0.00483758 + 0.0274353i
\(45\) 0.233956 0.405223i 0.0348760 0.0604071i
\(46\) 0.277189 + 0.480105i 0.0408693 + 0.0707876i
\(47\) 9.09627 3.31077i 1.32683 0.482925i 0.421187 0.906974i \(-0.361614\pi\)
0.905640 + 0.424048i \(0.139391\pi\)
\(48\) −6.75877 + 2.45999i −0.975544 + 0.355069i
\(49\) 0.745100 + 1.29055i 0.106443 + 0.184364i
\(50\) −3.22075 + 5.57851i −0.455483 + 0.788920i
\(51\) 1.61587 9.16404i 0.226267 1.28322i
\(52\) 0.667718 0.560282i 0.0925959 0.0776972i
\(53\) 6.34002 + 5.31991i 0.870869 + 0.730746i 0.964281 0.264882i \(-0.0853329\pi\)
−0.0934119 + 0.995628i \(0.529777\pi\)
\(54\) −0.935822 5.30731i −0.127349 0.722234i
\(55\) 0.439693 + 0.160035i 0.0592881 + 0.0215791i
\(56\) −6.90941 −0.923309
\(57\) −2.30541 8.40744i −0.305359 1.11359i
\(58\) 4.45336 0.584755
\(59\) −4.16637 1.51644i −0.542416 0.197423i 0.0562579 0.998416i \(-0.482083\pi\)
−0.598674 + 0.800993i \(0.704305\pi\)
\(60\) −0.0300295 0.170306i −0.00387679 0.0219864i
\(61\) −7.85117 6.58791i −1.00524 0.843496i −0.0175373 0.999846i \(-0.505583\pi\)
−0.987702 + 0.156351i \(0.950027\pi\)
\(62\) −4.04710 + 3.39592i −0.513983 + 0.431283i
\(63\) −0.407604 + 2.31164i −0.0513532 + 0.291239i
\(64\) −4.29813 + 7.44459i −0.537267 + 0.930573i
\(65\) −1.10354 1.91139i −0.136877 0.237079i
\(66\) −2.53209 + 0.921605i −0.311679 + 0.113442i
\(67\) 4.89053 1.78001i 0.597473 0.217462i −0.0255399 0.999674i \(-0.508130\pi\)
0.623013 + 0.782211i \(0.285908\pi\)
\(68\) −0.429892 0.744596i −0.0521321 0.0902955i
\(69\) 0.411474 0.712694i 0.0495357 0.0857983i
\(70\) −0.256959 + 1.45729i −0.0307125 + 0.174179i
\(71\) −6.68345 + 5.60808i −0.793179 + 0.665557i −0.946530 0.322615i \(-0.895438\pi\)
0.153351 + 0.988172i \(0.450994\pi\)
\(72\) 2.25490 + 1.89209i 0.265743 + 0.222984i
\(73\) −2.35710 13.3678i −0.275877 1.56458i −0.736161 0.676806i \(-0.763364\pi\)
0.460284 0.887772i \(-0.347748\pi\)
\(74\) −6.17752 2.24843i −0.718122 0.261375i
\(75\) 9.56212 1.10414
\(76\) −0.662504 0.458155i −0.0759944 0.0525540i
\(77\) −2.34730 −0.267499
\(78\) 11.9436 + 4.34710i 1.35234 + 0.492212i
\(79\) 0.103541 + 0.587208i 0.0116492 + 0.0660661i 0.990078 0.140517i \(-0.0448766\pi\)
−0.978429 + 0.206583i \(0.933765\pi\)
\(80\) 1.28905 + 1.08164i 0.144120 + 0.120931i
\(81\) −8.42649 + 7.07066i −0.936277 + 0.785629i
\(82\) −0.277189 + 1.57202i −0.0306104 + 0.173600i
\(83\) 7.05690 12.2229i 0.774596 1.34164i −0.160426 0.987048i \(-0.551287\pi\)
0.935021 0.354591i \(-0.115380\pi\)
\(84\) 0.433763 + 0.751299i 0.0473274 + 0.0819735i
\(85\) −2.04576 + 0.744596i −0.221894 + 0.0807627i
\(86\) −8.65657 + 3.15074i −0.933462 + 0.339753i
\(87\) −3.30541 5.72513i −0.354377 0.613799i
\(88\) −1.47178 + 2.54920i −0.156892 + 0.271746i
\(89\) 1.51842 8.61138i 0.160952 0.912804i −0.792189 0.610276i \(-0.791058\pi\)
0.953141 0.302528i \(-0.0978305\pi\)
\(90\) 0.482926 0.405223i 0.0509049 0.0427142i
\(91\) 8.48158 + 7.11689i 0.889111 + 0.746053i
\(92\) −0.0132037 0.0748822i −0.00137659 0.00780701i
\(93\) 7.36959 + 2.68231i 0.764190 + 0.278143i
\(94\) 13.0419 1.34517
\(95\) −1.43376 + 1.45059i −0.147101 + 0.148827i
\(96\) 2.08378 0.212675
\(97\) 7.73783 + 2.81634i 0.785657 + 0.285956i 0.703530 0.710666i \(-0.251606\pi\)
0.0821276 + 0.996622i \(0.473828\pi\)
\(98\) 0.348641 + 1.97724i 0.0352180 + 0.199731i
\(99\) 0.766044 + 0.642788i 0.0769904 + 0.0646026i
\(100\) 0.676803 0.567905i 0.0676803 0.0567905i
\(101\) −0.243756 + 1.38241i −0.0242546 + 0.137555i −0.994530 0.104447i \(-0.966693\pi\)
0.970276 + 0.242002i \(0.0778039\pi\)
\(102\) 6.26857 10.8575i 0.620681 1.07505i
\(103\) 1.76604 + 3.05888i 0.174014 + 0.301400i 0.939819 0.341671i \(-0.110993\pi\)
−0.765806 + 0.643072i \(0.777660\pi\)
\(104\) 13.0471 4.74876i 1.27937 0.465654i
\(105\) 2.06418 0.751299i 0.201443 0.0733193i
\(106\) 5.57532 + 9.65674i 0.541523 + 0.937946i
\(107\) 3.31521 5.74211i 0.320493 0.555111i −0.660097 0.751181i \(-0.729485\pi\)
0.980590 + 0.196070i \(0.0628180\pi\)
\(108\) −0.128356 + 0.727940i −0.0123510 + 0.0700461i
\(109\) −14.3157 + 12.0123i −1.37119 + 1.15057i −0.398848 + 0.917017i \(0.630590\pi\)
−0.972345 + 0.233551i \(0.924966\pi\)
\(110\) 0.482926 + 0.405223i 0.0460452 + 0.0386365i
\(111\) 1.69459 + 9.61051i 0.160844 + 0.912190i
\(112\) −7.93242 2.88716i −0.749543 0.272811i
\(113\) −13.6655 −1.28554 −0.642771 0.766058i \(-0.722215\pi\)
−0.642771 + 0.766058i \(0.722215\pi\)
\(114\) 0.955423 11.7065i 0.0894835 1.09642i
\(115\) −0.192533 −0.0179538
\(116\) −0.573978 0.208911i −0.0532925 0.0193969i
\(117\) −0.819078 4.64522i −0.0757238 0.429451i
\(118\) −4.57604 3.83975i −0.421258 0.353478i
\(119\) 8.36618 7.02006i 0.766927 0.643528i
\(120\) 0.478340 2.71280i 0.0436663 0.247644i
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) −6.90420 11.9584i −0.625077 1.08266i
\(123\) 2.22668 0.810446i 0.200773 0.0730754i
\(124\) 0.680922 0.247835i 0.0611486 0.0222563i
\(125\) −2.28833 3.96351i −0.204675 0.354507i
\(126\) −1.58125 + 2.73881i −0.140869 + 0.243992i
\(127\) −1.79174 + 10.1614i −0.158991 + 0.901682i 0.796055 + 0.605224i \(0.206917\pi\)
−0.955046 + 0.296458i \(0.904195\pi\)
\(128\) −7.27584 + 6.10516i −0.643100 + 0.539625i
\(129\) 10.4757 + 8.79012i 0.922330 + 0.773927i
\(130\) −0.516359 2.92842i −0.0452877 0.256839i
\(131\) −7.23783 2.63435i −0.632372 0.230165i 0.00589151 0.999983i \(-0.498125\pi\)
−0.638263 + 0.769818i \(0.720347\pi\)
\(132\) 0.369585 0.0321683
\(133\) 4.26991 9.29807i 0.370249 0.806245i
\(134\) 7.01186 0.605732
\(135\) 1.75877 + 0.640140i 0.151371 + 0.0550945i
\(136\) −2.37820 13.4875i −0.203929 1.15654i
\(137\) 11.9251 + 10.0064i 1.01883 + 0.854903i 0.989481 0.144666i \(-0.0462108\pi\)
0.0293533 + 0.999569i \(0.490655\pi\)
\(138\) 0.849356 0.712694i 0.0723020 0.0606686i
\(139\) −3.23648 + 18.3550i −0.274515 + 1.55685i 0.465984 + 0.884793i \(0.345700\pi\)
−0.740499 + 0.672058i \(0.765411\pi\)
\(140\) 0.101481 0.175771i 0.00857673 0.0148553i
\(141\) −9.68004 16.7663i −0.815207 1.41198i
\(142\) −11.0458 + 4.02033i −0.926940 + 0.337378i
\(143\) 4.43242 1.61327i 0.370657 0.134908i
\(144\) 1.79813 + 3.11446i 0.149844 + 0.259538i
\(145\) −0.773318 + 1.33943i −0.0642206 + 0.111233i
\(146\) 3.17571 18.0103i 0.262823 1.49055i
\(147\) 2.28312 1.91576i 0.188308 0.158010i
\(148\) 0.690722 + 0.579585i 0.0567770 + 0.0476416i
\(149\) −2.60354 14.7654i −0.213290 1.20963i −0.883849 0.467773i \(-0.845057\pi\)
0.670558 0.741857i \(-0.266055\pi\)
\(150\) 12.1061 + 4.40625i 0.988456 + 0.359769i
\(151\) −7.68004 −0.624993 −0.312497 0.949919i \(-0.601165\pi\)
−0.312497 + 0.949919i \(0.601165\pi\)
\(152\) −7.42056 10.4672i −0.601887 0.849001i
\(153\) −4.65270 −0.376149
\(154\) −2.97178 1.08164i −0.239473 0.0871610i
\(155\) −0.318611 1.80693i −0.0255915 0.145136i
\(156\) −1.33544 1.12056i −0.106921 0.0897170i
\(157\) −10.2738 + 8.62073i −0.819937 + 0.688009i −0.952957 0.303104i \(-0.901977\pi\)
0.133020 + 0.991113i \(0.457533\pi\)
\(158\) −0.139500 + 0.791143i −0.0110980 + 0.0629400i
\(159\) 8.27631 14.3350i 0.656354 1.13684i
\(160\) −0.243756 0.422197i −0.0192706 0.0333776i
\(161\) 0.907604 0.330341i 0.0715292 0.0260345i
\(162\) −13.9265 + 5.06883i −1.09417 + 0.398245i
\(163\) 2.26857 + 3.92928i 0.177688 + 0.307765i 0.941088 0.338161i \(-0.109805\pi\)
−0.763400 + 0.645926i \(0.776471\pi\)
\(164\) 0.109470 0.189608i 0.00854820 0.0148059i
\(165\) 0.162504 0.921605i 0.0126509 0.0717469i
\(166\) 14.5667 12.2229i 1.13060 0.948682i
\(167\) 5.94356 + 4.98724i 0.459927 + 0.385924i 0.843104 0.537750i \(-0.180726\pi\)
−0.383177 + 0.923675i \(0.625170\pi\)
\(168\) 2.39961 + 13.6089i 0.185134 + 1.04995i
\(169\) −8.69119 3.16333i −0.668553 0.243333i
\(170\) −2.93313 −0.224961
\(171\) −3.93969 + 1.86516i −0.301276 + 0.142632i
\(172\) 1.26352 0.0963424
\(173\) −12.2306 4.45156i −0.929872 0.338446i −0.167713 0.985836i \(-0.553638\pi\)
−0.762159 + 0.647390i \(0.775860\pi\)
\(174\) −1.54664 8.77141i −0.117250 0.664959i
\(175\) 8.59698 + 7.21372i 0.649871 + 0.545306i
\(176\) −2.75490 + 2.31164i −0.207658 + 0.174246i
\(177\) −1.53983 + 8.73281i −0.115741 + 0.656398i
\(178\) 5.89053 10.2027i 0.441514 0.764724i
\(179\) 5.41400 + 9.37732i 0.404661 + 0.700894i 0.994282 0.106786i \(-0.0340561\pi\)
−0.589621 + 0.807680i \(0.700723\pi\)
\(180\) −0.0812519 + 0.0295733i −0.00605616 + 0.00220426i
\(181\) −13.8109 + 5.02677i −1.02656 + 0.373637i −0.799769 0.600307i \(-0.795045\pi\)
−0.226789 + 0.973944i \(0.572823\pi\)
\(182\) 7.45858 + 12.9186i 0.552867 + 0.957593i
\(183\) −10.2490 + 17.7517i −0.757626 + 1.31225i
\(184\) 0.210323 1.19280i 0.0155052 0.0879343i
\(185\) 1.74897 1.46756i 0.128587 0.107897i
\(186\) 8.09421 + 6.79185i 0.593496 + 0.498002i
\(187\) −0.807934 4.58202i −0.0590819 0.335070i
\(188\) −1.68092 0.611806i −0.122594 0.0446205i
\(189\) −9.38919 −0.682963
\(190\) −2.48364 + 1.17582i −0.180182 + 0.0853033i
\(191\) −2.95037 −0.213481 −0.106741 0.994287i \(-0.534041\pi\)
−0.106741 + 0.994287i \(0.534041\pi\)
\(192\) 16.1557 + 5.88019i 1.16594 + 0.424366i
\(193\) 4.01455 + 22.7676i 0.288973 + 1.63885i 0.690737 + 0.723106i \(0.257286\pi\)
−0.401763 + 0.915744i \(0.631602\pi\)
\(194\) 8.49866 + 7.13122i 0.610168 + 0.511992i
\(195\) −3.38144 + 2.83737i −0.242150 + 0.203188i
\(196\) 0.0478189 0.271194i 0.00341563 0.0193710i
\(197\) −4.55303 + 7.88609i −0.324390 + 0.561860i −0.981389 0.192032i \(-0.938492\pi\)
0.656999 + 0.753892i \(0.271826\pi\)
\(198\) 0.673648 + 1.16679i 0.0478741 + 0.0829204i
\(199\) −3.19207 + 1.16182i −0.226280 + 0.0823590i −0.452672 0.891677i \(-0.649529\pi\)
0.226392 + 0.974036i \(0.427307\pi\)
\(200\) 13.2246 4.81337i 0.935122 0.340357i
\(201\) −5.20439 9.01427i −0.367090 0.635818i
\(202\) −0.945622 + 1.63787i −0.0665338 + 0.115240i
\(203\) 1.34730 7.64090i 0.0945617 0.536286i
\(204\) −1.31727 + 1.10532i −0.0922271 + 0.0773877i
\(205\) −0.424678 0.356347i −0.0296608 0.0248884i
\(206\) 0.826352 + 4.68647i 0.0575747 + 0.326522i
\(207\) −0.386659 0.140732i −0.0268747 0.00978158i
\(208\) 16.9632 1.17618
\(209\) −2.52094 3.55596i −0.174377 0.245971i
\(210\) 2.95954 0.204228
\(211\) 5.10607 + 1.85846i 0.351516 + 0.127941i 0.511742 0.859139i \(-0.329000\pi\)
−0.160226 + 0.987080i \(0.551222\pi\)
\(212\) −0.265578 1.50617i −0.0182399 0.103444i
\(213\) 13.3669 + 11.2162i 0.915885 + 0.768518i
\(214\) 6.84318 5.74211i 0.467790 0.392522i
\(215\) 0.555560 3.15074i 0.0378889 0.214878i
\(216\) −5.88713 + 10.1968i −0.400568 + 0.693804i
\(217\) 4.60220 + 7.97124i 0.312417 + 0.541123i
\(218\) −23.6596 + 8.61138i −1.60243 + 0.583236i
\(219\) −25.5107 + 9.28515i −1.72386 + 0.627432i
\(220\) −0.0432332 0.0748822i −0.00291478 0.00504855i
\(221\) −10.9731 + 19.0060i −0.738132 + 1.27848i
\(222\) −2.28312 + 12.9482i −0.153233 + 0.869027i
\(223\) 0.718941 0.603263i 0.0481438 0.0403975i −0.618398 0.785865i \(-0.712218\pi\)
0.666542 + 0.745467i \(0.267774\pi\)
\(224\) 1.87346 + 1.57202i 0.125176 + 0.105035i
\(225\) −0.830222 4.70842i −0.0553481 0.313895i
\(226\) −17.3011 6.29710i −1.15085 0.418877i
\(227\) −19.9017 −1.32092 −0.660460 0.750861i \(-0.729639\pi\)
−0.660460 + 0.750861i \(0.729639\pi\)
\(228\) −0.672304 + 1.46399i −0.0445244 + 0.0969553i
\(229\) 22.1438 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(230\) −0.243756 0.0887198i −0.0160728 0.00585001i
\(231\) 0.815207 + 4.62327i 0.0536367 + 0.304189i
\(232\) −7.45336 6.25411i −0.489337 0.410603i
\(233\) 14.9349 12.5319i 0.978421 0.820993i −0.00542962 0.999985i \(-0.501728\pi\)
0.983850 + 0.178993i \(0.0572839\pi\)
\(234\) 1.10354 6.25849i 0.0721407 0.409130i
\(235\) −2.26470 + 3.92258i −0.147733 + 0.255881i
\(236\) 0.409663 + 0.709557i 0.0266668 + 0.0461882i
\(237\) 1.12061 0.407870i 0.0727918 0.0264940i
\(238\) 13.8268 5.03255i 0.896260 0.326212i
\(239\) 0.0564370 + 0.0977517i 0.00365061 + 0.00632303i 0.867845 0.496835i \(-0.165505\pi\)
−0.864194 + 0.503158i \(0.832171\pi\)
\(240\) 1.68273 2.91458i 0.108620 0.188135i
\(241\) 3.29204 18.6701i 0.212059 1.20265i −0.673879 0.738842i \(-0.735373\pi\)
0.885938 0.463804i \(-0.153516\pi\)
\(242\) −1.03209 + 0.866025i −0.0663452 + 0.0556702i
\(243\) 7.66044 + 6.42788i 0.491418 + 0.412348i
\(244\) 0.328878 + 1.86516i 0.0210543 + 0.119405i
\(245\) −0.655230 0.238484i −0.0418611 0.0152362i
\(246\) 3.19253 0.203548
\(247\) −1.67247 + 20.4923i −0.106416 + 1.30389i
\(248\) 11.5425 0.732951
\(249\) −26.5253 9.65441i −1.68097 0.611824i
\(250\) −1.07074 6.07245i −0.0677193 0.384055i
\(251\) 3.81315 + 3.19961i 0.240684 + 0.201958i 0.755148 0.655554i \(-0.227565\pi\)
−0.514465 + 0.857512i \(0.672009\pi\)
\(252\) 0.332282 0.278817i 0.0209318 0.0175638i
\(253\) 0.0714517 0.405223i 0.00449213 0.0254761i
\(254\) −6.95084 + 12.0392i −0.436134 + 0.755407i
\(255\) 2.17705 + 3.77076i 0.136332 + 0.236134i
\(256\) 4.13088 1.50352i 0.258180 0.0939699i
\(257\) 13.8020 5.02352i 0.860945 0.313358i 0.126451 0.991973i \(-0.459641\pi\)
0.734495 + 0.678614i \(0.237419\pi\)
\(258\) 9.21213 + 15.9559i 0.573522 + 0.993370i
\(259\) −5.72668 + 9.91890i −0.355839 + 0.616331i
\(260\) −0.0708228 + 0.401656i −0.00439224 + 0.0249096i
\(261\) −2.53209 + 2.12467i −0.156732 + 0.131514i
\(262\) −7.94949 6.67042i −0.491121 0.412100i
\(263\) −1.64749 9.34337i −0.101589 0.576137i −0.992528 0.122015i \(-0.961064\pi\)
0.890940 0.454122i \(-0.150047\pi\)
\(264\) 5.53209 + 2.01352i 0.340477 + 0.123923i
\(265\) −3.87258 −0.237891
\(266\) 9.69047 9.80418i 0.594161 0.601133i
\(267\) −17.4884 −1.07028
\(268\) −0.903733 0.328932i −0.0552043 0.0200927i
\(269\) −2.63697 14.9550i −0.160779 0.911824i −0.953310 0.301992i \(-0.902348\pi\)
0.792531 0.609831i \(-0.208763\pi\)
\(270\) 1.93170 + 1.62089i 0.117560 + 0.0986443i
\(271\) 10.8007 9.06283i 0.656093 0.550528i −0.252820 0.967513i \(-0.581358\pi\)
0.908913 + 0.416986i \(0.136913\pi\)
\(272\) 2.90554 16.4782i 0.176175 0.999135i
\(273\) 11.0719 19.1771i 0.670103 1.16065i
\(274\) 10.4868 + 18.1637i 0.633531 + 1.09731i
\(275\) 4.49273 1.63522i 0.270922 0.0986074i
\(276\) −0.142903 + 0.0520126i −0.00860178 + 0.00313079i
\(277\) −3.47044 6.01097i −0.208518 0.361164i 0.742730 0.669591i \(-0.233531\pi\)
−0.951248 + 0.308427i \(0.900197\pi\)
\(278\) −12.5556 + 21.7469i −0.753032 + 1.30429i
\(279\) 0.680922 3.86170i 0.0407657 0.231194i
\(280\) 2.47662 2.07813i 0.148006 0.124192i
\(281\) −21.9158 18.3895i −1.30739 1.09703i −0.988818 0.149129i \(-0.952353\pi\)
−0.318570 0.947899i \(-0.603203\pi\)
\(282\) −4.52940 25.6875i −0.269722 1.52967i
\(283\) −26.6177 9.68804i −1.58226 0.575894i −0.606563 0.795035i \(-0.707452\pi\)
−0.975693 + 0.219141i \(0.929675\pi\)
\(284\) 1.61225 0.0956691
\(285\) 3.35504 + 2.32018i 0.198735 + 0.137436i
\(286\) 6.35504 0.375781
\(287\) 2.61334 + 0.951178i 0.154261 + 0.0561463i
\(288\) −0.180922 1.02606i −0.0106609 0.0604612i
\(289\) 3.56031 + 2.98745i 0.209430 + 0.175733i
\(290\) −1.59627 + 1.33943i −0.0937360 + 0.0786538i
\(291\) 2.85978 16.2186i 0.167644 0.950754i
\(292\) −1.25418 + 2.17231i −0.0733956 + 0.127125i
\(293\) 1.35070 + 2.33948i 0.0789087 + 0.136674i 0.902779 0.430104i \(-0.141523\pi\)
−0.823871 + 0.566778i \(0.808190\pi\)
\(294\) 3.77332 1.37338i 0.220064 0.0800969i
\(295\) 1.94949 0.709557i 0.113504 0.0413120i
\(296\) 7.18139 + 12.4385i 0.417410 + 0.722975i
\(297\) −2.00000 + 3.46410i −0.116052 + 0.201008i
\(298\) 3.50774 19.8934i 0.203198 1.15239i
\(299\) −1.48680 + 1.24757i −0.0859836 + 0.0721488i
\(300\) −1.35361 1.13581i −0.0781505 0.0655761i
\(301\) 2.78699 + 15.8058i 0.160639 + 0.911031i
\(302\) −9.72328 3.53898i −0.559512 0.203646i
\(303\) 2.80747 0.161285
\(304\) −4.14543 15.1177i −0.237757 0.867060i
\(305\) 4.79561 0.274596
\(306\) −5.89053 2.14398i −0.336739 0.122563i
\(307\) −3.79086 21.4990i −0.216356 1.22701i −0.878538 0.477672i \(-0.841481\pi\)
0.662183 0.749343i \(-0.269630\pi\)
\(308\) 0.332282 + 0.278817i 0.0189335 + 0.0158871i
\(309\) 5.41147 4.54077i 0.307848 0.258315i
\(310\) 0.429263 2.43447i 0.0243805 0.138269i
\(311\) 6.17412 10.6939i 0.350102 0.606394i −0.636165 0.771553i \(-0.719480\pi\)
0.986267 + 0.165159i \(0.0528136\pi\)
\(312\) −13.8844 24.0486i −0.786051 1.36148i
\(313\) 25.9466 9.44377i 1.46659 0.533794i 0.519415 0.854522i \(-0.326150\pi\)
0.947171 + 0.320729i \(0.103928\pi\)
\(314\) −16.9795 + 6.18004i −0.958210 + 0.348760i
\(315\) −0.549163 0.951178i −0.0309418 0.0535928i
\(316\) 0.0550928 0.0954236i 0.00309921 0.00536799i
\(317\) −3.16890 + 17.9717i −0.177983 + 1.00939i 0.756661 + 0.653808i \(0.226829\pi\)
−0.934644 + 0.355585i \(0.884282\pi\)
\(318\) 17.0838 14.3350i 0.958011 0.803866i
\(319\) −2.53209 2.12467i −0.141770 0.118959i
\(320\) −0.698463 3.96118i −0.0390453 0.221437i
\(321\) −12.4611 4.53547i −0.695511 0.253145i
\(322\) 1.30129 0.0725180
\(323\) 19.6199 + 5.13468i 1.09168 + 0.285701i
\(324\) 2.03272 0.112929
\(325\) −21.1917 7.71313i −1.17550 0.427848i
\(326\) 1.06149 + 6.02001i 0.0587905 + 0.333417i
\(327\) 28.6313 + 24.0246i 1.58332 + 1.32856i
\(328\) 2.67159 2.24173i 0.147514 0.123779i
\(329\) 3.94562 22.3767i 0.217529 1.23367i
\(330\) 0.630415 1.09191i 0.0347032 0.0601077i
\(331\) −14.6211 25.3245i −0.803647 1.39196i −0.917200 0.398426i \(-0.869557\pi\)
0.113553 0.993532i \(-0.463777\pi\)
\(332\) −2.45084 + 0.892032i −0.134507 + 0.0489566i
\(333\) 4.58512 1.66885i 0.251263 0.0914523i
\(334\) 5.22668 + 9.05288i 0.285991 + 0.495351i
\(335\) −1.21760 + 2.10894i −0.0665244 + 0.115224i
\(336\) −2.93170 + 16.6265i −0.159938 + 0.907051i
\(337\) 9.90807 8.31386i 0.539727 0.452885i −0.331718 0.943379i \(-0.607628\pi\)
0.871445 + 0.490494i \(0.163184\pi\)
\(338\) −9.54576 8.00984i −0.519221 0.435678i
\(339\) 4.74598 + 26.9158i 0.257766 + 1.46186i
\(340\) 0.378041 + 0.137596i 0.0205022 + 0.00746217i
\(341\) 3.92127 0.212349
\(342\) −5.84730 + 0.545955i −0.316186 + 0.0295219i
\(343\) 19.9290 1.07607
\(344\) 18.9128 + 6.88370i 1.01971 + 0.371144i
\(345\) 0.0668661 + 0.379217i 0.00359995 + 0.0204163i
\(346\) −13.4331 11.2717i −0.722170 0.605972i
\(347\) 25.0069 20.9832i 1.34244 1.12644i 0.361447 0.932393i \(-0.382283\pi\)
0.980992 0.194047i \(-0.0621614\pi\)
\(348\) −0.212134 + 1.20307i −0.0113716 + 0.0644913i
\(349\) −9.17365 + 15.8892i −0.491054 + 0.850531i −0.999947 0.0102992i \(-0.996722\pi\)
0.508893 + 0.860830i \(0.330055\pi\)
\(350\) 7.56006 + 13.0944i 0.404102 + 0.699925i
\(351\) 17.7297 6.45307i 0.946340 0.344440i
\(352\) 0.979055 0.356347i 0.0521838 0.0189934i
\(353\) 5.18227 + 8.97595i 0.275824 + 0.477742i 0.970343 0.241733i \(-0.0777159\pi\)
−0.694519 + 0.719475i \(0.744383\pi\)
\(354\) −5.97359 + 10.3466i −0.317493 + 0.549914i
\(355\) 0.708892 4.02033i 0.0376241 0.213377i
\(356\) −1.23783 + 1.03866i −0.0656046 + 0.0550488i
\(357\) −16.7324 14.0401i −0.885571 0.743082i
\(358\) 2.53327 + 14.3669i 0.133888 + 0.759314i
\(359\) 11.7811 + 4.28795i 0.621781 + 0.226310i 0.633650 0.773620i \(-0.281556\pi\)
−0.0118694 + 0.999930i \(0.503778\pi\)
\(360\) −1.37733 −0.0725914
\(361\) 18.6716 3.51735i 0.982715 0.185124i
\(362\) −19.8016 −1.04075
\(363\) 1.87939 + 0.684040i 0.0986421 + 0.0359028i
\(364\) −0.355286 2.01492i −0.0186220 0.105611i
\(365\) 4.86547 + 4.08261i 0.254670 + 0.213694i
\(366\) −21.1557 + 17.7517i −1.10583 + 0.927898i
\(367\) 0.399148 2.26368i 0.0208353 0.118163i −0.972616 0.232417i \(-0.925337\pi\)
0.993452 + 0.114254i \(0.0364477\pi\)
\(368\) 0.739885 1.28152i 0.0385692 0.0668038i
\(369\) −0.592396 1.02606i −0.0308389 0.0534146i
\(370\) 2.89053 1.05207i 0.150271 0.0546943i
\(371\) 18.2554 6.64441i 0.947771 0.344961i
\(372\) −0.724622 1.25508i −0.0375699 0.0650730i
\(373\) −0.940159 + 1.62840i −0.0486796 + 0.0843156i −0.889338 0.457249i \(-0.848835\pi\)
0.840659 + 0.541565i \(0.182168\pi\)
\(374\) 1.08853 6.17334i 0.0562863 0.319216i
\(375\) −7.01186 + 5.88365i −0.362091 + 0.303830i
\(376\) −21.8275 18.3155i −1.12567 0.944549i
\(377\) 2.70739 + 15.3543i 0.139437 + 0.790789i
\(378\) −11.8871 4.32656i −0.611408 0.222534i
\(379\) −8.83244 −0.453692 −0.226846 0.973931i \(-0.572841\pi\)
−0.226846 + 0.973931i \(0.572841\pi\)
\(380\) 0.375266 0.0350382i 0.0192508 0.00179742i
\(381\) 20.6364 1.05723
\(382\) −3.73530 1.35954i −0.191115 0.0695600i
\(383\) 6.65863 + 37.7630i 0.340240 + 1.92960i 0.367626 + 0.929974i \(0.380171\pi\)
−0.0273862 + 0.999625i \(0.508718\pi\)
\(384\) 14.5517 + 12.2103i 0.742588 + 0.623105i
\(385\) 0.841367 0.705990i 0.0428800 0.0359806i
\(386\) −5.40879 + 30.6747i −0.275300 + 1.56130i
\(387\) 3.41875 5.92145i 0.173785 0.301004i
\(388\) −0.760830 1.31780i −0.0386253 0.0669010i
\(389\) −14.6099 + 5.31758i −0.740753 + 0.269612i −0.684709 0.728816i \(-0.740071\pi\)
−0.0560438 + 0.998428i \(0.517849\pi\)
\(390\) −5.58853 + 2.03406i −0.282986 + 0.102998i
\(391\) 0.957234 + 1.65798i 0.0484094 + 0.0838475i
\(392\) 2.19325 3.79882i 0.110776 0.191869i
\(393\) −2.67499 + 15.1706i −0.134936 + 0.765257i
\(394\) −9.39827 + 7.88609i −0.473478 + 0.397295i
\(395\) −0.213726 0.179338i −0.0107537 0.00902345i
\(396\) −0.0320889 0.181985i −0.00161253 0.00914510i
\(397\) 33.6361 + 12.2425i 1.68815 + 0.614435i 0.994390 0.105774i \(-0.0337319\pi\)
0.693757 + 0.720209i \(0.255954\pi\)
\(398\) −4.57667 −0.229408
\(399\) −19.7965 5.18091i −0.991067 0.259370i
\(400\) 17.1940 0.859698
\(401\) −30.5043 11.1027i −1.52331 0.554441i −0.561341 0.827585i \(-0.689714\pi\)
−0.961973 + 0.273144i \(0.911936\pi\)
\(402\) −2.43519 13.8107i −0.121456 0.688813i
\(403\) −14.1689 11.8891i −0.705803 0.592239i
\(404\) 0.198711 0.166739i 0.00988627 0.00829556i
\(405\) 0.893771 5.06883i 0.0444118 0.251872i
\(406\) 5.22668 9.05288i 0.259396 0.449287i
\(407\) 2.43969 + 4.22567i 0.120931 + 0.209459i
\(408\) −25.7392 + 9.36829i −1.27428 + 0.463800i
\(409\) −2.51842 + 0.916629i −0.124528 + 0.0453244i −0.403532 0.914965i \(-0.632218\pi\)
0.279005 + 0.960290i \(0.409996\pi\)
\(410\) −0.373455 0.646844i −0.0184437 0.0319453i
\(411\) 15.5672 26.9631i 0.767872 1.32999i
\(412\) 0.113341 0.642788i 0.00558390 0.0316679i
\(413\) −7.97250 + 6.68972i −0.392301 + 0.329180i
\(414\) −0.424678 0.356347i −0.0208718 0.0175135i
\(415\) 1.14677 + 6.50368i 0.0562929 + 0.319253i
\(416\) −4.61809 1.68085i −0.226420 0.0824103i
\(417\) 37.2763 1.82543
\(418\) −1.55303 5.66366i −0.0759613 0.277019i
\(419\) −33.4415 −1.63372 −0.816862 0.576833i \(-0.804288\pi\)
−0.816862 + 0.576833i \(0.804288\pi\)
\(420\) −0.381445 0.138834i −0.0186126 0.00677443i
\(421\) −1.16994 6.63506i −0.0570194 0.323373i 0.942934 0.332978i \(-0.108054\pi\)
−0.999954 + 0.00960533i \(0.996942\pi\)
\(422\) 5.60813 + 4.70578i 0.272999 + 0.229074i
\(423\) −7.41534 + 6.22221i −0.360546 + 0.302534i
\(424\) 4.23039 23.9917i 0.205446 1.16514i
\(425\) −11.1224 + 19.2646i −0.539517 + 0.934471i
\(426\) 11.7547 + 20.3597i 0.569515 + 0.986428i
\(427\) −22.6065 + 8.22811i −1.09401 + 0.398186i
\(428\) −1.15136 + 0.419061i −0.0556531 + 0.0202561i
\(429\) −4.71688 8.16988i −0.227733 0.394445i
\(430\) 2.15523 3.73297i 0.103934 0.180020i
\(431\) −1.28224 + 7.27195i −0.0617634 + 0.350278i 0.938228 + 0.346019i \(0.112467\pi\)
−0.999991 + 0.00425868i \(0.998644\pi\)
\(432\) −11.0196 + 9.24654i −0.530181 + 0.444874i
\(433\) 20.9971 + 17.6186i 1.00905 + 0.846697i 0.988213 0.153086i \(-0.0489210\pi\)
0.0208415 + 0.999783i \(0.493365\pi\)
\(434\) 2.15342 + 12.2126i 0.103367 + 0.586226i
\(435\) 2.90673 + 1.05796i 0.139367 + 0.0507254i
\(436\) 3.45336 0.165386
\(437\) 1.47519 + 1.02017i 0.0705677 + 0.0488011i
\(438\) −36.5763 −1.74769
\(439\) −8.39053 3.05390i −0.400458 0.145755i 0.133937 0.990990i \(-0.457238\pi\)
−0.534395 + 0.845235i \(0.679460\pi\)
\(440\) −0.239170 1.35640i −0.0114020 0.0646639i
\(441\) −1.14156 0.957882i −0.0543600 0.0456134i
\(442\) −22.6505 + 19.0060i −1.07737 + 0.904024i
\(443\) 2.52569 14.3239i 0.119999 0.680550i −0.864154 0.503228i \(-0.832146\pi\)
0.984153 0.177322i \(-0.0567433\pi\)
\(444\) 0.901674 1.56175i 0.0427916 0.0741171i
\(445\) 2.04576 + 3.54336i 0.0969783 + 0.167971i
\(446\) 1.18820 0.432468i 0.0562627 0.0204780i
\(447\) −28.1780 + 10.2559i −1.33277 + 0.485090i
\(448\) 10.0890 + 17.4746i 0.476660 + 0.825600i
\(449\) −8.43242 + 14.6054i −0.397950 + 0.689270i −0.993473 0.114068i \(-0.963612\pi\)
0.595522 + 0.803339i \(0.296945\pi\)
\(450\) 1.11856 6.34364i 0.0527292 0.299042i
\(451\) 0.907604 0.761570i 0.0427374 0.0358609i
\(452\) 1.93448 + 1.62322i 0.0909902 + 0.0763498i
\(453\) 2.66725 + 15.1267i 0.125318 + 0.710716i
\(454\) −25.1964 9.17074i −1.18253 0.430404i
\(455\) −5.18067 −0.242874
\(456\) −18.0392 + 18.2509i −0.844763 + 0.854675i
\(457\) −15.6186 −0.730605 −0.365303 0.930889i \(-0.619034\pi\)
−0.365303 + 0.930889i \(0.619034\pi\)
\(458\) 28.0351 + 10.2039i 1.30999 + 0.476799i
\(459\) −3.23173 18.3281i −0.150844 0.855481i
\(460\) 0.0272549 + 0.0228696i 0.00127077 + 0.00106630i
\(461\) 15.6322 13.1170i 0.728065 0.610919i −0.201538 0.979481i \(-0.564594\pi\)
0.929603 + 0.368561i \(0.120150\pi\)
\(462\) −1.09833 + 6.22892i −0.0510988 + 0.289795i
\(463\) 5.64425 9.77612i 0.262310 0.454335i −0.704545 0.709659i \(-0.748849\pi\)
0.966855 + 0.255324i \(0.0821822\pi\)
\(464\) −5.94356 10.2946i −0.275923 0.477913i
\(465\) −3.44831 + 1.25508i −0.159912 + 0.0582031i
\(466\) 24.6830 8.98389i 1.14342 0.416171i
\(467\) 6.12748 + 10.6131i 0.283546 + 0.491116i 0.972256 0.233921i \(-0.0751558\pi\)
−0.688710 + 0.725037i \(0.741823\pi\)
\(468\) −0.435822 + 0.754866i −0.0201459 + 0.0348937i
\(469\) 2.12133 12.0307i 0.0979539 0.555524i
\(470\) −4.67474 + 3.92258i −0.215630 + 0.180935i
\(471\) 20.5476 + 17.2415i 0.946782 + 0.794444i
\(472\) 2.26629 + 12.8528i 0.104315 + 0.591597i
\(473\) 6.42514 + 2.33856i 0.295428 + 0.107527i
\(474\) 1.60670 0.0737980
\(475\) −1.69522 + 20.7711i −0.0777821 + 0.953043i
\(476\) −2.01817 −0.0925027
\(477\) −7.77719 2.83067i −0.356093 0.129607i
\(478\) 0.0264075 + 0.149764i 0.00120785 + 0.00685006i
\(479\) 7.02687 + 5.89625i 0.321066 + 0.269406i 0.789048 0.614332i \(-0.210574\pi\)
−0.467982 + 0.883738i \(0.655019\pi\)
\(480\) −0.746911 + 0.626733i −0.0340917 + 0.0286063i
\(481\) 3.99660 22.6658i 0.182229 1.03347i
\(482\) 12.7711 22.1202i 0.581708 1.00755i
\(483\) −0.965852 1.67290i −0.0439478 0.0761198i
\(484\) 0.173648 0.0632028i 0.00789310 0.00287285i
\(485\) −3.62061 + 1.31780i −0.164404 + 0.0598380i
\(486\) 6.73648 + 11.6679i 0.305573 + 0.529268i
\(487\) 14.5954 25.2800i 0.661380 1.14554i −0.318873 0.947797i \(-0.603304\pi\)
0.980253 0.197747i \(-0.0633623\pi\)
\(488\) −5.23870 + 29.7102i −0.237145 + 1.34492i
\(489\) 6.95130 5.83284i 0.314349 0.263770i
\(490\) −0.719656 0.603863i −0.0325107 0.0272798i
\(491\) −6.27038 35.5611i −0.282978 1.60485i −0.712419 0.701755i \(-0.752400\pi\)
0.429440 0.903095i \(-0.358711\pi\)
\(492\) −0.411474 0.149764i −0.0185507 0.00675190i
\(493\) 15.3791 0.692639
\(494\) −11.5603 + 25.1735i −0.520123 + 1.13261i
\(495\) −0.467911 −0.0210310
\(496\) 13.2515 + 4.82315i 0.595010 + 0.216566i
\(497\) 3.55619 + 20.1681i 0.159517 + 0.904665i
\(498\) −29.1334 24.4458i −1.30550 1.09544i
\(499\) 15.4402 12.9558i 0.691196 0.579983i −0.228058 0.973648i \(-0.573237\pi\)
0.919254 + 0.393665i \(0.128793\pi\)
\(500\) −0.146860 + 0.832885i −0.00656778 + 0.0372478i
\(501\) 7.75877 13.4386i 0.346636 0.600392i
\(502\) 3.35323 + 5.80796i 0.149662 + 0.259222i
\(503\) 40.4702 14.7299i 1.80448 0.656776i 0.806639 0.591044i \(-0.201284\pi\)
0.997837 0.0657316i \(-0.0209381\pi\)
\(504\) 6.49273 2.36316i 0.289209 0.105263i
\(505\) −0.328411 0.568825i −0.0146141 0.0253124i
\(506\) 0.277189 0.480105i 0.0123225 0.0213433i
\(507\) −3.21213 + 18.2169i −0.142656 + 0.809042i
\(508\) 1.46064 1.22562i 0.0648053 0.0543781i
\(509\) 24.3384 + 20.4224i 1.07878 + 0.905206i 0.995819 0.0913471i \(-0.0291173\pi\)
0.0829628 + 0.996553i \(0.473562\pi\)
\(510\) 1.01867 + 5.77715i 0.0451073 + 0.255816i
\(511\) −29.9406 10.8975i −1.32450 0.482077i
\(512\) 24.9186 1.10126
\(513\) −10.0838 14.2238i −0.445210 0.627998i
\(514\) 19.7888 0.872847
\(515\) −1.55303 0.565258i −0.0684348 0.0249082i
\(516\) −0.438815 2.48865i −0.0193178 0.109556i
\(517\) −7.41534 6.22221i −0.326126 0.273653i
\(518\) −11.8209 + 9.91890i −0.519380 + 0.435812i
\(519\) −4.52023 + 25.6355i −0.198416 + 1.12527i
\(520\) −3.24834 + 5.62629i −0.142449 + 0.246729i
\(521\) 11.6814 + 20.2328i 0.511771 + 0.886413i 0.999907 + 0.0136457i \(0.00434369\pi\)
−0.488136 + 0.872768i \(0.662323\pi\)
\(522\) −4.18479 + 1.52314i −0.183163 + 0.0666660i
\(523\) −41.0629 + 14.9457i −1.79555 + 0.653529i −0.796768 + 0.604285i \(0.793459\pi\)
−0.998787 + 0.0492432i \(0.984319\pi\)
\(524\) 0.711667 + 1.23264i 0.0310893 + 0.0538483i
\(525\) 11.2226 19.4380i 0.489793 0.848346i
\(526\) 2.21966 12.5883i 0.0967816 0.548876i
\(527\) −13.9761 + 11.7274i −0.608809 + 0.510852i
\(528\) 5.50980 + 4.62327i 0.239783 + 0.201202i
\(529\) −3.96451 22.4838i −0.172370 0.977558i
\(530\) −4.90286 1.78449i −0.212966 0.0775135i
\(531\) 4.43376 0.192409
\(532\) −1.70889 + 0.809037i −0.0740899 + 0.0350762i
\(533\) −5.58853 −0.242066
\(534\) −22.1411 8.05872i −0.958141 0.348735i
\(535\) 0.538734 + 3.05531i 0.0232915 + 0.132093i
\(536\) −11.7354 9.84716i −0.506891 0.425332i
\(537\) 16.5895 13.9202i 0.715888 0.600701i
\(538\) 3.55279 20.1488i 0.153171 0.868678i
\(539\) 0.745100 1.29055i 0.0320937 0.0555880i
\(540\) −0.172933 0.299529i −0.00744185 0.0128897i
\(541\) −28.5574 + 10.3940i −1.22778 + 0.446874i −0.872836 0.488014i \(-0.837721\pi\)
−0.354942 + 0.934889i \(0.615499\pi\)
\(542\) 17.8503 6.49697i 0.766736 0.279069i
\(543\) 14.6973 + 25.4564i 0.630721 + 1.09244i
\(544\) −2.42380 + 4.19815i −0.103920 + 0.179994i
\(545\) 1.51842 8.61138i 0.0650419 0.368871i
\(546\) 22.8544 19.1771i 0.978078 0.820705i
\(547\) −26.0023 21.8185i −1.11178 0.932892i −0.113617 0.993525i \(-0.536244\pi\)
−0.998160 + 0.0606329i \(0.980688\pi\)
\(548\) −0.499533 2.83299i −0.0213390 0.121019i
\(549\) 9.63088 + 3.50535i 0.411036 + 0.149605i
\(550\) 6.44150 0.274667
\(551\) 13.0223 6.16511i 0.554768 0.262643i
\(552\) −2.42240 −0.103104
\(553\) 1.31521 + 0.478696i 0.0559283 + 0.0203562i
\(554\) −1.62386 9.20935i −0.0689910 0.391268i
\(555\) −3.49794 2.93512i −0.148479 0.124589i
\(556\) 2.63840 2.21388i 0.111893 0.0938896i
\(557\) −5.83931 + 33.1164i −0.247419 + 1.40319i 0.567387 + 0.823451i \(0.307954\pi\)
−0.814806 + 0.579734i \(0.803157\pi\)
\(558\) 2.64156 4.57531i 0.111826 0.193689i
\(559\) −16.1258 27.9308i −0.682050 1.18135i
\(560\) 3.71167 1.35094i 0.156847 0.0570875i
\(561\) −8.74422 + 3.18264i −0.369181 + 0.134371i
\(562\) −19.2724 33.3808i −0.812959 1.40809i
\(563\) 20.0988 34.8121i 0.847063 1.46716i −0.0367543 0.999324i \(-0.511702\pi\)
0.883817 0.467832i \(-0.154965\pi\)
\(564\) −0.621244 + 3.52325i −0.0261591 + 0.148356i
\(565\) 4.89827 4.11014i 0.206072 0.172915i
\(566\) −29.2349 24.5310i −1.22883 1.03111i
\(567\) 4.48364 + 25.4280i 0.188295 + 1.06788i
\(568\) 24.1327 + 8.78358i 1.01259 + 0.368551i
\(569\) 13.3901 0.561343 0.280671 0.959804i \(-0.409443\pi\)
0.280671 + 0.959804i \(0.409443\pi\)
\(570\) 3.17848 + 4.48346i 0.133132 + 0.187791i
\(571\) 25.1242 1.05142 0.525708 0.850665i \(-0.323800\pi\)
0.525708 + 0.850665i \(0.323800\pi\)
\(572\) −0.819078 0.298120i −0.0342474 0.0124650i
\(573\) 1.02465 + 5.81109i 0.0428055 + 0.242762i
\(574\) 2.87030 + 2.40847i 0.119804 + 0.100528i
\(575\) −1.50703 + 1.26454i −0.0628473 + 0.0527352i
\(576\) 1.49273 8.46567i 0.0621969 0.352736i
\(577\) −17.8764 + 30.9629i −0.744206 + 1.28900i 0.206358 + 0.978476i \(0.433839\pi\)
−0.950565 + 0.310527i \(0.899495\pi\)
\(578\) 3.13088 + 5.42285i 0.130228 + 0.225561i
\(579\) 43.4492 15.8142i 1.80569 0.657217i
\(580\) 0.268571 0.0977517i 0.0111518 0.00405892i
\(581\) −16.5646 28.6908i −0.687217 1.19030i
\(582\) 11.0942 19.2157i 0.459870 0.796518i
\(583\) 1.43717 8.15058i 0.0595214 0.337562i
\(584\) −30.6080 + 25.6831i −1.26657 + 1.06278i
\(585\) 1.69072 + 1.41868i 0.0699028 + 0.0586554i
\(586\) 0.632008 + 3.58429i 0.0261080 + 0.148066i
\(587\) 2.14765 + 0.781681i 0.0886431 + 0.0322634i 0.385961 0.922515i \(-0.373870\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(588\) −0.550756 −0.0227128
\(589\) −7.13310 + 15.5329i −0.293914 + 0.640021i
\(590\) 2.79511 0.115073
\(591\) 17.1138 + 6.22892i 0.703968 + 0.256223i
\(592\) 3.04710 + 17.2810i 0.125235 + 0.710244i
\(593\) 9.03462 + 7.58094i 0.371007 + 0.311312i 0.809160 0.587589i \(-0.199923\pi\)
−0.438153 + 0.898901i \(0.644367\pi\)
\(594\) −4.12836 + 3.46410i −0.169388 + 0.142134i
\(595\) −0.887374 + 5.03255i −0.0363788 + 0.206314i
\(596\) −1.38532 + 2.39944i −0.0567447 + 0.0982847i
\(597\) 3.39693 + 5.88365i 0.139027 + 0.240802i
\(598\) −2.45723 + 0.894360i −0.100484 + 0.0365731i
\(599\) −43.9889 + 16.0107i −1.79734 + 0.654178i −0.798716 + 0.601709i \(0.794487\pi\)
−0.998623 + 0.0524690i \(0.983291\pi\)
\(600\) −14.0733 24.3758i −0.574542 0.995136i
\(601\) 6.92767 11.9991i 0.282586 0.489453i −0.689435 0.724347i \(-0.742141\pi\)
0.972021 + 0.234895i \(0.0754745\pi\)
\(602\) −3.75490 + 21.2951i −0.153038 + 0.867923i
\(603\) −3.98680 + 3.34532i −0.162355 + 0.136232i
\(604\) 1.08718 + 0.912254i 0.0442368 + 0.0371191i
\(605\) −0.0812519 0.460802i −0.00330336 0.0187343i
\(606\) 3.55438 + 1.29369i 0.144387 + 0.0525525i
\(607\) −7.68004 −0.311723 −0.155862 0.987779i \(-0.549815\pi\)
−0.155862 + 0.987779i \(0.549815\pi\)
\(608\) −0.369423 + 4.52644i −0.0149821 + 0.183571i
\(609\) −15.5175 −0.628802
\(610\) 6.07145 + 2.20983i 0.245826 + 0.0894733i
\(611\) 7.92871 + 44.9660i 0.320761 + 1.81913i
\(612\) 0.658633 + 0.552659i 0.0266237 + 0.0223399i
\(613\) 13.6912 11.4883i 0.552982 0.464007i −0.322967 0.946410i \(-0.604680\pi\)
0.875949 + 0.482403i \(0.160236\pi\)
\(614\) 5.10741 28.9656i 0.206118 1.16896i
\(615\) −0.554378 + 0.960210i −0.0223547 + 0.0387194i
\(616\) 3.45471 + 5.98373i 0.139194 + 0.241091i
\(617\) 12.8109 4.66280i 0.515748 0.187717i −0.0710153 0.997475i \(-0.522624\pi\)
0.586764 + 0.809758i \(0.300402\pi\)
\(618\) 8.94356 3.25519i 0.359763 0.130943i
\(619\) −19.8410 34.3655i −0.797475 1.38127i −0.921255 0.388958i \(-0.872835\pi\)
0.123780 0.992310i \(-0.460498\pi\)
\(620\) −0.169529 + 0.293634i −0.00680846 + 0.0117926i
\(621\) 0.285807 1.62089i 0.0114690 0.0650441i
\(622\) 12.7445 10.6939i 0.511007 0.428786i
\(623\) −15.7233 13.1934i −0.629940 0.528582i
\(624\) −5.89124 33.4109i −0.235839 1.33751i
\(625\) −20.4513 7.44367i −0.818052 0.297747i
\(626\) 37.2012 1.48686
\(627\) −6.12836 + 6.20026i −0.244743 + 0.247615i
\(628\) 2.47834 0.0988965
\(629\) −21.3332 7.76466i −0.850611 0.309597i
\(630\) −0.256959 1.45729i −0.0102375 0.0580598i
\(631\) −19.8097 16.6223i −0.788613 0.661725i 0.156788 0.987632i \(-0.449886\pi\)
−0.945402 + 0.325907i \(0.894330\pi\)
\(632\) 1.34452 1.12819i 0.0534822 0.0448769i
\(633\) 1.88713 10.7024i 0.0750065 0.425383i
\(634\) −12.2934 + 21.2928i −0.488233 + 0.845644i
\(635\) −2.41400 4.18117i −0.0957967 0.165925i
\(636\) −2.87433 + 1.04617i −0.113975 + 0.0414834i
\(637\) −6.60519 + 2.40409i −0.261707 + 0.0952536i
\(638\) −2.22668 3.85673i −0.0881552 0.152689i
\(639\) 4.36231 7.55574i 0.172570 0.298901i
\(640\) 0.771726 4.37667i 0.0305051 0.173003i
\(641\) −2.92674 + 2.45582i −0.115599 + 0.0969992i −0.698755 0.715361i \(-0.746262\pi\)
0.583156 + 0.812360i \(0.301818\pi\)
\(642\) −13.6864 11.4842i −0.540157 0.453246i
\(643\) −1.80834 10.2556i −0.0713141 0.404443i −0.999479 0.0322734i \(-0.989725\pi\)
0.928165 0.372169i \(-0.121386\pi\)
\(644\) −0.167718 0.0610445i −0.00660903 0.00240549i
\(645\) −6.39868 −0.251948
\(646\) 22.4736 + 15.5416i 0.884212 + 0.611477i
\(647\) −29.5725 −1.16262 −0.581308 0.813683i \(-0.697459\pi\)
−0.581308 + 0.813683i \(0.697459\pi\)
\(648\) 30.4265 + 11.0743i 1.19527 + 0.435041i
\(649\) 0.769915 + 4.36640i 0.0302218 + 0.171396i
\(650\) −23.2753 19.5303i −0.912934 0.766043i
\(651\) 14.1019 11.8329i 0.552699 0.463769i
\(652\) 0.145592 0.825692i 0.00570182 0.0323366i
\(653\) 3.30019 5.71610i 0.129147 0.223688i −0.794200 0.607657i \(-0.792110\pi\)
0.923346 + 0.383969i \(0.125443\pi\)
\(654\) 25.1780 + 43.6095i 0.984537 + 1.70527i
\(655\) 3.38666 1.23264i 0.132328 0.0481634i
\(656\) 4.00387 1.45729i 0.156325 0.0568976i
\(657\) 6.78699 + 11.7554i 0.264786 + 0.458622i
\(658\) 15.3066 26.5118i 0.596713 1.03354i
\(659\) 0.773318 4.38571i 0.0301242 0.170843i −0.966034 0.258415i \(-0.916800\pi\)
0.996158 + 0.0875723i \(0.0279109\pi\)
\(660\) −0.132474 + 0.111159i −0.00515656 + 0.00432686i
\(661\) 35.1011 + 29.4533i 1.36527 + 1.14560i 0.974314 + 0.225192i \(0.0723011\pi\)
0.390959 + 0.920408i \(0.372143\pi\)
\(662\) −6.84137 38.7993i −0.265897 1.50798i
\(663\) 41.2455 + 15.0121i 1.60184 + 0.583022i
\(664\) −41.5449 −1.61225
\(665\) 1.26604 + 4.61706i 0.0490951 + 0.179042i
\(666\) 6.57398 0.254736
\(667\) 1.27807 + 0.465178i 0.0494869 + 0.0180118i
\(668\) −0.248970 1.41198i −0.00963295 0.0546312i
\(669\) −1.43788 1.20653i −0.0555917 0.0466470i
\(670\) −2.51334 + 2.10894i −0.0970986 + 0.0814754i
\(671\) −1.77972 + 10.0933i −0.0687051 + 0.389646i
\(672\) 2.44562 4.23594i 0.0943419 0.163405i
\(673\) −5.24644 9.08711i −0.202236 0.350282i 0.747013 0.664810i \(-0.231487\pi\)
−0.949248 + 0.314527i \(0.898154\pi\)
\(674\) 16.3751 5.96005i 0.630745 0.229573i
\(675\) 17.9709 6.54087i 0.691700 0.251758i
\(676\) 0.854570 + 1.48016i 0.0328681 + 0.0569292i
\(677\) 3.75372 6.50163i 0.144267 0.249878i −0.784832 0.619708i \(-0.787251\pi\)
0.929099 + 0.369830i \(0.120584\pi\)
\(678\) −6.39424 + 36.2635i −0.245569 + 1.39269i
\(679\) 14.8066 12.4242i 0.568225 0.476797i
\(680\) 4.90903 + 4.11917i 0.188253 + 0.157963i
\(681\) 6.91178 + 39.1986i 0.264860 + 1.50210i
\(682\) 4.96451 + 1.80693i 0.190101 + 0.0691910i
\(683\) −45.0337 −1.72316 −0.861582 0.507618i \(-0.830526\pi\)
−0.861582 + 0.507618i \(0.830526\pi\)
\(684\) 0.779248 + 0.203935i 0.0297953 + 0.00779766i
\(685\) −7.28405 −0.278309
\(686\) 25.2310 + 9.18334i 0.963325 + 0.350622i
\(687\) −7.69047 43.6148i −0.293410 1.66401i
\(688\) 18.8366 + 15.8058i 0.718139 + 0.602590i
\(689\) −29.9051 + 25.0934i −1.13929 + 0.955982i
\(690\) −0.0900885 + 0.510917i −0.00342961 + 0.0194503i
\(691\) 3.36113 5.82165i 0.127863 0.221466i −0.794985 0.606629i \(-0.792521\pi\)
0.922849 + 0.385163i \(0.125855\pi\)
\(692\) 1.20258 + 2.08293i 0.0457153 + 0.0791812i
\(693\) 2.20574 0.802823i 0.0837890 0.0304967i
\(694\) 41.3289 15.0425i 1.56882 0.571006i
\(695\) −4.36050 7.55261i −0.165403 0.286487i
\(696\) −9.72967 + 16.8523i −0.368802 + 0.638784i
\(697\) −0.957234 + 5.42874i −0.0362578 + 0.205628i
\(698\) −18.9360 + 15.8892i −0.716740 + 0.601416i
\(699\) −29.8699 25.0638i −1.12978 0.948000i
\(700\) −0.360120 2.04234i −0.0136112 0.0771932i
\(701\) 15.3268 + 5.57851i 0.578886 + 0.210697i 0.614834 0.788656i \(-0.289223\pi\)
−0.0359482 + 0.999354i \(0.511445\pi\)
\(702\) 25.4201 0.959422
\(703\) −21.1766 + 1.97724i −0.798692 + 0.0745730i
\(704\) 8.59627 0.323984
\(705\) 8.51249 + 3.09829i 0.320599 + 0.116688i
\(706\) 2.42484 + 13.7520i 0.0912601 + 0.517562i
\(707\) 2.52410 + 2.11797i 0.0949285 + 0.0796545i
\(708\) 1.25528 1.05331i 0.0471763 0.0395856i
\(709\) −6.93077 + 39.3063i −0.260291 + 1.47618i 0.521828 + 0.853051i \(0.325250\pi\)
−0.782118 + 0.623130i \(0.785861\pi\)
\(710\) 2.75007 4.76325i 0.103208 0.178762i
\(711\) −0.298133 0.516382i −0.0111809 0.0193658i
\(712\) −24.1869 + 8.80331i −0.906443 + 0.329918i
\(713\) −1.51620 + 0.551851i −0.0567820 + 0.0206670i
\(714\) −14.7142 25.4857i −0.550665 0.953779i
\(715\) −1.10354 + 1.91139i −0.0412701 + 0.0714819i
\(716\) 0.347458 1.97053i 0.0129851 0.0736423i
\(717\) 0.172933 0.145108i 0.00645830 0.00541916i
\(718\) 12.9394 + 10.8575i 0.482896 + 0.405198i
\(719\) −7.82501 44.3778i −0.291824 1.65501i −0.679840 0.733361i \(-0.737951\pi\)
0.388016 0.921653i \(-0.373161\pi\)
\(720\) −1.58125 0.575529i −0.0589298 0.0214487i
\(721\) 8.29086 0.308768
\(722\) 25.2599 + 4.15079i 0.940075 + 0.154476i
\(723\) −37.9162 −1.41012
\(724\) 2.55216 + 0.928909i 0.0948501 + 0.0345226i
\(725\) 2.74422 + 15.5633i 0.101918 + 0.578005i
\(726\) 2.06418 + 1.73205i 0.0766088 + 0.0642824i
\(727\) −27.1306 + 22.7653i −1.00622 + 0.844318i −0.987834 0.155513i \(-0.950297\pi\)
−0.0183856 + 0.999831i \(0.505853\pi\)
\(728\) 5.65935 32.0958i 0.209749 1.18955i
\(729\) −6.50000 + 11.2583i −0.240741 + 0.416975i
\(730\) 4.27862 + 7.41079i 0.158359 + 0.274285i
\(731\) −29.8943 + 10.8806i −1.10568 + 0.402435i
\(732\) 3.55943 1.29553i 0.131560 0.0478840i
\(733\) −8.55422 14.8163i −0.315957 0.547254i 0.663683 0.748014i \(-0.268992\pi\)
−0.979640 + 0.200760i \(0.935659\pi\)
\(734\) 1.54845 2.68199i 0.0571543 0.0989941i
\(735\) −0.242163 + 1.37338i −0.00893232 + 0.0506577i
\(736\) −0.328411 + 0.275570i −0.0121054 + 0.0101576i
\(737\) −3.98680 3.34532i −0.146856 0.123226i
\(738\) −0.277189 1.57202i −0.0102035 0.0578667i
\(739\) 5.33244 + 1.94085i 0.196157 + 0.0713954i 0.438231 0.898863i \(-0.355605\pi\)
−0.242074 + 0.970258i \(0.577828\pi\)
\(740\) −0.421903 −0.0155095
\(741\) 40.9427 3.82278i 1.50407 0.140433i
\(742\) 26.1739 0.960873
\(743\) 30.8323 + 11.2221i 1.13113 + 0.411697i 0.838702 0.544591i \(-0.183315\pi\)
0.292427 + 0.956288i \(0.405537\pi\)
\(744\) −4.00867 22.7343i −0.146965 0.833481i
\(745\) 5.37417 + 4.50946i 0.196894 + 0.165214i
\(746\) −1.94066 + 1.62840i −0.0710525 + 0.0596201i
\(747\) −2.45084 + 13.8994i −0.0896714 + 0.508552i
\(748\) −0.429892 + 0.744596i −0.0157184 + 0.0272251i
\(749\) −7.78177 13.4784i −0.284340 0.492491i
\(750\) −11.5885 + 4.21788i −0.423153 + 0.154015i
\(751\) −16.7015 + 6.07883i −0.609445 + 0.221820i −0.628260 0.778003i \(-0.716233\pi\)
0.0188155 + 0.999823i \(0.494010\pi\)
\(752\) −17.4060 30.1481i −0.634732 1.09939i
\(753\) 4.97771 8.62165i 0.181398 0.314190i
\(754\) −3.64765 + 20.6869i −0.132840 + 0.753371i
\(755\) 2.75284 2.30991i 0.100186 0.0840661i
\(756\) 1.32913 + 1.11527i 0.0483399 + 0.0405620i
\(757\) 5.05762 + 28.6832i 0.183822 + 1.04251i 0.927459 + 0.373924i \(0.121988\pi\)
−0.743637 + 0.668584i \(0.766901\pi\)
\(758\) −11.1823 4.07001i −0.406158 0.147829i
\(759\) −0.822948 −0.0298711
\(760\) 5.80802 + 1.52000i 0.210679 + 0.0551363i
\(761\) −31.9513 −1.15823 −0.579117 0.815244i \(-0.696603\pi\)
−0.579117 + 0.815244i \(0.696603\pi\)
\(762\) 26.1266 + 9.50931i 0.946467 + 0.344486i
\(763\) 7.61721 + 43.1994i 0.275762 + 1.56392i
\(764\)