Properties

Label 209.2.j.a.199.1
Level $209$
Weight $2$
Character 209.199
Analytic conductor $1.669$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(23,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.j (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 199.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 209.199
Dual form 209.2.j.a.188.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.439693 - 2.49362i) q^{2} +(-1.53209 + 1.28558i) q^{3} +(-4.14543 + 1.50881i) q^{4} +(3.64543 + 1.32683i) q^{5} +(3.87939 + 3.25519i) q^{6} +(1.76604 - 3.05888i) q^{7} +(3.05303 + 5.28801i) q^{8} +(0.173648 - 0.984808i) q^{9} +O(q^{10})\) \(q+(-0.439693 - 2.49362i) q^{2} +(-1.53209 + 1.28558i) q^{3} +(-4.14543 + 1.50881i) q^{4} +(3.64543 + 1.32683i) q^{5} +(3.87939 + 3.25519i) q^{6} +(1.76604 - 3.05888i) q^{7} +(3.05303 + 5.28801i) q^{8} +(0.173648 - 0.984808i) q^{9} +(1.70574 - 9.67372i) q^{10} +(-0.500000 - 0.866025i) q^{11} +(4.41147 - 7.64090i) q^{12} +(2.52094 + 2.11532i) q^{13} +(-8.40420 - 3.05888i) q^{14} +(-7.29086 + 2.65366i) q^{15} +(5.08512 - 4.26692i) q^{16} +(-0.602196 - 3.41523i) q^{17} -2.53209 q^{18} +(2.77719 - 3.35965i) q^{19} -17.1138 q^{20} +(1.22668 + 6.95686i) q^{21} +(-1.93969 + 1.62760i) q^{22} +(4.91147 - 1.78763i) q^{23} +(-11.4757 - 4.17680i) q^{24} +(7.69846 + 6.45978i) q^{25} +(4.16637 - 7.21637i) q^{26} +(-2.00000 - 3.46410i) q^{27} +(-2.70574 + 15.3450i) q^{28} +(-0.162504 + 0.921605i) q^{29} +(9.82295 + 17.0138i) q^{30} +(-2.62449 + 4.54574i) q^{31} +(-3.52094 - 2.95442i) q^{32} +(1.87939 + 0.684040i) q^{33} +(-8.25150 + 3.00330i) q^{34} +(10.4966 - 8.80769i) q^{35} +(0.766044 + 4.34445i) q^{36} -2.65270 q^{37} +(-9.59879 - 5.44804i) q^{38} -6.58172 q^{39} +(4.11334 + 23.3279i) q^{40} +(-2.61334 + 2.19285i) q^{41} +(16.8084 - 6.11776i) q^{42} +(0.992726 + 0.361323i) q^{43} +(3.37939 + 2.83564i) q^{44} +(1.93969 - 3.35965i) q^{45} +(-6.61721 - 11.4613i) q^{46} +(-1.13816 + 6.45480i) q^{47} +(-2.30541 + 13.0746i) q^{48} +(-2.73783 - 4.74205i) q^{49} +(12.7233 - 22.0374i) q^{50} +(5.31315 + 4.45826i) q^{51} +(-13.6420 - 4.96529i) q^{52} +(4.77719 - 1.73875i) q^{53} +(-7.75877 + 6.51038i) q^{54} +(-0.673648 - 3.82045i) q^{55} +21.5672 q^{56} +(0.0641778 + 8.71756i) q^{57} +2.36959 q^{58} +(-2.01114 - 11.4058i) q^{59} +(26.2199 - 22.0011i) q^{60} +(-1.09967 + 0.400247i) q^{61} +(12.4893 + 4.54574i) q^{62} +(-2.70574 - 2.27038i) q^{63} +(0.819078 - 1.41868i) q^{64} +(6.38326 + 11.0561i) q^{65} +(0.879385 - 4.98724i) q^{66} +(-2.52481 + 14.3189i) q^{67} +(7.64930 + 13.2490i) q^{68} +(-5.22668 + 9.05288i) q^{69} +(-26.5783 - 22.3019i) q^{70} +(-14.2417 - 5.18355i) q^{71} +(5.73783 - 2.08840i) q^{72} +(-10.5077 + 8.81704i) q^{73} +(1.16637 + 6.61484i) q^{74} -20.0993 q^{75} +(-6.44356 + 18.1174i) q^{76} -3.53209 q^{77} +(2.89393 + 16.4123i) q^{78} +(-7.38326 + 6.19529i) q^{79} +(24.1989 - 8.80769i) q^{80} +(10.3366 + 3.76222i) q^{81} +(6.61721 + 5.55250i) q^{82} +(-2.51367 + 4.35381i) q^{83} +(-15.5817 - 26.9883i) q^{84} +(2.33615 - 13.2490i) q^{85} +(0.464508 - 2.63435i) q^{86} +(-0.935822 - 1.62089i) q^{87} +(3.05303 - 5.28801i) q^{88} +(-0.922618 - 0.774169i) q^{89} +(-9.23055 - 3.35965i) q^{90} +(10.9226 - 3.97551i) q^{91} +(-17.6630 + 14.8210i) q^{92} +(-1.82295 - 10.3385i) q^{93} +16.5963 q^{94} +(14.5817 - 8.56250i) q^{95} +9.19253 q^{96} +(1.50727 + 8.54818i) q^{97} +(-10.6211 + 8.91215i) q^{98} +(-0.939693 + 0.342020i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8} - 3 q^{11} + 6 q^{12} + 12 q^{13} - 12 q^{14} - 12 q^{15} + 9 q^{16} - 3 q^{17} - 6 q^{18} + 6 q^{19} - 30 q^{20} - 6 q^{21} - 6 q^{22} + 9 q^{23} - 30 q^{24} + 18 q^{25} + 6 q^{26} - 12 q^{27} - 6 q^{28} - 6 q^{29} + 18 q^{30} - 3 q^{31} - 18 q^{32} - 9 q^{34} + 21 q^{35} - 18 q^{37} - 15 q^{38} + 24 q^{39} + 18 q^{40} - 9 q^{41} + 24 q^{42} - 12 q^{43} + 9 q^{44} + 6 q^{45} - 9 q^{46} + 27 q^{47} - 18 q^{48} + 3 q^{49} + 21 q^{50} - 12 q^{51} - 24 q^{52} + 18 q^{53} - 24 q^{54} - 3 q^{55} + 30 q^{56} - 18 q^{57} - 6 q^{59} + 60 q^{60} - 21 q^{61} + 15 q^{62} - 6 q^{63} - 12 q^{64} + 3 q^{65} - 6 q^{66} + 12 q^{67} + 6 q^{68} - 18 q^{69} - 54 q^{70} - 42 q^{71} + 15 q^{72} - 15 q^{73} - 12 q^{74} - 12 q^{75} - 9 q^{76} - 12 q^{77} + 42 q^{78} - 9 q^{79} + 51 q^{80} + 9 q^{82} + 6 q^{83} - 30 q^{84} + 18 q^{85} - 30 q^{86} - 24 q^{87} + 6 q^{88} + 21 q^{89} - 18 q^{90} + 39 q^{91} - 45 q^{92} + 30 q^{93} + 72 q^{94} + 24 q^{95} + 27 q^{97} - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.439693 2.49362i −0.310910 1.76326i −0.594292 0.804249i \(-0.702568\pi\)
0.283383 0.959007i \(-0.408543\pi\)
\(3\) −1.53209 + 1.28558i −0.884552 + 0.742227i −0.967110 0.254359i \(-0.918135\pi\)
0.0825579 + 0.996586i \(0.473691\pi\)
\(4\) −4.14543 + 1.50881i −2.07271 + 0.754407i
\(5\) 3.64543 + 1.32683i 1.63029 + 0.593375i 0.985302 0.170821i \(-0.0546420\pi\)
0.644984 + 0.764196i \(0.276864\pi\)
\(6\) 3.87939 + 3.25519i 1.58375 + 1.32893i
\(7\) 1.76604 3.05888i 0.667502 1.15615i −0.311098 0.950378i \(-0.600697\pi\)
0.978600 0.205770i \(-0.0659698\pi\)
\(8\) 3.05303 + 5.28801i 1.07941 + 1.86959i
\(9\) 0.173648 0.984808i 0.0578827 0.328269i
\(10\) 1.70574 9.67372i 0.539401 3.05910i
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) 4.41147 7.64090i 1.27348 2.20574i
\(13\) 2.52094 + 2.11532i 0.699184 + 0.586685i 0.921541 0.388280i \(-0.126931\pi\)
−0.222357 + 0.974965i \(0.571375\pi\)
\(14\) −8.40420 3.05888i −2.24612 0.817520i
\(15\) −7.29086 + 2.65366i −1.88249 + 0.685171i
\(16\) 5.08512 4.26692i 1.27128 1.06673i
\(17\) −0.602196 3.41523i −0.146054 0.828314i −0.966515 0.256611i \(-0.917394\pi\)
0.820461 0.571703i \(-0.193717\pi\)
\(18\) −2.53209 −0.596819
\(19\) 2.77719 3.35965i 0.637131 0.770756i
\(20\) −17.1138 −3.82676
\(21\) 1.22668 + 6.95686i 0.267684 + 1.51811i
\(22\) −1.93969 + 1.62760i −0.413544 + 0.347004i
\(23\) 4.91147 1.78763i 1.02411 0.372747i 0.225277 0.974295i \(-0.427671\pi\)
0.798837 + 0.601548i \(0.205449\pi\)
\(24\) −11.4757 4.17680i −2.34246 0.852585i
\(25\) 7.69846 + 6.45978i 1.53969 + 1.29196i
\(26\) 4.16637 7.21637i 0.817093 1.41525i
\(27\) −2.00000 3.46410i −0.384900 0.666667i
\(28\) −2.70574 + 15.3450i −0.511336 + 2.89993i
\(29\) −0.162504 + 0.921605i −0.0301762 + 0.171138i −0.996171 0.0874226i \(-0.972137\pi\)
0.965995 + 0.258560i \(0.0832481\pi\)
\(30\) 9.82295 + 17.0138i 1.79342 + 3.10629i
\(31\) −2.62449 + 4.54574i −0.471371 + 0.816439i −0.999464 0.0327477i \(-0.989574\pi\)
0.528092 + 0.849187i \(0.322908\pi\)
\(32\) −3.52094 2.95442i −0.622421 0.522273i
\(33\) 1.87939 + 0.684040i 0.327159 + 0.119076i
\(34\) −8.25150 + 3.00330i −1.41512 + 0.515062i
\(35\) 10.4966 8.80769i 1.77425 1.48877i
\(36\) 0.766044 + 4.34445i 0.127674 + 0.724076i
\(37\) −2.65270 −0.436102 −0.218051 0.975937i \(-0.569970\pi\)
−0.218051 + 0.975937i \(0.569970\pi\)
\(38\) −9.59879 5.44804i −1.55713 0.883789i
\(39\) −6.58172 −1.05392
\(40\) 4.11334 + 23.3279i 0.650376 + 3.68847i
\(41\) −2.61334 + 2.19285i −0.408135 + 0.342466i −0.823628 0.567130i \(-0.808054\pi\)
0.415493 + 0.909596i \(0.363609\pi\)
\(42\) 16.8084 6.11776i 2.59359 0.943990i
\(43\) 0.992726 + 0.361323i 0.151389 + 0.0551012i 0.416603 0.909088i \(-0.363220\pi\)
−0.265214 + 0.964190i \(0.585443\pi\)
\(44\) 3.37939 + 2.83564i 0.509461 + 0.427489i
\(45\) 1.93969 3.35965i 0.289152 0.500826i
\(46\) −6.61721 11.4613i −0.975655 1.68988i
\(47\) −1.13816 + 6.45480i −0.166017 + 0.941530i 0.781993 + 0.623288i \(0.214203\pi\)
−0.948010 + 0.318242i \(0.896908\pi\)
\(48\) −2.30541 + 13.0746i −0.332757 + 1.88716i
\(49\) −2.73783 4.74205i −0.391118 0.677436i
\(50\) 12.7233 22.0374i 1.79934 3.11655i
\(51\) 5.31315 + 4.45826i 0.743990 + 0.624281i
\(52\) −13.6420 4.96529i −1.89181 0.688562i
\(53\) 4.77719 1.73875i 0.656197 0.238836i 0.00760361 0.999971i \(-0.497580\pi\)
0.648594 + 0.761135i \(0.275357\pi\)
\(54\) −7.75877 + 6.51038i −1.05583 + 0.885951i
\(55\) −0.673648 3.82045i −0.0908347 0.515149i
\(56\) 21.5672 2.88203
\(57\) 0.0641778 + 8.71756i 0.00850055 + 1.15467i
\(58\) 2.36959 0.311142
\(59\) −2.01114 11.4058i −0.261829 1.48490i −0.777916 0.628368i \(-0.783723\pi\)
0.516087 0.856536i \(-0.327388\pi\)
\(60\) 26.2199 22.0011i 3.38497 2.84033i
\(61\) −1.09967 + 0.400247i −0.140798 + 0.0512464i −0.411458 0.911429i \(-0.634980\pi\)
0.270660 + 0.962675i \(0.412758\pi\)
\(62\) 12.4893 + 4.54574i 1.58615 + 0.577310i
\(63\) −2.70574 2.27038i −0.340891 0.286041i
\(64\) 0.819078 1.41868i 0.102385 0.177336i
\(65\) 6.38326 + 11.0561i 0.791745 + 1.37134i
\(66\) 0.879385 4.98724i 0.108245 0.613887i
\(67\) −2.52481 + 14.3189i −0.308455 + 1.74934i 0.298323 + 0.954465i \(0.403573\pi\)
−0.606778 + 0.794871i \(0.707538\pi\)
\(68\) 7.64930 + 13.2490i 0.927614 + 1.60667i
\(69\) −5.22668 + 9.05288i −0.629219 + 1.08984i
\(70\) −26.5783 22.3019i −3.17672 2.66558i
\(71\) −14.2417 5.18355i −1.69018 0.615175i −0.695530 0.718497i \(-0.744831\pi\)
−0.994648 + 0.103322i \(0.967053\pi\)
\(72\) 5.73783 2.08840i 0.676209 0.246120i
\(73\) −10.5077 + 8.81704i −1.22984 + 1.03196i −0.231589 + 0.972814i \(0.574392\pi\)
−0.998250 + 0.0591428i \(0.981163\pi\)
\(74\) 1.16637 + 6.61484i 0.135588 + 0.768959i
\(75\) −20.0993 −2.32086
\(76\) −6.44356 + 18.1174i −0.739127 + 2.07821i
\(77\) −3.53209 −0.402519
\(78\) 2.89393 + 16.4123i 0.327673 + 1.85833i
\(79\) −7.38326 + 6.19529i −0.830681 + 0.697024i −0.955447 0.295162i \(-0.904626\pi\)
0.124766 + 0.992186i \(0.460182\pi\)
\(80\) 24.1989 8.80769i 2.70552 0.984730i
\(81\) 10.3366 + 3.76222i 1.14851 + 0.418025i
\(82\) 6.61721 + 5.55250i 0.730749 + 0.613171i
\(83\) −2.51367 + 4.35381i −0.275911 + 0.477892i −0.970365 0.241645i \(-0.922313\pi\)
0.694453 + 0.719538i \(0.255646\pi\)
\(84\) −15.5817 26.9883i −1.70010 2.94467i
\(85\) 2.33615 13.2490i 0.253391 1.43705i
\(86\) 0.464508 2.63435i 0.0500891 0.284070i
\(87\) −0.935822 1.62089i −0.100331 0.173778i
\(88\) 3.05303 5.28801i 0.325454 0.563704i
\(89\) −0.922618 0.774169i −0.0977974 0.0820617i 0.592578 0.805513i \(-0.298110\pi\)
−0.690375 + 0.723451i \(0.742555\pi\)
\(90\) −9.23055 3.35965i −0.972986 0.354138i
\(91\) 10.9226 3.97551i 1.14500 0.416746i
\(92\) −17.6630 + 14.8210i −1.84149 + 1.54520i
\(93\) −1.82295 10.3385i −0.189031 1.07205i
\(94\) 16.5963 1.71177
\(95\) 14.5817 8.56250i 1.49605 0.878494i
\(96\) 9.19253 0.938209
\(97\) 1.50727 + 8.54818i 0.153040 + 0.867936i 0.960555 + 0.278089i \(0.0897009\pi\)
−0.807515 + 0.589847i \(0.799188\pi\)
\(98\) −10.6211 + 8.91215i −1.07289 + 0.900263i
\(99\) −0.939693 + 0.342020i −0.0944427 + 0.0343743i
\(100\) −41.6600 15.1630i −4.16600 1.51630i
\(101\) −8.91534 7.48086i −0.887110 0.744374i 0.0805184 0.996753i \(-0.474342\pi\)
−0.967628 + 0.252380i \(0.918787\pi\)
\(102\) 8.78106 15.2092i 0.869454 1.50594i
\(103\) 0.0603074 + 0.104455i 0.00594226 + 0.0102923i 0.868981 0.494845i \(-0.164775\pi\)
−0.863039 + 0.505137i \(0.831442\pi\)
\(104\) −3.48932 + 19.7889i −0.342156 + 1.94046i
\(105\) −4.75877 + 26.9883i −0.464408 + 2.63379i
\(106\) −6.43629 11.1480i −0.625148 1.08279i
\(107\) 7.91147 13.7031i 0.764831 1.32473i −0.175505 0.984479i \(-0.556156\pi\)
0.940336 0.340248i \(-0.110511\pi\)
\(108\) 13.5175 + 11.3426i 1.30073 + 1.09144i
\(109\) −0.291737 0.106183i −0.0279433 0.0101705i 0.328011 0.944674i \(-0.393622\pi\)
−0.355954 + 0.934503i \(0.615844\pi\)
\(110\) −9.23055 + 3.35965i −0.880099 + 0.320330i
\(111\) 4.06418 3.41025i 0.385755 0.323687i
\(112\) −4.07145 23.0904i −0.384716 2.18183i
\(113\) −5.04458 −0.474554 −0.237277 0.971442i \(-0.576255\pi\)
−0.237277 + 0.971442i \(0.576255\pi\)
\(114\) 21.7101 3.99308i 2.03333 0.373986i
\(115\) 20.2763 1.89078
\(116\) −0.716881 4.06564i −0.0665608 0.377485i
\(117\) 2.52094 2.11532i 0.233061 0.195562i
\(118\) −27.5574 + 10.0301i −2.53686 + 0.923342i
\(119\) −11.5103 4.18939i −1.05514 0.384041i
\(120\) −36.2918 30.4524i −3.31297 2.77991i
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 1.48158 + 2.56617i 0.134136 + 0.232331i
\(123\) 1.18479 6.71929i 0.106829 0.605858i
\(124\) 4.02094 22.8039i 0.361091 2.04785i
\(125\) 9.79473 + 16.9650i 0.876067 + 1.51739i
\(126\) −4.47178 + 7.74535i −0.398378 + 0.690011i
\(127\) −0.392589 0.329421i −0.0348366 0.0292314i 0.625203 0.780462i \(-0.285016\pi\)
−0.660040 + 0.751231i \(0.729461\pi\)
\(128\) −12.5360 4.56272i −1.10803 0.403291i
\(129\) −1.98545 + 0.722645i −0.174809 + 0.0636254i
\(130\) 24.7631 20.7787i 2.17187 1.82241i
\(131\) −1.00727 5.71253i −0.0880059 0.499106i −0.996667 0.0815728i \(-0.974006\pi\)
0.908661 0.417534i \(-0.137105\pi\)
\(132\) −8.82295 −0.767939
\(133\) −5.37211 14.4284i −0.465821 1.25110i
\(134\) 36.8161 3.18043
\(135\) −2.69459 15.2818i −0.231914 1.31525i
\(136\) 16.2212 13.6112i 1.39096 1.16715i
\(137\) 5.31655 1.93507i 0.454224 0.165324i −0.104769 0.994497i \(-0.533410\pi\)
0.558993 + 0.829173i \(0.311188\pi\)
\(138\) 24.8726 + 9.05288i 2.11729 + 0.770632i
\(139\) −9.16044 7.68653i −0.776979 0.651963i 0.165507 0.986209i \(-0.447074\pi\)
−0.942486 + 0.334246i \(0.891518\pi\)
\(140\) −30.2237 + 52.3491i −2.55437 + 4.42430i
\(141\) −6.55438 11.3525i −0.551978 0.956054i
\(142\) −6.66385 + 37.7926i −0.559218 + 3.17148i
\(143\) 0.571452 3.24086i 0.0477872 0.271015i
\(144\) −3.31908 5.74881i −0.276590 0.479068i
\(145\) −1.81521 + 3.14403i −0.150745 + 0.261098i
\(146\) 26.6065 + 22.3255i 2.20197 + 1.84767i
\(147\) 10.2909 + 3.74557i 0.848776 + 0.308929i
\(148\) 10.9966 4.00243i 0.903915 0.328998i
\(149\) 4.88326 4.09754i 0.400052 0.335683i −0.420462 0.907310i \(-0.638132\pi\)
0.820514 + 0.571627i \(0.193687\pi\)
\(150\) 8.83750 + 50.1199i 0.721579 + 4.09228i
\(151\) −4.55438 −0.370630 −0.185315 0.982679i \(-0.559331\pi\)
−0.185315 + 0.982679i \(0.559331\pi\)
\(152\) 26.2447 + 4.42869i 2.12873 + 0.359214i
\(153\) −3.46791 −0.280364
\(154\) 1.55303 + 8.80769i 0.125147 + 0.709744i
\(155\) −15.5988 + 13.0889i −1.25293 + 1.05133i
\(156\) 27.2841 9.93058i 2.18447 0.795083i
\(157\) 7.30453 + 2.65863i 0.582965 + 0.212182i 0.616632 0.787251i \(-0.288496\pi\)
−0.0336675 + 0.999433i \(0.510719\pi\)
\(158\) 18.6951 + 15.6870i 1.48730 + 1.24799i
\(159\) −5.08378 + 8.80536i −0.403170 + 0.698311i
\(160\) −8.91534 15.4418i −0.704820 1.22078i
\(161\) 3.20574 18.1806i 0.252647 1.43284i
\(162\) 4.83662 27.4298i 0.380001 2.15509i
\(163\) 4.78106 + 8.28104i 0.374481 + 0.648621i 0.990249 0.139307i \(-0.0444874\pi\)
−0.615768 + 0.787928i \(0.711154\pi\)
\(164\) 7.52481 13.0334i 0.587589 1.01773i
\(165\) 5.94356 + 4.98724i 0.462706 + 0.388256i
\(166\) 11.9620 + 4.35381i 0.928430 + 0.337921i
\(167\) −3.10607 + 1.13052i −0.240355 + 0.0874819i −0.459389 0.888235i \(-0.651932\pi\)
0.219034 + 0.975717i \(0.429709\pi\)
\(168\) −33.0428 + 27.7262i −2.54931 + 2.13912i
\(169\) −0.376859 2.13727i −0.0289892 0.164406i
\(170\) −34.0651 −2.61267
\(171\) −2.82635 3.31839i −0.216137 0.253764i
\(172\) −4.66044 −0.355356
\(173\) −3.25237 18.4451i −0.247273 1.40236i −0.815153 0.579246i \(-0.803347\pi\)
0.567880 0.823112i \(-0.307764\pi\)
\(174\) −3.63041 + 3.04628i −0.275221 + 0.230938i
\(175\) 33.3555 12.1404i 2.52144 0.917729i
\(176\) −6.23783 2.27038i −0.470194 0.171137i
\(177\) 17.7442 + 14.8892i 1.33374 + 1.11914i
\(178\) −1.52481 + 2.64106i −0.114290 + 0.197956i
\(179\) 3.99407 + 6.91793i 0.298531 + 0.517071i 0.975800 0.218665i \(-0.0701701\pi\)
−0.677269 + 0.735735i \(0.736837\pi\)
\(180\) −2.97178 + 16.8538i −0.221504 + 1.25621i
\(181\) −1.25759 + 7.13214i −0.0934758 + 0.530128i 0.901728 + 0.432304i \(0.142299\pi\)
−0.995204 + 0.0978237i \(0.968812\pi\)
\(182\) −14.7160 25.4889i −1.09082 1.88936i
\(183\) 1.17024 2.02692i 0.0865070 0.149834i
\(184\) 24.4479 + 20.5142i 1.80232 + 1.51233i
\(185\) −9.67024 3.51968i −0.710971 0.258772i
\(186\) −24.9786 + 9.09148i −1.83152 + 0.666620i
\(187\) −2.65657 + 2.22913i −0.194268 + 0.163010i
\(188\) −5.02094 28.4752i −0.366190 2.07677i
\(189\) −14.1284 −1.02769
\(190\) −27.7631 32.5964i −2.01415 2.36479i
\(191\) −15.2686 −1.10479 −0.552397 0.833581i \(-0.686287\pi\)
−0.552397 + 0.833581i \(0.686287\pi\)
\(192\) 0.568926 + 3.22654i 0.0410587 + 0.232855i
\(193\) 9.50980 7.97967i 0.684530 0.574389i −0.232796 0.972526i \(-0.574787\pi\)
0.917326 + 0.398136i \(0.130343\pi\)
\(194\) 20.6532 7.51714i 1.48281 0.539699i
\(195\) −23.9932 8.73281i −1.71819 0.625369i
\(196\) 18.5043 + 15.5270i 1.32174 + 1.10907i
\(197\) −2.91875 + 5.05542i −0.207952 + 0.360184i −0.951069 0.308978i \(-0.900013\pi\)
0.743117 + 0.669161i \(0.233347\pi\)
\(198\) 1.26604 + 2.19285i 0.0899739 + 0.155839i
\(199\) −1.34343 + 7.61895i −0.0952329 + 0.540093i 0.899443 + 0.437039i \(0.143973\pi\)
−0.994676 + 0.103054i \(0.967138\pi\)
\(200\) −10.6557 + 60.4315i −0.753472 + 4.27315i
\(201\) −14.5398 25.1837i −1.02556 1.77632i
\(202\) −14.7344 + 25.5208i −1.03671 + 1.79563i
\(203\) 2.53209 + 2.12467i 0.177718 + 0.149123i
\(204\) −28.7520 10.4649i −2.01304 0.732687i
\(205\) −12.4363 + 4.52644i −0.868588 + 0.316140i
\(206\) 0.233956 0.196312i 0.0163005 0.0136777i
\(207\) −0.907604 5.14728i −0.0630828 0.357760i
\(208\) 21.8452 1.51469
\(209\) −4.29813 0.725293i −0.297308 0.0501696i
\(210\) 69.3911 4.78844
\(211\) 1.83750 + 10.4210i 0.126498 + 0.717408i 0.980407 + 0.196985i \(0.0631149\pi\)
−0.853908 + 0.520424i \(0.825774\pi\)
\(212\) −17.1800 + 14.4158i −1.17993 + 0.990079i
\(213\) 28.4834 10.3671i 1.95165 0.710342i
\(214\) −37.6489 13.7031i −2.57363 0.936723i
\(215\) 3.13950 + 2.63435i 0.214112 + 0.179661i
\(216\) 12.2121 21.1520i 0.830930 1.43921i
\(217\) 9.26991 + 16.0560i 0.629283 + 1.08995i
\(218\) −0.136507 + 0.774169i −0.00924541 + 0.0524333i
\(219\) 4.76382 27.0170i 0.321909 1.82564i
\(220\) 8.55690 + 14.8210i 0.576906 + 0.999231i
\(221\) 5.70620 9.88344i 0.383841 0.664832i
\(222\) −10.2909 8.63506i −0.690677 0.579547i
\(223\) 15.5496 + 5.65960i 1.04128 + 0.378995i 0.805365 0.592779i \(-0.201969\pi\)
0.235915 + 0.971774i \(0.424191\pi\)
\(224\) −15.2554 + 5.55250i −1.01929 + 0.370992i
\(225\) 7.69846 6.45978i 0.513231 0.430652i
\(226\) 2.21806 + 12.5793i 0.147543 + 0.836760i
\(227\) −7.29767 −0.484363 −0.242182 0.970231i \(-0.577863\pi\)
−0.242182 + 0.970231i \(0.577863\pi\)
\(228\) −13.4192 36.0412i −0.888709 2.38689i
\(229\) −23.2472 −1.53622 −0.768110 0.640318i \(-0.778802\pi\)
−0.768110 + 0.640318i \(0.778802\pi\)
\(230\) −8.91534 50.5614i −0.587860 3.33392i
\(231\) 5.41147 4.54077i 0.356049 0.298760i
\(232\) −5.36959 + 1.95437i −0.352531 + 0.128311i
\(233\) 15.2922 + 5.56591i 1.00183 + 0.364635i 0.790288 0.612735i \(-0.209931\pi\)
0.211537 + 0.977370i \(0.432153\pi\)
\(234\) −6.38326 5.35619i −0.417286 0.350145i
\(235\) −12.7135 + 22.0204i −0.829336 + 1.43645i
\(236\) 25.5462 + 44.2474i 1.66292 + 2.88026i
\(237\) 3.34730 18.9835i 0.217430 1.23311i
\(238\) −5.38578 + 30.5443i −0.349108 + 1.97989i
\(239\) 9.10607 + 15.7722i 0.589022 + 1.02022i 0.994361 + 0.106050i \(0.0338204\pi\)
−0.405338 + 0.914167i \(0.632846\pi\)
\(240\) −25.7520 + 44.6037i −1.66228 + 2.87916i
\(241\) 11.7999 + 9.90133i 0.760101 + 0.637801i 0.938153 0.346220i \(-0.112535\pi\)
−0.178052 + 0.984021i \(0.556980\pi\)
\(242\) 2.37939 + 0.866025i 0.152953 + 0.0556702i
\(243\) −9.39693 + 3.42020i −0.602813 + 0.219406i
\(244\) 3.95471 3.31839i 0.253174 0.212438i
\(245\) −3.68866 20.9194i −0.235660 1.33649i
\(246\) −17.2763 −1.10150
\(247\) 14.1079 2.59483i 0.897663 0.165105i
\(248\) −32.0506 −2.03521
\(249\) −1.74598 9.90193i −0.110647 0.627509i
\(250\) 37.9975 31.8837i 2.40317 2.01650i
\(251\) −14.4290 + 5.25173i −0.910751 + 0.331486i −0.754553 0.656239i \(-0.772146\pi\)
−0.156199 + 0.987726i \(0.549924\pi\)
\(252\) 14.6420 + 5.32926i 0.922361 + 0.335712i
\(253\) −4.00387 3.35965i −0.251721 0.211219i
\(254\) −0.648833 + 1.12381i −0.0407114 + 0.0705142i
\(255\) 13.4534 + 23.3019i 0.842482 + 1.45922i
\(256\) −5.29679 + 30.0396i −0.331049 + 1.87747i
\(257\) 0.748503 4.24497i 0.0466904 0.264794i −0.952522 0.304469i \(-0.901521\pi\)
0.999213 + 0.0396747i \(0.0126322\pi\)
\(258\) 2.67499 + 4.63322i 0.166538 + 0.288452i
\(259\) −4.68479 + 8.11430i −0.291099 + 0.504198i
\(260\) −43.1430 36.2012i −2.67561 2.24511i
\(261\) 0.879385 + 0.320070i 0.0544326 + 0.0198118i
\(262\) −13.8020 + 5.02352i −0.852691 + 0.310354i
\(263\) −20.5535 + 17.2464i −1.26738 + 1.06346i −0.272529 + 0.962148i \(0.587860\pi\)
−0.994855 + 0.101313i \(0.967696\pi\)
\(264\) 2.12061 + 12.0266i 0.130515 + 0.740186i
\(265\) 19.7219 1.21151
\(266\) −33.6168 + 19.7401i −2.06118 + 1.21034i
\(267\) 2.40879 0.147415
\(268\) −11.1382 63.1676i −0.680371 3.85858i
\(269\) 20.4158 17.1309i 1.24477 1.04449i 0.247639 0.968852i \(-0.420345\pi\)
0.997135 0.0756369i \(-0.0240990\pi\)
\(270\) −36.9222 + 13.4386i −2.24701 + 0.817846i
\(271\) 9.90167 + 3.60391i 0.601484 + 0.218922i 0.624773 0.780807i \(-0.285192\pi\)
−0.0232890 + 0.999729i \(0.507414\pi\)
\(272\) −17.6348 14.7973i −1.06926 0.897219i
\(273\) −11.6236 + 20.1327i −0.703493 + 1.21849i
\(274\) −7.16297 12.4066i −0.432731 0.749512i
\(275\) 1.74510 9.89695i 0.105233 0.596809i
\(276\) 8.00774 45.4142i 0.482009 2.73361i
\(277\) −11.1001 19.2260i −0.666943 1.15518i −0.978755 0.205035i \(-0.934269\pi\)
0.311812 0.950144i \(-0.399064\pi\)
\(278\) −15.1395 + 26.2224i −0.908007 + 1.57271i
\(279\) 4.02094 + 3.37397i 0.240728 + 0.201994i
\(280\) 78.6216 + 28.6159i 4.69854 + 1.71013i
\(281\) 10.2788 3.74119i 0.613184 0.223181i −0.0167118 0.999860i \(-0.505320\pi\)
0.629896 + 0.776680i \(0.283098\pi\)
\(282\) −25.4270 + 21.3357i −1.51415 + 1.27053i
\(283\) 0.459760 + 2.60743i 0.0273299 + 0.154995i 0.995419 0.0956119i \(-0.0304808\pi\)
−0.968089 + 0.250607i \(0.919370\pi\)
\(284\) 66.8590 3.96735
\(285\) −11.3327 + 31.8644i −0.671294 + 1.88748i
\(286\) −8.33275 −0.492726
\(287\) 2.09240 + 11.8666i 0.123510 + 0.700461i
\(288\) −3.52094 + 2.95442i −0.207474 + 0.174091i
\(289\) 4.67365 1.70107i 0.274920 0.100063i
\(290\) 8.63816 + 3.14403i 0.507250 + 0.184624i
\(291\) −13.2986 11.1589i −0.779578 0.654143i
\(292\) 30.2558 52.4046i 1.77059 3.06675i
\(293\) 13.2194 + 22.8967i 0.772286 + 1.33764i 0.936307 + 0.351182i \(0.114220\pi\)
−0.164021 + 0.986457i \(0.552447\pi\)
\(294\) 4.81521 27.3084i 0.280829 1.59266i
\(295\) 7.80200 44.2474i 0.454250 2.57618i
\(296\) −8.09879 14.0275i −0.470733 0.815333i
\(297\) −2.00000 + 3.46410i −0.116052 + 0.201008i
\(298\) −12.3648 10.3753i −0.716276 0.601027i
\(299\) 16.1630 + 5.88284i 0.934729 + 0.340213i
\(300\) 83.3201 30.3260i 4.81049 1.75087i
\(301\) 2.85844 2.39852i 0.164758 0.138248i
\(302\) 2.00253 + 11.3569i 0.115232 + 0.653516i
\(303\) 23.2763 1.33719
\(304\) −0.213011 28.9343i −0.0122170 1.65949i
\(305\) −4.53983 −0.259950
\(306\) 1.52481 + 8.64766i 0.0871679 + 0.494354i
\(307\) 4.07398 3.41847i 0.232514 0.195103i −0.519085 0.854723i \(-0.673727\pi\)
0.751599 + 0.659620i \(0.229283\pi\)
\(308\) 14.6420 5.32926i 0.834307 0.303663i
\(309\) −0.226682 0.0825054i −0.0128955 0.00469357i
\(310\) 39.4975 + 33.1424i 2.24331 + 1.88236i
\(311\) −11.8537 + 20.5312i −0.672161 + 1.16422i 0.305129 + 0.952311i \(0.401301\pi\)
−0.977290 + 0.211906i \(0.932033\pi\)
\(312\) −20.0942 34.8042i −1.13761 1.97040i
\(313\) 2.49495 14.1496i 0.141023 0.799780i −0.829452 0.558578i \(-0.811347\pi\)
0.970475 0.241202i \(-0.0775417\pi\)
\(314\) 3.41787 19.3837i 0.192882 1.09389i
\(315\) −6.85117 11.8666i −0.386020 0.668605i
\(316\) 21.2592 36.8221i 1.19593 2.07140i
\(317\) −5.23190 4.39008i −0.293853 0.246572i 0.483928 0.875108i \(-0.339210\pi\)
−0.777780 + 0.628537i \(0.783654\pi\)
\(318\) 24.1925 + 8.80536i 1.35665 + 0.493780i
\(319\) 0.879385 0.320070i 0.0492361 0.0179205i
\(320\) 4.86824 4.08494i 0.272143 0.228355i
\(321\) 5.49525 + 31.1651i 0.306715 + 1.73947i
\(322\) −46.7452 −2.60501
\(323\) −13.1464 7.46156i −0.731483 0.415172i
\(324\) −48.5262 −2.69590
\(325\) 5.74288 + 32.5695i 0.318558 + 1.80663i
\(326\) 18.5476 15.5633i 1.02725 0.861969i
\(327\) 0.583473 0.212367i 0.0322662 0.0117439i
\(328\) −19.5744 7.12452i −1.08082 0.393386i
\(329\) 17.7344 + 14.8809i 0.977730 + 0.820413i
\(330\) 9.82295 17.0138i 0.540736 0.936581i
\(331\) 1.77244 + 3.06996i 0.0974222 + 0.168740i 0.910617 0.413251i \(-0.135607\pi\)
−0.813195 + 0.581992i \(0.802274\pi\)
\(332\) 3.85117 21.8411i 0.211360 1.19868i
\(333\) −0.460637 + 2.61240i −0.0252428 + 0.143159i
\(334\) 4.18479 + 7.24827i 0.228982 + 0.396608i
\(335\) −28.2028 + 48.8487i −1.54088 + 2.66889i
\(336\) 35.9222 + 30.1423i 1.95972 + 1.64440i
\(337\) −6.41400 2.33451i −0.349393 0.127169i 0.161361 0.986895i \(-0.448412\pi\)
−0.510754 + 0.859727i \(0.670634\pi\)
\(338\) −5.16385 + 1.87949i −0.280876 + 0.102231i
\(339\) 7.72874 6.48518i 0.419768 0.352227i
\(340\) 10.3059 + 58.4475i 0.558914 + 3.16976i
\(341\) 5.24897 0.284248
\(342\) −7.03209 + 8.50692i −0.380252 + 0.460002i
\(343\) 5.38413 0.290716
\(344\) 1.12015 + 6.35267i 0.0603943 + 0.342513i
\(345\) −31.0651 + 26.0667i −1.67249 + 1.40339i
\(346\) −44.5651 + 16.2204i −2.39584 + 0.872013i
\(347\) 2.66860 + 0.971289i 0.143258 + 0.0521415i 0.412654 0.910888i \(-0.364602\pi\)
−0.269396 + 0.963029i \(0.586824\pi\)
\(348\) 6.32501 + 5.30731i 0.339056 + 0.284502i
\(349\) −9.76604 + 16.9153i −0.522764 + 0.905454i 0.476885 + 0.878966i \(0.341766\pi\)
−0.999649 + 0.0264886i \(0.991567\pi\)
\(350\) −44.9397 77.8379i −2.40213 4.16061i
\(351\) 2.28581 12.9635i 0.122007 0.691938i
\(352\) −0.798133 + 4.52644i −0.0425406 + 0.241260i
\(353\) −3.63223 6.29120i −0.193324 0.334847i 0.753026 0.657991i \(-0.228593\pi\)
−0.946350 + 0.323144i \(0.895260\pi\)
\(354\) 29.3259 50.7940i 1.55866 2.69967i
\(355\) −45.0394 37.7926i −2.39044 2.00582i
\(356\) 4.99273 + 1.81720i 0.264614 + 0.0963116i
\(357\) 23.0205 8.37879i 1.21838 0.443453i
\(358\) 15.4945 13.0015i 0.818912 0.687149i
\(359\) −3.04963 17.2953i −0.160953 0.912812i −0.953139 0.302532i \(-0.902168\pi\)
0.792186 0.610280i \(-0.208943\pi\)
\(360\) 23.6878 1.24846
\(361\) −3.57444 18.6607i −0.188129 0.982144i
\(362\) 18.3378 0.963813
\(363\) −0.347296 1.96962i −0.0182283 0.103378i
\(364\) −39.2806 + 32.9604i −2.05887 + 1.72759i
\(365\) −50.0039 + 18.1999i −2.61733 + 0.952628i
\(366\) −5.56893 2.02692i −0.291092 0.105949i
\(367\) −16.4231 13.7806i −0.857278 0.719342i 0.104102 0.994567i \(-0.466803\pi\)
−0.961380 + 0.275225i \(0.911248\pi\)
\(368\) 17.3478 30.0472i 0.904315 1.56632i
\(369\) 1.70574 + 2.95442i 0.0887971 + 0.153801i
\(370\) −4.52481 + 25.6615i −0.235234 + 1.33408i
\(371\) 3.11809 17.6836i 0.161883 0.918085i
\(372\) 23.1557 + 40.1068i 1.20057 + 2.07944i
\(373\) 18.7934 32.5511i 0.973085 1.68543i 0.286968 0.957940i \(-0.407353\pi\)
0.686116 0.727492i \(-0.259314\pi\)
\(374\) 6.72668 + 5.64436i 0.347828 + 0.291863i
\(375\) −36.8161 13.4000i −1.90118 0.691972i
\(376\) −37.6079 + 13.6881i −1.93948 + 0.705912i
\(377\) −2.35916 + 1.97957i −0.121503 + 0.101953i
\(378\) 6.21213 + 35.2308i 0.319518 + 1.81207i
\(379\) 5.38507 0.276612 0.138306 0.990390i \(-0.455834\pi\)
0.138306 + 0.990390i \(0.455834\pi\)
\(380\) −47.5283 + 57.4963i −2.43815 + 2.94950i
\(381\) 1.02498 0.0525112
\(382\) 6.71348 + 38.0740i 0.343491 + 1.94804i
\(383\) 20.3760 17.0975i 1.04116 0.873640i 0.0490271 0.998797i \(-0.484388\pi\)
0.992137 + 0.125157i \(0.0399435\pi\)
\(384\) 25.0719 9.12543i 1.27945 0.465680i
\(385\) −12.8760 4.68647i −0.656221 0.238845i
\(386\) −24.0797 20.2052i −1.22562 1.02842i
\(387\) 0.528218 0.914901i 0.0268509 0.0465070i
\(388\) −19.1459 33.1617i −0.971986 1.68353i
\(389\) −3.40508 + 19.3112i −0.172644 + 0.979114i 0.768184 + 0.640230i \(0.221161\pi\)
−0.940828 + 0.338885i \(0.889950\pi\)
\(390\) −11.2267 + 63.6697i −0.568485 + 3.22404i
\(391\) −9.06283 15.6973i −0.458327 0.793846i
\(392\) 16.7173 28.9553i 0.844354 1.46246i
\(393\) 8.88713 + 7.45718i 0.448296 + 0.376165i
\(394\) 13.8897 + 5.05542i 0.699751 + 0.254688i
\(395\) −35.1352 + 12.7882i −1.76784 + 0.643443i
\(396\) 3.37939 2.83564i 0.169820 0.142496i
\(397\) 4.11762 + 23.3522i 0.206658 + 1.17201i 0.894810 + 0.446447i \(0.147311\pi\)
−0.688153 + 0.725566i \(0.741578\pi\)
\(398\) 19.5895 0.981931
\(399\) 26.7793 + 15.1993i 1.34064 + 0.760916i
\(400\) 66.7110 3.33555
\(401\) −3.94784 22.3893i −0.197146 1.11807i −0.909329 0.416077i \(-0.863405\pi\)
0.712184 0.701993i \(-0.247706\pi\)
\(402\) −56.4056 + 47.3299i −2.81326 + 2.36060i
\(403\) −16.2319 + 5.90793i −0.808568 + 0.294295i
\(404\) 48.2452 + 17.5598i 2.40029 + 0.873633i
\(405\) 32.6896 + 27.4298i 1.62436 + 1.36300i
\(406\) 4.18479 7.24827i 0.207688 0.359726i
\(407\) 1.32635 + 2.29731i 0.0657448 + 0.113873i
\(408\) −7.35410 + 41.7072i −0.364082 + 2.06481i
\(409\) −0.0773815 + 0.438852i −0.00382627 + 0.0216999i −0.986661 0.162788i \(-0.947951\pi\)
0.982835 + 0.184488i \(0.0590625\pi\)
\(410\) 16.7554 + 29.0211i 0.827489 + 1.43325i
\(411\) −5.65776 + 9.79952i −0.279077 + 0.483375i
\(412\) −0.407604 0.342020i −0.0200812 0.0168501i
\(413\) −38.4406 13.9912i −1.89154 0.688464i
\(414\) −12.4363 + 4.52644i −0.611210 + 0.222462i
\(415\) −14.9402 + 12.5363i −0.733384 + 0.615382i
\(416\) −2.62654 14.8959i −0.128777 0.730330i
\(417\) 23.9162 1.17118
\(418\) 0.0812519 + 11.0368i 0.00397416 + 0.539829i
\(419\) −1.55344 −0.0758907 −0.0379454 0.999280i \(-0.512081\pi\)
−0.0379454 + 0.999280i \(0.512081\pi\)
\(420\) −20.9932 119.058i −1.02436 5.80945i
\(421\) 18.8286 15.7991i 0.917651 0.770001i −0.0559079 0.998436i \(-0.517805\pi\)
0.973559 + 0.228435i \(0.0733609\pi\)
\(422\) 25.1780 9.16404i 1.22565 0.446098i
\(423\) 6.15910 + 2.24173i 0.299466 + 0.108997i
\(424\) 23.7795 + 19.9533i 1.15483 + 0.969020i
\(425\) 17.4256 30.1820i 0.845266 1.46404i
\(426\) −38.3756 66.4684i −1.85930 3.22041i
\(427\) −0.717759 + 4.07061i −0.0347348 + 0.196991i
\(428\) −12.1211 + 68.7421i −0.585895 + 3.32277i
\(429\) 3.29086 + 5.69994i 0.158884 + 0.275195i
\(430\) 5.18866 8.98703i 0.250220 0.433393i
\(431\) −2.82429 2.36986i −0.136041 0.114152i 0.572228 0.820095i \(-0.306079\pi\)
−0.708269 + 0.705942i \(0.750524\pi\)
\(432\) −24.9513 9.08153i −1.20047 0.436935i
\(433\) −8.30706 + 3.02352i −0.399212 + 0.145301i −0.533821 0.845598i \(-0.679244\pi\)
0.134609 + 0.990899i \(0.457022\pi\)
\(434\) 35.9616 30.1753i 1.72621 1.44846i
\(435\) −1.26083 7.15052i −0.0604522 0.342841i
\(436\) 1.36959 0.0655912
\(437\) 7.63429 21.4654i 0.365197 1.02683i
\(438\) −69.4647 −3.31915
\(439\) −0.975185 5.53055i −0.0465430 0.263959i 0.952653 0.304061i \(-0.0983427\pi\)
−0.999196 + 0.0401024i \(0.987232\pi\)
\(440\) 18.1459 15.2262i 0.865072 0.725881i
\(441\) −5.14543 + 1.87278i −0.245020 + 0.0891802i
\(442\) −27.1545 9.88344i −1.29161 0.470107i
\(443\) 2.83228 + 2.37657i 0.134566 + 0.112914i 0.707586 0.706627i \(-0.249784\pi\)
−0.573021 + 0.819541i \(0.694228\pi\)
\(444\) −11.7023 + 20.2690i −0.555368 + 0.961926i
\(445\) −2.33615 4.04633i −0.110744 0.191815i
\(446\) 7.27584 41.2634i 0.344521 1.95388i
\(447\) −2.21389 + 12.5556i −0.104713 + 0.593859i
\(448\) −2.89306 5.01092i −0.136684 0.236744i
\(449\) −4.57145 + 7.91799i −0.215740 + 0.373673i −0.953501 0.301389i \(-0.902550\pi\)
0.737761 + 0.675062i \(0.235883\pi\)
\(450\) −19.4932 16.3567i −0.918918 0.771064i
\(451\) 3.20574 + 1.16679i 0.150952 + 0.0549421i
\(452\) 20.9119 7.61132i 0.983615 0.358007i
\(453\) 6.97771 5.85499i 0.327841 0.275092i
\(454\) 3.20873 + 18.1976i 0.150593 + 0.854056i
\(455\) 45.0925 2.11397
\(456\) −45.9026 + 26.9544i −2.14959 + 1.26225i
\(457\) 4.99319 0.233572 0.116786 0.993157i \(-0.462741\pi\)
0.116786 + 0.993157i \(0.462741\pi\)
\(458\) 10.2216 + 57.9697i 0.477625 + 2.70875i
\(459\) −10.6263 + 8.91652i −0.495993 + 0.416188i
\(460\) −84.0540 + 30.5932i −3.91904 + 1.42641i
\(461\) −5.94996 2.16561i −0.277117 0.100862i 0.199723 0.979852i \(-0.435996\pi\)
−0.476840 + 0.878990i \(0.658218\pi\)
\(462\) −13.7023 11.4976i −0.637490 0.534918i
\(463\) −14.6609 + 25.3934i −0.681350 + 1.18013i 0.293219 + 0.956045i \(0.405274\pi\)
−0.974569 + 0.224088i \(0.928060\pi\)
\(464\) 3.10607 + 5.37987i 0.144196 + 0.249754i
\(465\) 7.07192 40.1068i 0.327952 1.85991i
\(466\) 7.15539 40.5802i 0.331467 1.87984i
\(467\) −13.9841 24.2212i −0.647107 1.12082i −0.983810 0.179212i \(-0.942645\pi\)
0.336703 0.941611i \(-0.390688\pi\)
\(468\) −7.25877 + 12.5726i −0.335537 + 0.581167i
\(469\) 39.3410 + 33.0110i 1.81660 + 1.52431i
\(470\) 60.5005 + 22.0204i 2.79068 + 1.01572i
\(471\) −14.6091 + 5.31726i −0.673150 + 0.245007i
\(472\) 54.1737 45.4571i 2.49355 2.09233i
\(473\) −0.183448 1.04039i −0.00843496 0.0478371i
\(474\) −48.8093 −2.24189
\(475\) 43.0827 7.92409i 1.97677 0.363582i
\(476\) 54.0360 2.47674
\(477\) −0.882789 5.00654i −0.0404201 0.229234i
\(478\) 35.3259 29.6420i 1.61577 1.35579i
\(479\) 23.7062 8.62835i 1.08316 0.394239i 0.262080 0.965046i \(-0.415592\pi\)
0.821084 + 0.570807i \(0.193369\pi\)
\(480\) 33.5107 + 12.1969i 1.52955 + 0.556710i
\(481\) −6.68732 5.61133i −0.304915 0.255854i
\(482\) 19.5018 33.7781i 0.888283 1.53855i
\(483\) 18.4611 + 31.9756i 0.840009 + 1.45494i
\(484\) 0.766044 4.34445i 0.0348202 0.197475i
\(485\) −5.84730 + 33.1617i −0.265512 + 1.50579i
\(486\) 12.6604 + 21.9285i 0.574289 + 0.994698i
\(487\) −2.10472 + 3.64549i −0.0953741 + 0.165193i −0.909765 0.415124i \(-0.863738\pi\)
0.814391 + 0.580317i \(0.197071\pi\)
\(488\) −5.47384 4.59310i −0.247789 0.207920i
\(489\) −17.9709 6.54087i −0.812672 0.295789i
\(490\) −50.5433 + 18.3963i −2.28331 + 0.831058i
\(491\) 21.9918 18.4534i 0.992478 0.832788i 0.00655361 0.999979i \(-0.497914\pi\)
0.985925 + 0.167190i \(0.0534695\pi\)
\(492\) 5.22668 + 29.6420i 0.235637 + 1.33636i
\(493\) 3.24535 0.146163
\(494\) −12.6736 34.0388i −0.570214 1.53148i
\(495\) −3.87939 −0.174365
\(496\) 6.05051 + 34.3141i 0.271676 + 1.54075i
\(497\) −41.0073 + 34.4092i −1.83943 + 1.54347i
\(498\) −23.9240 + 8.70761i −1.07206 + 0.390197i
\(499\) −4.29339 1.56266i −0.192198 0.0699545i 0.244128 0.969743i \(-0.421498\pi\)
−0.436326 + 0.899789i \(0.643721\pi\)
\(500\) −66.2003 55.5487i −2.96057 2.48421i
\(501\) 3.30541 5.72513i 0.147675 0.255780i
\(502\) 19.4402 + 33.6713i 0.867657 + 1.50283i
\(503\) −5.51326 + 31.2673i −0.245824 + 1.39414i 0.572747 + 0.819732i \(0.305878\pi\)
−0.818571 + 0.574405i \(0.805233\pi\)
\(504\) 3.74510 21.2395i 0.166820 0.946083i
\(505\) −22.5744 39.1001i −1.00455 1.73993i
\(506\) −6.61721 + 11.4613i −0.294171 + 0.509519i
\(507\) 3.32501 + 2.79001i 0.147669 + 0.123909i
\(508\) 2.12449 + 0.773249i 0.0942588 + 0.0343074i
\(509\) −18.6830 + 6.80007i −0.828111 + 0.301408i −0.721083 0.692848i \(-0.756356\pi\)
−0.107028 + 0.994256i \(0.534133\pi\)
\(510\) 52.1908 43.7933i 2.31105 1.93920i
\(511\) 8.41312 + 47.7132i 0.372175 + 2.11071i
\(512\) 50.5553 2.23425
\(513\) −17.1925 2.90117i −0.759069 0.128090i
\(514\) −10.9145 −0.481417
\(515\) 0.0812519 + 0.460802i 0.00358039 + 0.0203054i
\(516\) 7.14022 5.99135i 0.314330 0.263755i
\(517\) 6.15910 2.24173i 0.270877 0.0985911i
\(518\) 22.2939 + 8.11430i 0.979536 + 0.356522i
\(519\) 28.6955 + 24.0784i 1.25959 + 1.05692i
\(520\) −38.9766 + 67.5094i −1.70924 + 2.96048i
\(521\) −3.59879 6.23329i −0.157666 0.273085i 0.776361 0.630289i \(-0.217064\pi\)
−0.934027 + 0.357204i \(0.883730\pi\)
\(522\) 0.411474 2.33359i 0.0180097 0.102138i
\(523\) −2.68836 + 15.2464i −0.117554 + 0.666680i 0.867900 + 0.496738i \(0.165469\pi\)
−0.985454 + 0.169942i \(0.945642\pi\)
\(524\) 12.7947 + 22.1611i 0.558940 + 0.968113i
\(525\) −35.4962 + 61.4812i −1.54918 + 2.68326i
\(526\) 52.0433 + 43.6695i 2.26920 + 1.90408i
\(527\) 17.1052 + 6.22578i 0.745114 + 0.271199i
\(528\) 12.4757 4.54077i 0.542933 0.197611i
\(529\) 3.30793 2.77569i 0.143823 0.120682i
\(530\) −8.67159 49.1790i −0.376670 2.13620i
\(531\) −11.5817 −0.502604
\(532\) 44.0394 + 51.7063i 1.90935 + 2.24175i
\(533\) −11.2267 −0.486282
\(534\) −1.05913 6.00660i −0.0458328 0.259931i
\(535\) 47.0223 39.4564i 2.03295 1.70585i
\(536\) −83.4270 + 30.3649i −3.60350 + 1.31157i
\(537\) −15.0128 5.46421i −0.647850 0.235798i
\(538\) −51.6946 43.3770i −2.22871 1.87011i
\(539\) −2.73783 + 4.74205i −0.117927 + 0.204255i
\(540\) 34.2276 + 59.2840i 1.47292 + 2.55118i
\(541\) −0.366592 + 2.07905i −0.0157610 + 0.0893852i −0.991674 0.128777i \(-0.958895\pi\)
0.975913 + 0.218162i \(0.0700061\pi\)
\(542\) 4.63310 26.2756i 0.199009 1.12864i
\(543\) −7.24216 12.5438i −0.310791 0.538306i
\(544\) −7.96972 + 13.8040i −0.341699 + 0.591840i
\(545\) −0.922618 0.774169i −0.0395206 0.0331617i
\(546\) 55.3141 + 20.1327i 2.36722 + 0.861599i
\(547\) 23.3926 8.51423i 1.00020 0.364042i 0.210537 0.977586i \(-0.432479\pi\)
0.789661 + 0.613544i \(0.210257\pi\)
\(548\) −19.1197 + 16.0434i −0.816755 + 0.685339i
\(549\) 0.203211 + 1.15247i 0.00867283 + 0.0491860i
\(550\) −25.4466 −1.08504
\(551\) 2.64496 + 3.10543i 0.112679 + 0.132296i
\(552\) −63.8289 −2.71674
\(553\) 5.91147 + 33.5256i 0.251381 + 1.42566i
\(554\) −43.0617 + 36.1331i −1.82952 + 1.53515i
\(555\) 19.3405 7.03936i 0.820958 0.298804i
\(556\) 49.5715 + 18.0426i 2.10230 + 0.765175i
\(557\) 30.7165 + 25.7742i 1.30150 + 1.09209i 0.989884 + 0.141878i \(0.0453142\pi\)
0.311615 + 0.950209i \(0.399130\pi\)
\(558\) 6.64543 11.5102i 0.281323 0.487267i
\(559\) 1.73829 + 3.01081i 0.0735220 + 0.127344i
\(560\) 15.7947 89.5764i 0.667449 3.78529i
\(561\) 1.20439 6.83045i 0.0508495 0.288382i
\(562\) −13.8486 23.9865i −0.584170 1.01181i
\(563\) 14.0826 24.3918i 0.593511 1.02799i −0.400245 0.916408i \(-0.631075\pi\)
0.993755 0.111582i \(-0.0355919\pi\)
\(564\) 44.2995 + 37.1717i 1.86535 + 1.56521i
\(565\) −18.3897 6.69329i −0.773658 0.281589i
\(566\) 6.29978 2.29293i 0.264800 0.0963792i
\(567\) 29.7631 24.9742i 1.24993 1.04882i
\(568\) −16.0697 91.1358i −0.674270 3.82397i
\(569\) −19.1111 −0.801180 −0.400590 0.916257i \(-0.631195\pi\)
−0.400590 + 0.916257i \(0.631195\pi\)
\(570\) 84.4407 + 14.2490i 3.53683 + 0.596826i
\(571\) −34.1985 −1.43116 −0.715582 0.698529i \(-0.753838\pi\)
−0.715582 + 0.698529i \(0.753838\pi\)
\(572\) 2.52094 + 14.2970i 0.105406 + 0.597787i
\(573\) 23.3928 19.6289i 0.977249 0.820009i
\(574\) 28.6707 10.4353i 1.19669 0.435560i
\(575\) 49.3585 + 17.9650i 2.05839 + 0.749193i
\(576\) −1.25490 1.05299i −0.0522875 0.0438744i
\(577\) 13.6544 23.6500i 0.568438 0.984564i −0.428283 0.903645i \(-0.640881\pi\)
0.996721 0.0809189i \(-0.0257855\pi\)
\(578\) −6.29679 10.9064i −0.261912 0.453645i
\(579\) −4.31139 + 24.4511i −0.179175 + 1.01615i
\(580\) 2.78106 15.7722i 0.115477 0.654904i
\(581\) 8.87851 + 15.3780i 0.368343 + 0.637988i
\(582\) −21.9786 + 38.0681i −0.911044 + 1.57797i
\(583\) −3.89440 3.26779i −0.161290 0.135338i
\(584\) −78.7051 28.6463i −3.25684 1.18539i
\(585\) 11.9966 4.36640i 0.495998 0.180529i
\(586\) 51.2832 43.0317i 2.11849 1.77762i
\(587\) −7.47359 42.3848i −0.308468 1.74941i −0.606713 0.794921i \(-0.707512\pi\)
0.298245 0.954489i \(-0.403599\pi\)
\(588\) −48.3114 −1.99233
\(589\) 7.98339 + 21.4417i 0.328950 + 0.883491i
\(590\) −113.767 −4.68370
\(591\) −2.02734 11.4976i −0.0833937 0.472949i
\(592\) −13.4893 + 11.3189i −0.554408 + 0.465203i
\(593\) 9.84137 3.58196i 0.404136 0.147094i −0.131951 0.991256i \(-0.542124\pi\)
0.536087 + 0.844163i \(0.319902\pi\)
\(594\) 9.51754 + 3.46410i 0.390509 + 0.142134i
\(595\) −36.4013 30.5443i −1.49231 1.25219i
\(596\) −14.0608 + 24.3540i −0.575952 + 0.997578i
\(597\) −7.73648 13.4000i −0.316633 0.548425i
\(598\) 7.56283 42.8910i 0.309267 1.75394i
\(599\) −5.47148 + 31.0303i −0.223558 + 1.26786i 0.641863 + 0.766819i \(0.278162\pi\)
−0.865422 + 0.501044i \(0.832949\pi\)
\(600\) −61.3637 106.285i −2.50516 4.33907i
\(601\) 4.53730 7.85884i 0.185080 0.320569i −0.758523 0.651646i \(-0.774079\pi\)
0.943604 + 0.331077i \(0.107412\pi\)
\(602\) −7.23783 6.07326i −0.294992 0.247527i
\(603\) 13.6630 + 4.97291i 0.556399 + 0.202513i
\(604\) 18.8799 6.87170i 0.768210 0.279606i
\(605\) −2.97178 + 2.49362i −0.120820 + 0.101380i
\(606\) −10.2344 58.0423i −0.415745 2.35781i
\(607\) −4.55438 −0.184856 −0.0924282 0.995719i \(-0.529463\pi\)
−0.0924282 + 0.995719i \(0.529463\pi\)
\(608\) −19.7041 + 3.62414i −0.799109 + 0.146978i
\(609\) −6.61081 −0.267884
\(610\) 1.99613 + 11.3206i 0.0808209 + 0.458358i
\(611\) −16.5232 + 13.8646i −0.668458 + 0.560903i
\(612\) 14.3760 5.23243i 0.581115 0.211508i
\(613\) 5.37686 + 1.95702i 0.217169 + 0.0790432i 0.448314 0.893876i \(-0.352025\pi\)
−0.231144 + 0.972919i \(0.574247\pi\)
\(614\) −10.3157 8.65588i −0.416307 0.349323i
\(615\) 13.2344 22.9227i 0.533663 0.924332i
\(616\) −10.7836 18.6777i −0.434483 0.752547i
\(617\) 0.257588 1.46086i 0.0103701 0.0588119i −0.979184 0.202977i \(-0.934938\pi\)
0.989554 + 0.144165i \(0.0460495\pi\)
\(618\) −0.106067 + 0.601535i −0.00426663 + 0.0241973i
\(619\) 18.9623 + 32.8436i 0.762159 + 1.32010i 0.941736 + 0.336354i \(0.109194\pi\)
−0.179577 + 0.983744i \(0.557473\pi\)
\(620\) 44.9149 77.7949i 1.80383 3.12432i
\(621\) −16.0155 13.4386i −0.642679 0.539272i
\(622\) 56.4090 + 20.5312i 2.26180 + 0.823226i
\(623\) −3.99747 + 1.45496i −0.160155 + 0.0582918i
\(624\) −33.4688 + 28.0837i −1.33983 + 1.12425i
\(625\) 4.47090 + 25.3558i 0.178836 + 1.01423i
\(626\) −36.3806 −1.45406
\(627\) 7.51754 4.41436i 0.300222 0.176293i
\(628\) −34.2918 −1.36839
\(629\) 1.59745 + 9.05958i 0.0636945 + 0.361229i
\(630\) −26.5783 + 22.3019i −1.05891 + 0.888527i
\(631\) 9.11633 3.31807i 0.362916 0.132090i −0.154125 0.988051i \(-0.549256\pi\)
0.517041 + 0.855961i \(0.327034\pi\)
\(632\) −55.3021 20.1283i −2.19980 0.800661i
\(633\) −16.2121 13.6036i −0.644374 0.540694i
\(634\) −8.64677 + 14.9767i −0.343407 + 0.594799i
\(635\) −0.994070 1.72178i −0.0394485 0.0683268i
\(636\) 7.78880 44.1725i 0.308846 1.75155i
\(637\) 3.12907 17.7458i 0.123978 0.703116i
\(638\) −1.18479 2.05212i −0.0469064 0.0812442i
\(639\) −7.57785 + 13.1252i −0.299775 + 0.519226i
\(640\) −39.6450 33.2661i −1.56711 1.31496i
\(641\) −37.7768 13.7496i −1.49209 0.543077i −0.538093 0.842885i \(-0.680855\pi\)
−0.954000 + 0.299808i \(0.903077\pi\)
\(642\) 75.2978 27.4062i 2.97177 1.08163i
\(643\) −28.7429 + 24.1181i −1.13351 + 0.951127i −0.999207 0.0398140i \(-0.987323\pi\)
−0.134301 + 0.990941i \(0.542879\pi\)
\(644\) 14.1420 + 80.2034i 0.557274 + 3.16046i
\(645\) −8.19665 −0.322743
\(646\) −12.8259 + 36.0628i −0.504630 + 1.41887i
\(647\) 40.2704 1.58319 0.791597 0.611043i \(-0.209250\pi\)
0.791597 + 0.611043i \(0.209250\pi\)
\(648\) 11.6634 + 66.1463i 0.458181 + 2.59847i
\(649\) −8.87211 + 7.44459i −0.348261 + 0.292226i
\(650\) 78.6908 28.6411i 3.08651 1.12340i
\(651\) −34.8435 12.6820i −1.36562 0.497046i
\(652\) −32.3141 27.1147i −1.26552 1.06189i
\(653\) 21.0214 36.4102i 0.822631 1.42484i −0.0810847 0.996707i \(-0.525838\pi\)
0.903716 0.428132i \(-0.140828\pi\)
\(654\) −0.786112 1.36159i −0.0307394 0.0532422i
\(655\) 3.90760 22.1611i 0.152683 0.865907i
\(656\) −3.93242 + 22.3019i −0.153535 + 0.870741i
\(657\) 6.85844 + 11.8792i 0.267573 + 0.463450i
\(658\) 29.3097 50.7660i 1.14261 1.97906i
\(659\) 1.81521 + 1.52314i 0.0707104 + 0.0593331i 0.677458 0.735562i \(-0.263082\pi\)
−0.606747 + 0.794895i \(0.707526\pi\)
\(660\) −32.1634 11.7065i −1.25196 0.455676i
\(661\) −20.3100 + 7.39225i −0.789969 + 0.287525i −0.705323 0.708886i \(-0.749198\pi\)
−0.0846460 + 0.996411i \(0.526976\pi\)
\(662\) 6.87598 5.76963i 0.267243 0.224243i
\(663\) 3.96349 + 22.4781i 0.153929 + 0.872975i
\(664\) −30.6973 −1.19129
\(665\) −0.439693 59.7255i −0.0170505 2.31605i
\(666\) 6.71688 0.260274
\(667\) 0.849356 + 4.81694i 0.0328872 + 0.186512i
\(668\) 11.1702 9.37295i 0.432190 0.362650i
\(669\) −31.0993 + 11.3192i −1.20237 + 0.437626i
\(670\) 134.211 + 48.8487i 5.18501 + 1.88719i
\(671\) 0.896459 + 0.752219i 0.0346074 + 0.0290391i
\(672\) 16.2344 28.1188i 0.626256 1.08471i
\(673\) 10.3910 + 17.9977i 0.400543 + 0.693762i 0.993792 0.111258i \(-0.0354880\pi\)
−0.593248 + 0.805020i \(0.702155\pi\)
\(674\) −3.00118 + 17.0205i −0.115601 + 0.655607i
\(675\) 6.98040 39.5878i 0.268676 1.52374i
\(676\) 4.78699 + 8.29131i 0.184115 + 0.318896i
\(677\) −9.13610 + 15.8242i −0.351129 + 0.608173i −0.986447 0.164077i \(-0.947535\pi\)
0.635319 + 0.772250i \(0.280869\pi\)
\(678\) −19.5699 16.4211i −0.751576 0.630647i
\(679\) 28.8097 + 10.4859i 1.10562 + 0.402412i
\(680\) 77.1931 28.0960i 2.96022 1.07743i
\(681\) 11.1807 9.38170i 0.428444 0.359507i
\(682\) −2.30793 13.0889i −0.0883753 0.501201i
\(683\) 42.7657 1.63638 0.818192 0.574945i \(-0.194977\pi\)
0.818192 + 0.574945i \(0.194977\pi\)
\(684\) 16.7233 + 9.49173i 0.639431 + 0.362925i
\(685\) 21.9486 0.838613
\(686\) −2.36736 13.4260i −0.0903864 0.512607i
\(687\) 35.6168 29.8860i 1.35887 1.14022i
\(688\) 6.58987 2.39852i 0.251236 0.0914426i
\(689\) 15.7211 + 5.72200i 0.598925 + 0.217991i
\(690\) 78.6596 + 66.0033i 2.99452 + 2.51270i
\(691\) −24.9518 + 43.2177i −0.949210 + 1.64408i −0.202116 + 0.979362i \(0.564782\pi\)
−0.747094 + 0.664719i \(0.768551\pi\)
\(692\) 41.3127 + 71.5558i 1.57047 + 2.72014i
\(693\) −0.613341 + 3.47843i −0.0232989 + 0.132135i
\(694\) 1.24867 7.08153i 0.0473987 0.268811i
\(695\) −23.1951 40.1750i −0.879839 1.52393i
\(696\) 5.71419 9.89727i 0.216596 0.375155i
\(697\) 9.06283 + 7.60462i 0.343279 + 0.288046i
\(698\) 46.4744 + 16.9153i 1.75908 + 0.640253i
\(699\) −30.5844 + 11.1318i −1.15681 + 0.421044i
\(700\) −119.955 + 100.654i −4.53388 + 3.80438i
\(701\) −3.88578 22.0374i −0.146764 0.832340i −0.965934 0.258789i \(-0.916677\pi\)
0.819170 0.573551i \(-0.194435\pi\)
\(702\) −33.3310 −1.25800
\(703\) −7.36706 + 8.91215i −0.277854 + 0.336128i
\(704\) −1.63816 −0.0617403
\(705\) −8.83069 50.0813i −0.332583 1.88617i
\(706\) −14.0908 + 11.8236i −0.530314 + 0.444987i
\(707\) −38.6279 + 14.0594i −1.45275 + 0.528759i
\(708\) −96.0224 34.9493i −3.60874 1.31347i
\(709\) −5.31727 4.46172i −0.199694 0.167563i 0.537457 0.843291i \(-0.319385\pi\)
−0.737151 + 0.675728i \(0.763829\pi\)
\(710\) −74.4368 + 128.928i −2.79356 + 4.83859i
\(711\) 4.81908 + 8.34689i 0.180730 + 0.313033i
\(712\) 1.27703 7.24238i 0.0478586 0.271420i
\(713\) −4.76399 + 27.0179i −0.178413 + 1.01183i
\(714\) −31.0155 53.7204i −1.16073 2.01044i
\(715\) 6.38326 11.0561i 0.238720 0.413476i
\(716\) −26.9950 22.6515i −1.00885 0.846526i
\(717\) −34.2276 12.4578i −1.27825 0.465246i
\(718\) −41.7870 + 15.2092i −1.55948 + 0.567604i
\(719\) −19.3871 + 16.2677i −0.723018 + 0.606684i −0.928218 0.372036i \(-0.878660\pi\)
0.205201 + 0.978720i \(0.434215\pi\)
\(720\) −4.47178 25.3607i −0.166653 0.945139i
\(721\) 0.426022 0.0158659
\(722\) −44.9612 + 17.1183i −1.67328 + 0.637077i
\(723\) −30.8075 −1.14574
\(724\) −5.54782 31.4632i −0.206183 1.16932i
\(725\) −7.20439 + 6.04520i −0.267564 + 0.224513i
\(726\) −4.75877 + 1.73205i −0.176615 + 0.0642824i
\(727\) 35.9102 + 13.0702i 1.33184 + 0.484748i 0.907232 0.420631i \(-0.138191\pi\)
0.424603 + 0.905379i \(0.360414\pi\)
\(728\) 54.3696 + 45.6215i 2.01507 + 1.69085i
\(729\) −6.50000 + 11.2583i −0.240741 + 0.416975i
\(730\) 67.3701 + 116.688i 2.49348 + 4.31883i
\(731\) 0.636183 3.60797i 0.0235301 0.133446i
\(732\) −1.79292 + 10.1681i −0.0662682 + 0.375826i
\(733\) −23.2927 40.3441i −0.860334 1.49014i −0.871606 0.490206i \(-0.836921\pi\)
0.0112719 0.999936i \(-0.496412\pi\)
\(734\) −27.1425 + 47.0122i −1.00185 + 1.73525i
\(735\) 32.5449 + 27.3084i 1.20044 + 1.00729i
\(736\) −22.5744 8.21643i −0.832105 0.302861i
\(737\) 13.6630 4.97291i 0.503282 0.183180i
\(738\) 6.61721 5.55250i 0.243583 0.204390i
\(739\) −8.88507 50.3897i −0.326842 1.85362i −0.496398 0.868095i \(-0.665344\pi\)
0.169556 0.985521i \(-0.445767\pi\)
\(740\) 45.3979 1.66886
\(741\) −18.2787 + 22.1122i −0.671484 + 0.812314i
\(742\) −45.4671 −1.66915
\(743\) 1.43598 + 8.14387i 0.0526812 + 0.298770i 0.999752 0.0222539i \(-0.00708423\pi\)
−0.947071 + 0.321024i \(0.895973\pi\)
\(744\) 49.1043 41.2034i 1.80025 1.51059i
\(745\) 23.2383 8.45805i 0.851385 0.309879i
\(746\) −89.4334 32.5511i −3.27439 1.19178i
\(747\) 3.85117 + 3.23151i 0.140907 + 0.118235i
\(748\) 7.64930 13.2490i 0.279686 0.484431i
\(749\) −27.9440 48.4005i −1.02105 1.76852i
\(750\) −17.2267 + 97.6974i −0.629029 + 3.56740i
\(751\) 3.26723 18.5294i 0.119223 0.676146i −0.865350 0.501169i \(-0.832904\pi\)
0.984572 0.174977i \(-0.0559852\pi\)
\(752\) 21.7545 + 37.6799i 0.793305 + 1.37404i
\(753\) 15.3550 26.5957i 0.559569 0.969201i
\(754\) 5.97359 + 5.01244i 0.217545 + 0.182542i
\(755\) −16.6027 6.04288i −0.604233 0.219923i
\(756\) 58.5681 21.3170i 2.13010 0.775293i
\(757\) 30.4800 25.5757i 1.10781 0.929566i 0.109888 0.993944i \(-0.464951\pi\)
0.997926 + 0.0643776i \(0.0205062\pi\)
\(758\) −2.36777 13.4283i −0.0860014 0.487738i
\(759\) 10.4534 0.379433
\(760\) 89.7971 + 50.9667i 3.25728 + 1.84875i
\(761\) −7.02910 −0.254805 −0.127402 0.991851i \(-0.540664\pi\)
−0.127402 + 0.991851i \(0.540664\pi\)
\(762\) −0.450675 2.55590i −0.0163262 0.0925906i
\(763\) −0.840022 + 0.704862i −0.0304109 + 0.0255177i
\(764\) 63.2948 23.0374i 2.28992 0.833465i