Properties

Label 209.2.j.a.188.1
Level $209$
Weight $2$
Character 209.188
Analytic conductor $1.669$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(23,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.j (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 188.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 209.188
Dual form 209.2.j.a.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.439693 + 2.49362i) q^{2} +(-1.53209 - 1.28558i) q^{3} +(-4.14543 - 1.50881i) q^{4} +(3.64543 - 1.32683i) q^{5} +(3.87939 - 3.25519i) q^{6} +(1.76604 + 3.05888i) q^{7} +(3.05303 - 5.28801i) q^{8} +(0.173648 + 0.984808i) q^{9} +O(q^{10})\) \(q+(-0.439693 + 2.49362i) q^{2} +(-1.53209 - 1.28558i) q^{3} +(-4.14543 - 1.50881i) q^{4} +(3.64543 - 1.32683i) q^{5} +(3.87939 - 3.25519i) q^{6} +(1.76604 + 3.05888i) q^{7} +(3.05303 - 5.28801i) q^{8} +(0.173648 + 0.984808i) q^{9} +(1.70574 + 9.67372i) q^{10} +(-0.500000 + 0.866025i) q^{11} +(4.41147 + 7.64090i) q^{12} +(2.52094 - 2.11532i) q^{13} +(-8.40420 + 3.05888i) q^{14} +(-7.29086 - 2.65366i) q^{15} +(5.08512 + 4.26692i) q^{16} +(-0.602196 + 3.41523i) q^{17} -2.53209 q^{18} +(2.77719 + 3.35965i) q^{19} -17.1138 q^{20} +(1.22668 - 6.95686i) q^{21} +(-1.93969 - 1.62760i) q^{22} +(4.91147 + 1.78763i) q^{23} +(-11.4757 + 4.17680i) q^{24} +(7.69846 - 6.45978i) q^{25} +(4.16637 + 7.21637i) q^{26} +(-2.00000 + 3.46410i) q^{27} +(-2.70574 - 15.3450i) q^{28} +(-0.162504 - 0.921605i) q^{29} +(9.82295 - 17.0138i) q^{30} +(-2.62449 - 4.54574i) q^{31} +(-3.52094 + 2.95442i) q^{32} +(1.87939 - 0.684040i) q^{33} +(-8.25150 - 3.00330i) q^{34} +(10.4966 + 8.80769i) q^{35} +(0.766044 - 4.34445i) q^{36} -2.65270 q^{37} +(-9.59879 + 5.44804i) q^{38} -6.58172 q^{39} +(4.11334 - 23.3279i) q^{40} +(-2.61334 - 2.19285i) q^{41} +(16.8084 + 6.11776i) q^{42} +(0.992726 - 0.361323i) q^{43} +(3.37939 - 2.83564i) q^{44} +(1.93969 + 3.35965i) q^{45} +(-6.61721 + 11.4613i) q^{46} +(-1.13816 - 6.45480i) q^{47} +(-2.30541 - 13.0746i) q^{48} +(-2.73783 + 4.74205i) q^{49} +(12.7233 + 22.0374i) q^{50} +(5.31315 - 4.45826i) q^{51} +(-13.6420 + 4.96529i) q^{52} +(4.77719 + 1.73875i) q^{53} +(-7.75877 - 6.51038i) q^{54} +(-0.673648 + 3.82045i) q^{55} +21.5672 q^{56} +(0.0641778 - 8.71756i) q^{57} +2.36959 q^{58} +(-2.01114 + 11.4058i) q^{59} +(26.2199 + 22.0011i) q^{60} +(-1.09967 - 0.400247i) q^{61} +(12.4893 - 4.54574i) q^{62} +(-2.70574 + 2.27038i) q^{63} +(0.819078 + 1.41868i) q^{64} +(6.38326 - 11.0561i) q^{65} +(0.879385 + 4.98724i) q^{66} +(-2.52481 - 14.3189i) q^{67} +(7.64930 - 13.2490i) q^{68} +(-5.22668 - 9.05288i) q^{69} +(-26.5783 + 22.3019i) q^{70} +(-14.2417 + 5.18355i) q^{71} +(5.73783 + 2.08840i) q^{72} +(-10.5077 - 8.81704i) q^{73} +(1.16637 - 6.61484i) q^{74} -20.0993 q^{75} +(-6.44356 - 18.1174i) q^{76} -3.53209 q^{77} +(2.89393 - 16.4123i) q^{78} +(-7.38326 - 6.19529i) q^{79} +(24.1989 + 8.80769i) q^{80} +(10.3366 - 3.76222i) q^{81} +(6.61721 - 5.55250i) q^{82} +(-2.51367 - 4.35381i) q^{83} +(-15.5817 + 26.9883i) q^{84} +(2.33615 + 13.2490i) q^{85} +(0.464508 + 2.63435i) q^{86} +(-0.935822 + 1.62089i) q^{87} +(3.05303 + 5.28801i) q^{88} +(-0.922618 + 0.774169i) q^{89} +(-9.23055 + 3.35965i) q^{90} +(10.9226 + 3.97551i) q^{91} +(-17.6630 - 14.8210i) q^{92} +(-1.82295 + 10.3385i) q^{93} +16.5963 q^{94} +(14.5817 + 8.56250i) q^{95} +9.19253 q^{96} +(1.50727 - 8.54818i) q^{97} +(-10.6211 - 8.91215i) q^{98} +(-0.939693 - 0.342020i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8} - 3 q^{11} + 6 q^{12} + 12 q^{13} - 12 q^{14} - 12 q^{15} + 9 q^{16} - 3 q^{17} - 6 q^{18} + 6 q^{19} - 30 q^{20} - 6 q^{21} - 6 q^{22} + 9 q^{23} - 30 q^{24} + 18 q^{25} + 6 q^{26} - 12 q^{27} - 6 q^{28} - 6 q^{29} + 18 q^{30} - 3 q^{31} - 18 q^{32} - 9 q^{34} + 21 q^{35} - 18 q^{37} - 15 q^{38} + 24 q^{39} + 18 q^{40} - 9 q^{41} + 24 q^{42} - 12 q^{43} + 9 q^{44} + 6 q^{45} - 9 q^{46} + 27 q^{47} - 18 q^{48} + 3 q^{49} + 21 q^{50} - 12 q^{51} - 24 q^{52} + 18 q^{53} - 24 q^{54} - 3 q^{55} + 30 q^{56} - 18 q^{57} - 6 q^{59} + 60 q^{60} - 21 q^{61} + 15 q^{62} - 6 q^{63} - 12 q^{64} + 3 q^{65} - 6 q^{66} + 12 q^{67} + 6 q^{68} - 18 q^{69} - 54 q^{70} - 42 q^{71} + 15 q^{72} - 15 q^{73} - 12 q^{74} - 12 q^{75} - 9 q^{76} - 12 q^{77} + 42 q^{78} - 9 q^{79} + 51 q^{80} + 9 q^{82} + 6 q^{83} - 30 q^{84} + 18 q^{85} - 30 q^{86} - 24 q^{87} + 6 q^{88} + 21 q^{89} - 18 q^{90} + 39 q^{91} - 45 q^{92} + 30 q^{93} + 72 q^{94} + 24 q^{95} + 27 q^{97} - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.439693 + 2.49362i −0.310910 + 1.76326i 0.283383 + 0.959007i \(0.408543\pi\)
−0.594292 + 0.804249i \(0.702568\pi\)
\(3\) −1.53209 1.28558i −0.884552 0.742227i 0.0825579 0.996586i \(-0.473691\pi\)
−0.967110 + 0.254359i \(0.918135\pi\)
\(4\) −4.14543 1.50881i −2.07271 0.754407i
\(5\) 3.64543 1.32683i 1.63029 0.593375i 0.644984 0.764196i \(-0.276864\pi\)
0.985302 + 0.170821i \(0.0546420\pi\)
\(6\) 3.87939 3.25519i 1.58375 1.32893i
\(7\) 1.76604 + 3.05888i 0.667502 + 1.15615i 0.978600 + 0.205770i \(0.0659698\pi\)
−0.311098 + 0.950378i \(0.600697\pi\)
\(8\) 3.05303 5.28801i 1.07941 1.86959i
\(9\) 0.173648 + 0.984808i 0.0578827 + 0.328269i
\(10\) 1.70574 + 9.67372i 0.539401 + 3.05910i
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) 4.41147 + 7.64090i 1.27348 + 2.20574i
\(13\) 2.52094 2.11532i 0.699184 0.586685i −0.222357 0.974965i \(-0.571375\pi\)
0.921541 + 0.388280i \(0.126931\pi\)
\(14\) −8.40420 + 3.05888i −2.24612 + 0.817520i
\(15\) −7.29086 2.65366i −1.88249 0.685171i
\(16\) 5.08512 + 4.26692i 1.27128 + 1.06673i
\(17\) −0.602196 + 3.41523i −0.146054 + 0.828314i 0.820461 + 0.571703i \(0.193717\pi\)
−0.966515 + 0.256611i \(0.917394\pi\)
\(18\) −2.53209 −0.596819
\(19\) 2.77719 + 3.35965i 0.637131 + 0.770756i
\(20\) −17.1138 −3.82676
\(21\) 1.22668 6.95686i 0.267684 1.51811i
\(22\) −1.93969 1.62760i −0.413544 0.347004i
\(23\) 4.91147 + 1.78763i 1.02411 + 0.372747i 0.798837 0.601548i \(-0.205449\pi\)
0.225277 + 0.974295i \(0.427671\pi\)
\(24\) −11.4757 + 4.17680i −2.34246 + 0.852585i
\(25\) 7.69846 6.45978i 1.53969 1.29196i
\(26\) 4.16637 + 7.21637i 0.817093 + 1.41525i
\(27\) −2.00000 + 3.46410i −0.384900 + 0.666667i
\(28\) −2.70574 15.3450i −0.511336 2.89993i
\(29\) −0.162504 0.921605i −0.0301762 0.171138i 0.965995 0.258560i \(-0.0832481\pi\)
−0.996171 + 0.0874226i \(0.972137\pi\)
\(30\) 9.82295 17.0138i 1.79342 3.10629i
\(31\) −2.62449 4.54574i −0.471371 0.816439i 0.528092 0.849187i \(-0.322908\pi\)
−0.999464 + 0.0327477i \(0.989574\pi\)
\(32\) −3.52094 + 2.95442i −0.622421 + 0.522273i
\(33\) 1.87939 0.684040i 0.327159 0.119076i
\(34\) −8.25150 3.00330i −1.41512 0.515062i
\(35\) 10.4966 + 8.80769i 1.77425 + 1.48877i
\(36\) 0.766044 4.34445i 0.127674 0.724076i
\(37\) −2.65270 −0.436102 −0.218051 0.975937i \(-0.569970\pi\)
−0.218051 + 0.975937i \(0.569970\pi\)
\(38\) −9.59879 + 5.44804i −1.55713 + 0.883789i
\(39\) −6.58172 −1.05392
\(40\) 4.11334 23.3279i 0.650376 3.68847i
\(41\) −2.61334 2.19285i −0.408135 0.342466i 0.415493 0.909596i \(-0.363609\pi\)
−0.823628 + 0.567130i \(0.808054\pi\)
\(42\) 16.8084 + 6.11776i 2.59359 + 0.943990i
\(43\) 0.992726 0.361323i 0.151389 0.0551012i −0.265214 0.964190i \(-0.585443\pi\)
0.416603 + 0.909088i \(0.363220\pi\)
\(44\) 3.37939 2.83564i 0.509461 0.427489i
\(45\) 1.93969 + 3.35965i 0.289152 + 0.500826i
\(46\) −6.61721 + 11.4613i −0.975655 + 1.68988i
\(47\) −1.13816 6.45480i −0.166017 0.941530i −0.948010 0.318242i \(-0.896908\pi\)
0.781993 0.623288i \(-0.214203\pi\)
\(48\) −2.30541 13.0746i −0.332757 1.88716i
\(49\) −2.73783 + 4.74205i −0.391118 + 0.677436i
\(50\) 12.7233 + 22.0374i 1.79934 + 3.11655i
\(51\) 5.31315 4.45826i 0.743990 0.624281i
\(52\) −13.6420 + 4.96529i −1.89181 + 0.688562i
\(53\) 4.77719 + 1.73875i 0.656197 + 0.238836i 0.648594 0.761135i \(-0.275357\pi\)
0.00760361 + 0.999971i \(0.497580\pi\)
\(54\) −7.75877 6.51038i −1.05583 0.885951i
\(55\) −0.673648 + 3.82045i −0.0908347 + 0.515149i
\(56\) 21.5672 2.88203
\(57\) 0.0641778 8.71756i 0.00850055 1.15467i
\(58\) 2.36959 0.311142
\(59\) −2.01114 + 11.4058i −0.261829 + 1.48490i 0.516087 + 0.856536i \(0.327388\pi\)
−0.777916 + 0.628368i \(0.783723\pi\)
\(60\) 26.2199 + 22.0011i 3.38497 + 2.84033i
\(61\) −1.09967 0.400247i −0.140798 0.0512464i 0.270660 0.962675i \(-0.412758\pi\)
−0.411458 + 0.911429i \(0.634980\pi\)
\(62\) 12.4893 4.54574i 1.58615 0.577310i
\(63\) −2.70574 + 2.27038i −0.340891 + 0.286041i
\(64\) 0.819078 + 1.41868i 0.102385 + 0.177336i
\(65\) 6.38326 11.0561i 0.791745 1.37134i
\(66\) 0.879385 + 4.98724i 0.108245 + 0.613887i
\(67\) −2.52481 14.3189i −0.308455 1.74934i −0.606778 0.794871i \(-0.707538\pi\)
0.298323 0.954465i \(-0.403573\pi\)
\(68\) 7.64930 13.2490i 0.927614 1.60667i
\(69\) −5.22668 9.05288i −0.629219 1.08984i
\(70\) −26.5783 + 22.3019i −3.17672 + 2.66558i
\(71\) −14.2417 + 5.18355i −1.69018 + 0.615175i −0.994648 0.103322i \(-0.967053\pi\)
−0.695530 + 0.718497i \(0.744831\pi\)
\(72\) 5.73783 + 2.08840i 0.676209 + 0.246120i
\(73\) −10.5077 8.81704i −1.22984 1.03196i −0.998250 0.0591428i \(-0.981163\pi\)
−0.231589 0.972814i \(-0.574392\pi\)
\(74\) 1.16637 6.61484i 0.135588 0.768959i
\(75\) −20.0993 −2.32086
\(76\) −6.44356 18.1174i −0.739127 2.07821i
\(77\) −3.53209 −0.402519
\(78\) 2.89393 16.4123i 0.327673 1.85833i
\(79\) −7.38326 6.19529i −0.830681 0.697024i 0.124766 0.992186i \(-0.460182\pi\)
−0.955447 + 0.295162i \(0.904626\pi\)
\(80\) 24.1989 + 8.80769i 2.70552 + 0.984730i
\(81\) 10.3366 3.76222i 1.14851 0.418025i
\(82\) 6.61721 5.55250i 0.730749 0.613171i
\(83\) −2.51367 4.35381i −0.275911 0.477892i 0.694453 0.719538i \(-0.255646\pi\)
−0.970365 + 0.241645i \(0.922313\pi\)
\(84\) −15.5817 + 26.9883i −1.70010 + 2.94467i
\(85\) 2.33615 + 13.2490i 0.253391 + 1.43705i
\(86\) 0.464508 + 2.63435i 0.0500891 + 0.284070i
\(87\) −0.935822 + 1.62089i −0.100331 + 0.173778i
\(88\) 3.05303 + 5.28801i 0.325454 + 0.563704i
\(89\) −0.922618 + 0.774169i −0.0977974 + 0.0820617i −0.690375 0.723451i \(-0.742555\pi\)
0.592578 + 0.805513i \(0.298110\pi\)
\(90\) −9.23055 + 3.35965i −0.972986 + 0.354138i
\(91\) 10.9226 + 3.97551i 1.14500 + 0.416746i
\(92\) −17.6630 14.8210i −1.84149 1.54520i
\(93\) −1.82295 + 10.3385i −0.189031 + 1.07205i
\(94\) 16.5963 1.71177
\(95\) 14.5817 + 8.56250i 1.49605 + 0.878494i
\(96\) 9.19253 0.938209
\(97\) 1.50727 8.54818i 0.153040 0.867936i −0.807515 0.589847i \(-0.799188\pi\)
0.960555 0.278089i \(-0.0897009\pi\)
\(98\) −10.6211 8.91215i −1.07289 0.900263i
\(99\) −0.939693 0.342020i −0.0944427 0.0343743i
\(100\) −41.6600 + 15.1630i −4.16600 + 1.51630i
\(101\) −8.91534 + 7.48086i −0.887110 + 0.744374i −0.967628 0.252380i \(-0.918787\pi\)
0.0805184 + 0.996753i \(0.474342\pi\)
\(102\) 8.78106 + 15.2092i 0.869454 + 1.50594i
\(103\) 0.0603074 0.104455i 0.00594226 0.0102923i −0.863039 0.505137i \(-0.831442\pi\)
0.868981 + 0.494845i \(0.164775\pi\)
\(104\) −3.48932 19.7889i −0.342156 1.94046i
\(105\) −4.75877 26.9883i −0.464408 2.63379i
\(106\) −6.43629 + 11.1480i −0.625148 + 1.08279i
\(107\) 7.91147 + 13.7031i 0.764831 + 1.32473i 0.940336 + 0.340248i \(0.110511\pi\)
−0.175505 + 0.984479i \(0.556156\pi\)
\(108\) 13.5175 11.3426i 1.30073 1.09144i
\(109\) −0.291737 + 0.106183i −0.0279433 + 0.0101705i −0.355954 0.934503i \(-0.615844\pi\)
0.328011 + 0.944674i \(0.393622\pi\)
\(110\) −9.23055 3.35965i −0.880099 0.320330i
\(111\) 4.06418 + 3.41025i 0.385755 + 0.323687i
\(112\) −4.07145 + 23.0904i −0.384716 + 2.18183i
\(113\) −5.04458 −0.474554 −0.237277 0.971442i \(-0.576255\pi\)
−0.237277 + 0.971442i \(0.576255\pi\)
\(114\) 21.7101 + 3.99308i 2.03333 + 0.373986i
\(115\) 20.2763 1.89078
\(116\) −0.716881 + 4.06564i −0.0665608 + 0.377485i
\(117\) 2.52094 + 2.11532i 0.233061 + 0.195562i
\(118\) −27.5574 10.0301i −2.53686 0.923342i
\(119\) −11.5103 + 4.18939i −1.05514 + 0.384041i
\(120\) −36.2918 + 30.4524i −3.31297 + 2.77991i
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 1.48158 2.56617i 0.134136 0.232331i
\(123\) 1.18479 + 6.71929i 0.106829 + 0.605858i
\(124\) 4.02094 + 22.8039i 0.361091 + 2.04785i
\(125\) 9.79473 16.9650i 0.876067 1.51739i
\(126\) −4.47178 7.74535i −0.398378 0.690011i
\(127\) −0.392589 + 0.329421i −0.0348366 + 0.0292314i −0.660040 0.751231i \(-0.729461\pi\)
0.625203 + 0.780462i \(0.285016\pi\)
\(128\) −12.5360 + 4.56272i −1.10803 + 0.403291i
\(129\) −1.98545 0.722645i −0.174809 0.0636254i
\(130\) 24.7631 + 20.7787i 2.17187 + 1.82241i
\(131\) −1.00727 + 5.71253i −0.0880059 + 0.499106i 0.908661 + 0.417534i \(0.137105\pi\)
−0.996667 + 0.0815728i \(0.974006\pi\)
\(132\) −8.82295 −0.767939
\(133\) −5.37211 + 14.4284i −0.465821 + 1.25110i
\(134\) 36.8161 3.18043
\(135\) −2.69459 + 15.2818i −0.231914 + 1.31525i
\(136\) 16.2212 + 13.6112i 1.39096 + 1.16715i
\(137\) 5.31655 + 1.93507i 0.454224 + 0.165324i 0.558993 0.829173i \(-0.311188\pi\)
−0.104769 + 0.994497i \(0.533410\pi\)
\(138\) 24.8726 9.05288i 2.11729 0.770632i
\(139\) −9.16044 + 7.68653i −0.776979 + 0.651963i −0.942486 0.334246i \(-0.891518\pi\)
0.165507 + 0.986209i \(0.447074\pi\)
\(140\) −30.2237 52.3491i −2.55437 4.42430i
\(141\) −6.55438 + 11.3525i −0.551978 + 0.956054i
\(142\) −6.66385 37.7926i −0.559218 3.17148i
\(143\) 0.571452 + 3.24086i 0.0477872 + 0.271015i
\(144\) −3.31908 + 5.74881i −0.276590 + 0.479068i
\(145\) −1.81521 3.14403i −0.150745 0.261098i
\(146\) 26.6065 22.3255i 2.20197 1.84767i
\(147\) 10.2909 3.74557i 0.848776 0.308929i
\(148\) 10.9966 + 4.00243i 0.903915 + 0.328998i
\(149\) 4.88326 + 4.09754i 0.400052 + 0.335683i 0.820514 0.571627i \(-0.193687\pi\)
−0.420462 + 0.907310i \(0.638132\pi\)
\(150\) 8.83750 50.1199i 0.721579 4.09228i
\(151\) −4.55438 −0.370630 −0.185315 0.982679i \(-0.559331\pi\)
−0.185315 + 0.982679i \(0.559331\pi\)
\(152\) 26.2447 4.42869i 2.12873 0.359214i
\(153\) −3.46791 −0.280364
\(154\) 1.55303 8.80769i 0.125147 0.709744i
\(155\) −15.5988 13.0889i −1.25293 1.05133i
\(156\) 27.2841 + 9.93058i 2.18447 + 0.795083i
\(157\) 7.30453 2.65863i 0.582965 0.212182i −0.0336675 0.999433i \(-0.510719\pi\)
0.616632 + 0.787251i \(0.288496\pi\)
\(158\) 18.6951 15.6870i 1.48730 1.24799i
\(159\) −5.08378 8.80536i −0.403170 0.698311i
\(160\) −8.91534 + 15.4418i −0.704820 + 1.22078i
\(161\) 3.20574 + 18.1806i 0.252647 + 1.43284i
\(162\) 4.83662 + 27.4298i 0.380001 + 2.15509i
\(163\) 4.78106 8.28104i 0.374481 0.648621i −0.615768 0.787928i \(-0.711154\pi\)
0.990249 + 0.139307i \(0.0444874\pi\)
\(164\) 7.52481 + 13.0334i 0.587589 + 1.01773i
\(165\) 5.94356 4.98724i 0.462706 0.388256i
\(166\) 11.9620 4.35381i 0.928430 0.337921i
\(167\) −3.10607 1.13052i −0.240355 0.0874819i 0.219034 0.975717i \(-0.429709\pi\)
−0.459389 + 0.888235i \(0.651932\pi\)
\(168\) −33.0428 27.7262i −2.54931 2.13912i
\(169\) −0.376859 + 2.13727i −0.0289892 + 0.164406i
\(170\) −34.0651 −2.61267
\(171\) −2.82635 + 3.31839i −0.216137 + 0.253764i
\(172\) −4.66044 −0.355356
\(173\) −3.25237 + 18.4451i −0.247273 + 1.40236i 0.567880 + 0.823112i \(0.307764\pi\)
−0.815153 + 0.579246i \(0.803347\pi\)
\(174\) −3.63041 3.04628i −0.275221 0.230938i
\(175\) 33.3555 + 12.1404i 2.52144 + 0.917729i
\(176\) −6.23783 + 2.27038i −0.470194 + 0.171137i
\(177\) 17.7442 14.8892i 1.33374 1.11914i
\(178\) −1.52481 2.64106i −0.114290 0.197956i
\(179\) 3.99407 6.91793i 0.298531 0.517071i −0.677269 0.735735i \(-0.736837\pi\)
0.975800 + 0.218665i \(0.0701701\pi\)
\(180\) −2.97178 16.8538i −0.221504 1.25621i
\(181\) −1.25759 7.13214i −0.0934758 0.530128i −0.995204 0.0978237i \(-0.968812\pi\)
0.901728 0.432304i \(-0.142299\pi\)
\(182\) −14.7160 + 25.4889i −1.09082 + 1.88936i
\(183\) 1.17024 + 2.02692i 0.0865070 + 0.149834i
\(184\) 24.4479 20.5142i 1.80232 1.51233i
\(185\) −9.67024 + 3.51968i −0.710971 + 0.258772i
\(186\) −24.9786 9.09148i −1.83152 0.666620i
\(187\) −2.65657 2.22913i −0.194268 0.163010i
\(188\) −5.02094 + 28.4752i −0.366190 + 2.07677i
\(189\) −14.1284 −1.02769
\(190\) −27.7631 + 32.5964i −2.01415 + 2.36479i
\(191\) −15.2686 −1.10479 −0.552397 0.833581i \(-0.686287\pi\)
−0.552397 + 0.833581i \(0.686287\pi\)
\(192\) 0.568926 3.22654i 0.0410587 0.232855i
\(193\) 9.50980 + 7.97967i 0.684530 + 0.574389i 0.917326 0.398136i \(-0.130343\pi\)
−0.232796 + 0.972526i \(0.574787\pi\)
\(194\) 20.6532 + 7.51714i 1.48281 + 0.539699i
\(195\) −23.9932 + 8.73281i −1.71819 + 0.625369i
\(196\) 18.5043 15.5270i 1.32174 1.10907i
\(197\) −2.91875 5.05542i −0.207952 0.360184i 0.743117 0.669161i \(-0.233347\pi\)
−0.951069 + 0.308978i \(0.900013\pi\)
\(198\) 1.26604 2.19285i 0.0899739 0.155839i
\(199\) −1.34343 7.61895i −0.0952329 0.540093i −0.994676 0.103054i \(-0.967138\pi\)
0.899443 0.437039i \(-0.143973\pi\)
\(200\) −10.6557 60.4315i −0.753472 4.27315i
\(201\) −14.5398 + 25.1837i −1.02556 + 1.77632i
\(202\) −14.7344 25.5208i −1.03671 1.79563i
\(203\) 2.53209 2.12467i 0.177718 0.149123i
\(204\) −28.7520 + 10.4649i −2.01304 + 0.732687i
\(205\) −12.4363 4.52644i −0.868588 0.316140i
\(206\) 0.233956 + 0.196312i 0.0163005 + 0.0136777i
\(207\) −0.907604 + 5.14728i −0.0630828 + 0.357760i
\(208\) 21.8452 1.51469
\(209\) −4.29813 + 0.725293i −0.297308 + 0.0501696i
\(210\) 69.3911 4.78844
\(211\) 1.83750 10.4210i 0.126498 0.717408i −0.853908 0.520424i \(-0.825774\pi\)
0.980407 0.196985i \(-0.0631149\pi\)
\(212\) −17.1800 14.4158i −1.17993 0.990079i
\(213\) 28.4834 + 10.3671i 1.95165 + 0.710342i
\(214\) −37.6489 + 13.7031i −2.57363 + 0.936723i
\(215\) 3.13950 2.63435i 0.214112 0.179661i
\(216\) 12.2121 + 21.1520i 0.830930 + 1.43921i
\(217\) 9.26991 16.0560i 0.629283 1.08995i
\(218\) −0.136507 0.774169i −0.00924541 0.0524333i
\(219\) 4.76382 + 27.0170i 0.321909 + 1.82564i
\(220\) 8.55690 14.8210i 0.576906 0.999231i
\(221\) 5.70620 + 9.88344i 0.383841 + 0.664832i
\(222\) −10.2909 + 8.63506i −0.690677 + 0.579547i
\(223\) 15.5496 5.65960i 1.04128 0.378995i 0.235915 0.971774i \(-0.424191\pi\)
0.805365 + 0.592779i \(0.201969\pi\)
\(224\) −15.2554 5.55250i −1.01929 0.370992i
\(225\) 7.69846 + 6.45978i 0.513231 + 0.430652i
\(226\) 2.21806 12.5793i 0.147543 0.836760i
\(227\) −7.29767 −0.484363 −0.242182 0.970231i \(-0.577863\pi\)
−0.242182 + 0.970231i \(0.577863\pi\)
\(228\) −13.4192 + 36.0412i −0.888709 + 2.38689i
\(229\) −23.2472 −1.53622 −0.768110 0.640318i \(-0.778802\pi\)
−0.768110 + 0.640318i \(0.778802\pi\)
\(230\) −8.91534 + 50.5614i −0.587860 + 3.33392i
\(231\) 5.41147 + 4.54077i 0.356049 + 0.298760i
\(232\) −5.36959 1.95437i −0.352531 0.128311i
\(233\) 15.2922 5.56591i 1.00183 0.364635i 0.211537 0.977370i \(-0.432153\pi\)
0.790288 + 0.612735i \(0.209931\pi\)
\(234\) −6.38326 + 5.35619i −0.417286 + 0.350145i
\(235\) −12.7135 22.0204i −0.829336 1.43645i
\(236\) 25.5462 44.2474i 1.66292 2.88026i
\(237\) 3.34730 + 18.9835i 0.217430 + 1.23311i
\(238\) −5.38578 30.5443i −0.349108 1.97989i
\(239\) 9.10607 15.7722i 0.589022 1.02022i −0.405338 0.914167i \(-0.632846\pi\)
0.994361 0.106050i \(-0.0338204\pi\)
\(240\) −25.7520 44.6037i −1.66228 2.87916i
\(241\) 11.7999 9.90133i 0.760101 0.637801i −0.178052 0.984021i \(-0.556980\pi\)
0.938153 + 0.346220i \(0.112535\pi\)
\(242\) 2.37939 0.866025i 0.152953 0.0556702i
\(243\) −9.39693 3.42020i −0.602813 0.219406i
\(244\) 3.95471 + 3.31839i 0.253174 + 0.212438i
\(245\) −3.68866 + 20.9194i −0.235660 + 1.33649i
\(246\) −17.2763 −1.10150
\(247\) 14.1079 + 2.59483i 0.897663 + 0.165105i
\(248\) −32.0506 −2.03521
\(249\) −1.74598 + 9.90193i −0.110647 + 0.627509i
\(250\) 37.9975 + 31.8837i 2.40317 + 2.01650i
\(251\) −14.4290 5.25173i −0.910751 0.331486i −0.156199 0.987726i \(-0.549924\pi\)
−0.754553 + 0.656239i \(0.772146\pi\)
\(252\) 14.6420 5.32926i 0.922361 0.335712i
\(253\) −4.00387 + 3.35965i −0.251721 + 0.211219i
\(254\) −0.648833 1.12381i −0.0407114 0.0705142i
\(255\) 13.4534 23.3019i 0.842482 1.45922i
\(256\) −5.29679 30.0396i −0.331049 1.87747i
\(257\) 0.748503 + 4.24497i 0.0466904 + 0.264794i 0.999213 0.0396747i \(-0.0126322\pi\)
−0.952522 + 0.304469i \(0.901521\pi\)
\(258\) 2.67499 4.63322i 0.166538 0.288452i
\(259\) −4.68479 8.11430i −0.291099 0.504198i
\(260\) −43.1430 + 36.2012i −2.67561 + 2.24511i
\(261\) 0.879385 0.320070i 0.0544326 0.0198118i
\(262\) −13.8020 5.02352i −0.852691 0.310354i
\(263\) −20.5535 17.2464i −1.26738 1.06346i −0.994855 0.101313i \(-0.967696\pi\)
−0.272529 0.962148i \(-0.587860\pi\)
\(264\) 2.12061 12.0266i 0.130515 0.740186i
\(265\) 19.7219 1.21151
\(266\) −33.6168 19.7401i −2.06118 1.21034i
\(267\) 2.40879 0.147415
\(268\) −11.1382 + 63.1676i −0.680371 + 3.85858i
\(269\) 20.4158 + 17.1309i 1.24477 + 1.04449i 0.997135 + 0.0756369i \(0.0240990\pi\)
0.247639 + 0.968852i \(0.420345\pi\)
\(270\) −36.9222 13.4386i −2.24701 0.817846i
\(271\) 9.90167 3.60391i 0.601484 0.218922i −0.0232890 0.999729i \(-0.507414\pi\)
0.624773 + 0.780807i \(0.285192\pi\)
\(272\) −17.6348 + 14.7973i −1.06926 + 0.897219i
\(273\) −11.6236 20.1327i −0.703493 1.21849i
\(274\) −7.16297 + 12.4066i −0.432731 + 0.749512i
\(275\) 1.74510 + 9.89695i 0.105233 + 0.596809i
\(276\) 8.00774 + 45.4142i 0.482009 + 2.73361i
\(277\) −11.1001 + 19.2260i −0.666943 + 1.15518i 0.311812 + 0.950144i \(0.399064\pi\)
−0.978755 + 0.205035i \(0.934269\pi\)
\(278\) −15.1395 26.2224i −0.908007 1.57271i
\(279\) 4.02094 3.37397i 0.240728 0.201994i
\(280\) 78.6216 28.6159i 4.69854 1.71013i
\(281\) 10.2788 + 3.74119i 0.613184 + 0.223181i 0.629896 0.776680i \(-0.283098\pi\)
−0.0167118 + 0.999860i \(0.505320\pi\)
\(282\) −25.4270 21.3357i −1.51415 1.27053i
\(283\) 0.459760 2.60743i 0.0273299 0.154995i −0.968089 0.250607i \(-0.919370\pi\)
0.995419 + 0.0956119i \(0.0304808\pi\)
\(284\) 66.8590 3.96735
\(285\) −11.3327 31.8644i −0.671294 1.88748i
\(286\) −8.33275 −0.492726
\(287\) 2.09240 11.8666i 0.123510 0.700461i
\(288\) −3.52094 2.95442i −0.207474 0.174091i
\(289\) 4.67365 + 1.70107i 0.274920 + 0.100063i
\(290\) 8.63816 3.14403i 0.507250 0.184624i
\(291\) −13.2986 + 11.1589i −0.779578 + 0.654143i
\(292\) 30.2558 + 52.4046i 1.77059 + 3.06675i
\(293\) 13.2194 22.8967i 0.772286 1.33764i −0.164021 0.986457i \(-0.552447\pi\)
0.936307 0.351182i \(-0.114220\pi\)
\(294\) 4.81521 + 27.3084i 0.280829 + 1.59266i
\(295\) 7.80200 + 44.2474i 0.454250 + 2.57618i
\(296\) −8.09879 + 14.0275i −0.470733 + 0.815333i
\(297\) −2.00000 3.46410i −0.116052 0.201008i
\(298\) −12.3648 + 10.3753i −0.716276 + 0.601027i
\(299\) 16.1630 5.88284i 0.934729 0.340213i
\(300\) 83.3201 + 30.3260i 4.81049 + 1.75087i
\(301\) 2.85844 + 2.39852i 0.164758 + 0.138248i
\(302\) 2.00253 11.3569i 0.115232 0.653516i
\(303\) 23.2763 1.33719
\(304\) −0.213011 + 28.9343i −0.0122170 + 1.65949i
\(305\) −4.53983 −0.259950
\(306\) 1.52481 8.64766i 0.0871679 0.494354i
\(307\) 4.07398 + 3.41847i 0.232514 + 0.195103i 0.751599 0.659620i \(-0.229283\pi\)
−0.519085 + 0.854723i \(0.673727\pi\)
\(308\) 14.6420 + 5.32926i 0.834307 + 0.303663i
\(309\) −0.226682 + 0.0825054i −0.0128955 + 0.00469357i
\(310\) 39.4975 33.1424i 2.24331 1.88236i
\(311\) −11.8537 20.5312i −0.672161 1.16422i −0.977290 0.211906i \(-0.932033\pi\)
0.305129 0.952311i \(-0.401301\pi\)
\(312\) −20.0942 + 34.8042i −1.13761 + 1.97040i
\(313\) 2.49495 + 14.1496i 0.141023 + 0.799780i 0.970475 + 0.241202i \(0.0775417\pi\)
−0.829452 + 0.558578i \(0.811347\pi\)
\(314\) 3.41787 + 19.3837i 0.192882 + 1.09389i
\(315\) −6.85117 + 11.8666i −0.386020 + 0.668605i
\(316\) 21.2592 + 36.8221i 1.19593 + 2.07140i
\(317\) −5.23190 + 4.39008i −0.293853 + 0.246572i −0.777780 0.628537i \(-0.783654\pi\)
0.483928 + 0.875108i \(0.339210\pi\)
\(318\) 24.1925 8.80536i 1.35665 0.493780i
\(319\) 0.879385 + 0.320070i 0.0492361 + 0.0179205i
\(320\) 4.86824 + 4.08494i 0.272143 + 0.228355i
\(321\) 5.49525 31.1651i 0.306715 1.73947i
\(322\) −46.7452 −2.60501
\(323\) −13.1464 + 7.46156i −0.731483 + 0.415172i
\(324\) −48.5262 −2.69590
\(325\) 5.74288 32.5695i 0.318558 1.80663i
\(326\) 18.5476 + 15.5633i 1.02725 + 0.861969i
\(327\) 0.583473 + 0.212367i 0.0322662 + 0.0117439i
\(328\) −19.5744 + 7.12452i −1.08082 + 0.393386i
\(329\) 17.7344 14.8809i 0.977730 0.820413i
\(330\) 9.82295 + 17.0138i 0.540736 + 0.936581i
\(331\) 1.77244 3.06996i 0.0974222 0.168740i −0.813195 0.581992i \(-0.802274\pi\)
0.910617 + 0.413251i \(0.135607\pi\)
\(332\) 3.85117 + 21.8411i 0.211360 + 1.19868i
\(333\) −0.460637 2.61240i −0.0252428 0.143159i
\(334\) 4.18479 7.24827i 0.228982 0.396608i
\(335\) −28.2028 48.8487i −1.54088 2.66889i
\(336\) 35.9222 30.1423i 1.95972 1.64440i
\(337\) −6.41400 + 2.33451i −0.349393 + 0.127169i −0.510754 0.859727i \(-0.670634\pi\)
0.161361 + 0.986895i \(0.448412\pi\)
\(338\) −5.16385 1.87949i −0.280876 0.102231i
\(339\) 7.72874 + 6.48518i 0.419768 + 0.352227i
\(340\) 10.3059 58.4475i 0.558914 3.16976i
\(341\) 5.24897 0.284248
\(342\) −7.03209 8.50692i −0.380252 0.460002i
\(343\) 5.38413 0.290716
\(344\) 1.12015 6.35267i 0.0603943 0.342513i
\(345\) −31.0651 26.0667i −1.67249 1.40339i
\(346\) −44.5651 16.2204i −2.39584 0.872013i
\(347\) 2.66860 0.971289i 0.143258 0.0521415i −0.269396 0.963029i \(-0.586824\pi\)
0.412654 + 0.910888i \(0.364602\pi\)
\(348\) 6.32501 5.30731i 0.339056 0.284502i
\(349\) −9.76604 16.9153i −0.522764 0.905454i −0.999649 0.0264886i \(-0.991567\pi\)
0.476885 0.878966i \(-0.341766\pi\)
\(350\) −44.9397 + 77.8379i −2.40213 + 4.16061i
\(351\) 2.28581 + 12.9635i 0.122007 + 0.691938i
\(352\) −0.798133 4.52644i −0.0425406 0.241260i
\(353\) −3.63223 + 6.29120i −0.193324 + 0.334847i −0.946350 0.323144i \(-0.895260\pi\)
0.753026 + 0.657991i \(0.228593\pi\)
\(354\) 29.3259 + 50.7940i 1.55866 + 2.69967i
\(355\) −45.0394 + 37.7926i −2.39044 + 2.00582i
\(356\) 4.99273 1.81720i 0.264614 0.0963116i
\(357\) 23.0205 + 8.37879i 1.21838 + 0.443453i
\(358\) 15.4945 + 13.0015i 0.818912 + 0.687149i
\(359\) −3.04963 + 17.2953i −0.160953 + 0.912812i 0.792186 + 0.610280i \(0.208943\pi\)
−0.953139 + 0.302532i \(0.902168\pi\)
\(360\) 23.6878 1.24846
\(361\) −3.57444 + 18.6607i −0.188129 + 0.982144i
\(362\) 18.3378 0.963813
\(363\) −0.347296 + 1.96962i −0.0182283 + 0.103378i
\(364\) −39.2806 32.9604i −2.05887 1.72759i
\(365\) −50.0039 18.1999i −2.61733 0.952628i
\(366\) −5.56893 + 2.02692i −0.291092 + 0.105949i
\(367\) −16.4231 + 13.7806i −0.857278 + 0.719342i −0.961380 0.275225i \(-0.911248\pi\)
0.104102 + 0.994567i \(0.466803\pi\)
\(368\) 17.3478 + 30.0472i 0.904315 + 1.56632i
\(369\) 1.70574 2.95442i 0.0887971 0.153801i
\(370\) −4.52481 25.6615i −0.235234 1.33408i
\(371\) 3.11809 + 17.6836i 0.161883 + 0.918085i
\(372\) 23.1557 40.1068i 1.20057 2.07944i
\(373\) 18.7934 + 32.5511i 0.973085 + 1.68543i 0.686116 + 0.727492i \(0.259314\pi\)
0.286968 + 0.957940i \(0.407353\pi\)
\(374\) 6.72668 5.64436i 0.347828 0.291863i
\(375\) −36.8161 + 13.4000i −1.90118 + 0.691972i
\(376\) −37.6079 13.6881i −1.93948 0.705912i
\(377\) −2.35916 1.97957i −0.121503 0.101953i
\(378\) 6.21213 35.2308i 0.319518 1.81207i
\(379\) 5.38507 0.276612 0.138306 0.990390i \(-0.455834\pi\)
0.138306 + 0.990390i \(0.455834\pi\)
\(380\) −47.5283 57.4963i −2.43815 2.94950i
\(381\) 1.02498 0.0525112
\(382\) 6.71348 38.0740i 0.343491 1.94804i
\(383\) 20.3760 + 17.0975i 1.04116 + 0.873640i 0.992137 0.125157i \(-0.0399435\pi\)
0.0490271 + 0.998797i \(0.484388\pi\)
\(384\) 25.0719 + 9.12543i 1.27945 + 0.465680i
\(385\) −12.8760 + 4.68647i −0.656221 + 0.238845i
\(386\) −24.0797 + 20.2052i −1.22562 + 1.02842i
\(387\) 0.528218 + 0.914901i 0.0268509 + 0.0465070i
\(388\) −19.1459 + 33.1617i −0.971986 + 1.68353i
\(389\) −3.40508 19.3112i −0.172644 0.979114i −0.940828 0.338885i \(-0.889950\pi\)
0.768184 0.640230i \(-0.221161\pi\)
\(390\) −11.2267 63.6697i −0.568485 3.22404i
\(391\) −9.06283 + 15.6973i −0.458327 + 0.793846i
\(392\) 16.7173 + 28.9553i 0.844354 + 1.46246i
\(393\) 8.88713 7.45718i 0.448296 0.376165i
\(394\) 13.8897 5.05542i 0.699751 0.254688i
\(395\) −35.1352 12.7882i −1.76784 0.643443i
\(396\) 3.37939 + 2.83564i 0.169820 + 0.142496i
\(397\) 4.11762 23.3522i 0.206658 1.17201i −0.688153 0.725566i \(-0.741578\pi\)
0.894810 0.446447i \(-0.147311\pi\)
\(398\) 19.5895 0.981931
\(399\) 26.7793 15.1993i 1.34064 0.760916i
\(400\) 66.7110 3.33555
\(401\) −3.94784 + 22.3893i −0.197146 + 1.11807i 0.712184 + 0.701993i \(0.247706\pi\)
−0.909329 + 0.416077i \(0.863405\pi\)
\(402\) −56.4056 47.3299i −2.81326 2.36060i
\(403\) −16.2319 5.90793i −0.808568 0.294295i
\(404\) 48.2452 17.5598i 2.40029 0.873633i
\(405\) 32.6896 27.4298i 1.62436 1.36300i
\(406\) 4.18479 + 7.24827i 0.207688 + 0.359726i
\(407\) 1.32635 2.29731i 0.0657448 0.113873i
\(408\) −7.35410 41.7072i −0.364082 2.06481i
\(409\) −0.0773815 0.438852i −0.00382627 0.0216999i 0.982835 0.184488i \(-0.0590625\pi\)
−0.986661 + 0.162788i \(0.947951\pi\)
\(410\) 16.7554 29.0211i 0.827489 1.43325i
\(411\) −5.65776 9.79952i −0.279077 0.483375i
\(412\) −0.407604 + 0.342020i −0.0200812 + 0.0168501i
\(413\) −38.4406 + 13.9912i −1.89154 + 0.688464i
\(414\) −12.4363 4.52644i −0.611210 0.222462i
\(415\) −14.9402 12.5363i −0.733384 0.615382i
\(416\) −2.62654 + 14.8959i −0.128777 + 0.730330i
\(417\) 23.9162 1.17118
\(418\) 0.0812519 11.0368i 0.00397416 0.539829i
\(419\) −1.55344 −0.0758907 −0.0379454 0.999280i \(-0.512081\pi\)
−0.0379454 + 0.999280i \(0.512081\pi\)
\(420\) −20.9932 + 119.058i −1.02436 + 5.80945i
\(421\) 18.8286 + 15.7991i 0.917651 + 0.770001i 0.973559 0.228435i \(-0.0733609\pi\)
−0.0559079 + 0.998436i \(0.517805\pi\)
\(422\) 25.1780 + 9.16404i 1.22565 + 0.446098i
\(423\) 6.15910 2.24173i 0.299466 0.108997i
\(424\) 23.7795 19.9533i 1.15483 0.969020i
\(425\) 17.4256 + 30.1820i 0.845266 + 1.46404i
\(426\) −38.3756 + 66.4684i −1.85930 + 3.22041i
\(427\) −0.717759 4.07061i −0.0347348 0.196991i
\(428\) −12.1211 68.7421i −0.585895 3.32277i
\(429\) 3.29086 5.69994i 0.158884 0.275195i
\(430\) 5.18866 + 8.98703i 0.250220 + 0.433393i
\(431\) −2.82429 + 2.36986i −0.136041 + 0.114152i −0.708269 0.705942i \(-0.750524\pi\)
0.572228 + 0.820095i \(0.306079\pi\)
\(432\) −24.9513 + 9.08153i −1.20047 + 0.436935i
\(433\) −8.30706 3.02352i −0.399212 0.145301i 0.134609 0.990899i \(-0.457022\pi\)
−0.533821 + 0.845598i \(0.679244\pi\)
\(434\) 35.9616 + 30.1753i 1.72621 + 1.44846i
\(435\) −1.26083 + 7.15052i −0.0604522 + 0.342841i
\(436\) 1.36959 0.0655912
\(437\) 7.63429 + 21.4654i 0.365197 + 1.02683i
\(438\) −69.4647 −3.31915
\(439\) −0.975185 + 5.53055i −0.0465430 + 0.263959i −0.999196 0.0401024i \(-0.987232\pi\)
0.952653 + 0.304061i \(0.0983427\pi\)
\(440\) 18.1459 + 15.2262i 0.865072 + 0.725881i
\(441\) −5.14543 1.87278i −0.245020 0.0891802i
\(442\) −27.1545 + 9.88344i −1.29161 + 0.470107i
\(443\) 2.83228 2.37657i 0.134566 0.112914i −0.573021 0.819541i \(-0.694228\pi\)
0.707586 + 0.706627i \(0.249784\pi\)
\(444\) −11.7023 20.2690i −0.555368 0.961926i
\(445\) −2.33615 + 4.04633i −0.110744 + 0.191815i
\(446\) 7.27584 + 41.2634i 0.344521 + 1.95388i
\(447\) −2.21389 12.5556i −0.104713 0.593859i
\(448\) −2.89306 + 5.01092i −0.136684 + 0.236744i
\(449\) −4.57145 7.91799i −0.215740 0.373673i 0.737761 0.675062i \(-0.235883\pi\)
−0.953501 + 0.301389i \(0.902550\pi\)
\(450\) −19.4932 + 16.3567i −0.918918 + 0.771064i
\(451\) 3.20574 1.16679i 0.150952 0.0549421i
\(452\) 20.9119 + 7.61132i 0.983615 + 0.358007i
\(453\) 6.97771 + 5.85499i 0.327841 + 0.275092i
\(454\) 3.20873 18.1976i 0.150593 0.854056i
\(455\) 45.0925 2.11397
\(456\) −45.9026 26.9544i −2.14959 1.26225i
\(457\) 4.99319 0.233572 0.116786 0.993157i \(-0.462741\pi\)
0.116786 + 0.993157i \(0.462741\pi\)
\(458\) 10.2216 57.9697i 0.477625 2.70875i
\(459\) −10.6263 8.91652i −0.495993 0.416188i
\(460\) −84.0540 30.5932i −3.91904 1.42641i
\(461\) −5.94996 + 2.16561i −0.277117 + 0.100862i −0.476840 0.878990i \(-0.658218\pi\)
0.199723 + 0.979852i \(0.435996\pi\)
\(462\) −13.7023 + 11.4976i −0.637490 + 0.534918i
\(463\) −14.6609 25.3934i −0.681350 1.18013i −0.974569 0.224088i \(-0.928060\pi\)
0.293219 0.956045i \(-0.405274\pi\)
\(464\) 3.10607 5.37987i 0.144196 0.249754i
\(465\) 7.07192 + 40.1068i 0.327952 + 1.85991i
\(466\) 7.15539 + 40.5802i 0.331467 + 1.87984i
\(467\) −13.9841 + 24.2212i −0.647107 + 1.12082i 0.336703 + 0.941611i \(0.390688\pi\)
−0.983810 + 0.179212i \(0.942645\pi\)
\(468\) −7.25877 12.5726i −0.335537 0.581167i
\(469\) 39.3410 33.0110i 1.81660 1.52431i
\(470\) 60.5005 22.0204i 2.79068 1.01572i
\(471\) −14.6091 5.31726i −0.673150 0.245007i
\(472\) 54.1737 + 45.4571i 2.49355 + 2.09233i
\(473\) −0.183448 + 1.04039i −0.00843496 + 0.0478371i
\(474\) −48.8093 −2.24189
\(475\) 43.0827 + 7.92409i 1.97677 + 0.363582i
\(476\) 54.0360 2.47674
\(477\) −0.882789 + 5.00654i −0.0404201 + 0.229234i
\(478\) 35.3259 + 29.6420i 1.61577 + 1.35579i
\(479\) 23.7062 + 8.62835i 1.08316 + 0.394239i 0.821084 0.570807i \(-0.193369\pi\)
0.262080 + 0.965046i \(0.415592\pi\)
\(480\) 33.5107 12.1969i 1.52955 0.556710i
\(481\) −6.68732 + 5.61133i −0.304915 + 0.255854i
\(482\) 19.5018 + 33.7781i 0.888283 + 1.53855i
\(483\) 18.4611 31.9756i 0.840009 1.45494i
\(484\) 0.766044 + 4.34445i 0.0348202 + 0.197475i
\(485\) −5.84730 33.1617i −0.265512 1.50579i
\(486\) 12.6604 21.9285i 0.574289 0.994698i
\(487\) −2.10472 3.64549i −0.0953741 0.165193i 0.814391 0.580317i \(-0.197071\pi\)
−0.909765 + 0.415124i \(0.863738\pi\)
\(488\) −5.47384 + 4.59310i −0.247789 + 0.207920i
\(489\) −17.9709 + 6.54087i −0.812672 + 0.295789i
\(490\) −50.5433 18.3963i −2.28331 0.831058i
\(491\) 21.9918 + 18.4534i 0.992478 + 0.832788i 0.985925 0.167190i \(-0.0534695\pi\)
0.00655361 + 0.999979i \(0.497914\pi\)
\(492\) 5.22668 29.6420i 0.235637 1.33636i
\(493\) 3.24535 0.146163
\(494\) −12.6736 + 34.0388i −0.570214 + 1.53148i
\(495\) −3.87939 −0.174365
\(496\) 6.05051 34.3141i 0.271676 1.54075i
\(497\) −41.0073 34.4092i −1.83943 1.54347i
\(498\) −23.9240 8.70761i −1.07206 0.390197i
\(499\) −4.29339 + 1.56266i −0.192198 + 0.0699545i −0.436326 0.899789i \(-0.643721\pi\)
0.244128 + 0.969743i \(0.421498\pi\)
\(500\) −66.2003 + 55.5487i −2.96057 + 2.48421i
\(501\) 3.30541 + 5.72513i 0.147675 + 0.255780i
\(502\) 19.4402 33.6713i 0.867657 1.50283i
\(503\) −5.51326 31.2673i −0.245824 1.39414i −0.818571 0.574405i \(-0.805233\pi\)
0.572747 0.819732i \(-0.305878\pi\)
\(504\) 3.74510 + 21.2395i 0.166820 + 0.946083i
\(505\) −22.5744 + 39.1001i −1.00455 + 1.73993i
\(506\) −6.61721 11.4613i −0.294171 0.509519i
\(507\) 3.32501 2.79001i 0.147669 0.123909i
\(508\) 2.12449 0.773249i 0.0942588 0.0343074i
\(509\) −18.6830 6.80007i −0.828111 0.301408i −0.107028 0.994256i \(-0.534133\pi\)
−0.721083 + 0.692848i \(0.756356\pi\)
\(510\) 52.1908 + 43.7933i 2.31105 + 1.93920i
\(511\) 8.41312 47.7132i 0.372175 2.11071i
\(512\) 50.5553 2.23425
\(513\) −17.1925 + 2.90117i −0.759069 + 0.128090i
\(514\) −10.9145 −0.481417
\(515\) 0.0812519 0.460802i 0.00358039 0.0203054i
\(516\) 7.14022 + 5.99135i 0.314330 + 0.263755i
\(517\) 6.15910 + 2.24173i 0.270877 + 0.0985911i
\(518\) 22.2939 8.11430i 0.979536 0.356522i
\(519\) 28.6955 24.0784i 1.25959 1.05692i
\(520\) −38.9766 67.5094i −1.70924 2.96048i
\(521\) −3.59879 + 6.23329i −0.157666 + 0.273085i −0.934027 0.357204i \(-0.883730\pi\)
0.776361 + 0.630289i \(0.217064\pi\)
\(522\) 0.411474 + 2.33359i 0.0180097 + 0.102138i
\(523\) −2.68836 15.2464i −0.117554 0.666680i −0.985454 0.169942i \(-0.945642\pi\)
0.867900 0.496738i \(-0.165469\pi\)
\(524\) 12.7947 22.1611i 0.558940 0.968113i
\(525\) −35.4962 61.4812i −1.54918 2.68326i
\(526\) 52.0433 43.6695i 2.26920 1.90408i
\(527\) 17.1052 6.22578i 0.745114 0.271199i
\(528\) 12.4757 + 4.54077i 0.542933 + 0.197611i
\(529\) 3.30793 + 2.77569i 0.143823 + 0.120682i
\(530\) −8.67159 + 49.1790i −0.376670 + 2.13620i
\(531\) −11.5817 −0.502604
\(532\) 44.0394 51.7063i 1.90935 2.24175i
\(533\) −11.2267 −0.486282
\(534\) −1.05913 + 6.00660i −0.0458328 + 0.259931i
\(535\) 47.0223 + 39.4564i 2.03295 + 1.70585i
\(536\) −83.4270 30.3649i −3.60350 1.31157i
\(537\) −15.0128 + 5.46421i −0.647850 + 0.235798i
\(538\) −51.6946 + 43.3770i −2.22871 + 1.87011i
\(539\) −2.73783 4.74205i −0.117927 0.204255i
\(540\) 34.2276 59.2840i 1.47292 2.55118i
\(541\) −0.366592 2.07905i −0.0157610 0.0893852i 0.975913 0.218162i \(-0.0700061\pi\)
−0.991674 + 0.128777i \(0.958895\pi\)
\(542\) 4.63310 + 26.2756i 0.199009 + 1.12864i
\(543\) −7.24216 + 12.5438i −0.310791 + 0.538306i
\(544\) −7.96972 13.8040i −0.341699 0.591840i
\(545\) −0.922618 + 0.774169i −0.0395206 + 0.0331617i
\(546\) 55.3141 20.1327i 2.36722 0.861599i
\(547\) 23.3926 + 8.51423i 1.00020 + 0.364042i 0.789661 0.613544i \(-0.210257\pi\)
0.210537 + 0.977586i \(0.432479\pi\)
\(548\) −19.1197 16.0434i −0.816755 0.685339i
\(549\) 0.203211 1.15247i 0.00867283 0.0491860i
\(550\) −25.4466 −1.08504
\(551\) 2.64496 3.10543i 0.112679 0.132296i
\(552\) −63.8289 −2.71674
\(553\) 5.91147 33.5256i 0.251381 1.42566i
\(554\) −43.0617 36.1331i −1.82952 1.53515i
\(555\) 19.3405 + 7.03936i 0.820958 + 0.298804i
\(556\) 49.5715 18.0426i 2.10230 0.765175i
\(557\) 30.7165 25.7742i 1.30150 1.09209i 0.311615 0.950209i \(-0.399130\pi\)
0.989884 0.141878i \(-0.0453142\pi\)
\(558\) 6.64543 + 11.5102i 0.281323 + 0.487267i
\(559\) 1.73829 3.01081i 0.0735220 0.127344i
\(560\) 15.7947 + 89.5764i 0.667449 + 3.78529i
\(561\) 1.20439 + 6.83045i 0.0508495 + 0.288382i
\(562\) −13.8486 + 23.9865i −0.584170 + 1.01181i
\(563\) 14.0826 + 24.3918i 0.593511 + 1.02799i 0.993755 + 0.111582i \(0.0355919\pi\)
−0.400245 + 0.916408i \(0.631075\pi\)
\(564\) 44.2995 37.1717i 1.86535 1.56521i
\(565\) −18.3897 + 6.69329i −0.773658 + 0.281589i
\(566\) 6.29978 + 2.29293i 0.264800 + 0.0963792i
\(567\) 29.7631 + 24.9742i 1.24993 + 1.04882i
\(568\) −16.0697 + 91.1358i −0.674270 + 3.82397i
\(569\) −19.1111 −0.801180 −0.400590 0.916257i \(-0.631195\pi\)
−0.400590 + 0.916257i \(0.631195\pi\)
\(570\) 84.4407 14.2490i 3.53683 0.596826i
\(571\) −34.1985 −1.43116 −0.715582 0.698529i \(-0.753838\pi\)
−0.715582 + 0.698529i \(0.753838\pi\)
\(572\) 2.52094 14.2970i 0.105406 0.597787i
\(573\) 23.3928 + 19.6289i 0.977249 + 0.820009i
\(574\) 28.6707 + 10.4353i 1.19669 + 0.435560i
\(575\) 49.3585 17.9650i 2.05839 0.749193i
\(576\) −1.25490 + 1.05299i −0.0522875 + 0.0438744i
\(577\) 13.6544 + 23.6500i 0.568438 + 0.984564i 0.996721 + 0.0809189i \(0.0257855\pi\)
−0.428283 + 0.903645i \(0.640881\pi\)
\(578\) −6.29679 + 10.9064i −0.261912 + 0.453645i
\(579\) −4.31139 24.4511i −0.179175 1.01615i
\(580\) 2.78106 + 15.7722i 0.115477 + 0.654904i
\(581\) 8.87851 15.3780i 0.368343 0.637988i
\(582\) −21.9786 38.0681i −0.911044 1.57797i
\(583\) −3.89440 + 3.26779i −0.161290 + 0.135338i
\(584\) −78.7051 + 28.6463i −3.25684 + 1.18539i
\(585\) 11.9966 + 4.36640i 0.495998 + 0.180529i
\(586\) 51.2832 + 43.0317i 2.11849 + 1.77762i
\(587\) −7.47359 + 42.3848i −0.308468 + 1.74941i 0.298245 + 0.954489i \(0.403599\pi\)
−0.606713 + 0.794921i \(0.707512\pi\)
\(588\) −48.3114 −1.99233
\(589\) 7.98339 21.4417i 0.328950 0.883491i
\(590\) −113.767 −4.68370
\(591\) −2.02734 + 11.4976i −0.0833937 + 0.472949i
\(592\) −13.4893 11.3189i −0.554408 0.465203i
\(593\) 9.84137 + 3.58196i 0.404136 + 0.147094i 0.536087 0.844163i \(-0.319902\pi\)
−0.131951 + 0.991256i \(0.542124\pi\)
\(594\) 9.51754 3.46410i 0.390509 0.142134i
\(595\) −36.4013 + 30.5443i −1.49231 + 1.25219i
\(596\) −14.0608 24.3540i −0.575952 0.997578i
\(597\) −7.73648 + 13.4000i −0.316633 + 0.548425i
\(598\) 7.56283 + 42.8910i 0.309267 + 1.75394i
\(599\) −5.47148 31.0303i −0.223558 1.26786i −0.865422 0.501044i \(-0.832949\pi\)
0.641863 0.766819i \(-0.278162\pi\)
\(600\) −61.3637 + 106.285i −2.50516 + 4.33907i
\(601\) 4.53730 + 7.85884i 0.185080 + 0.320569i 0.943604 0.331077i \(-0.107412\pi\)
−0.758523 + 0.651646i \(0.774079\pi\)
\(602\) −7.23783 + 6.07326i −0.294992 + 0.247527i
\(603\) 13.6630 4.97291i 0.556399 0.202513i
\(604\) 18.8799 + 6.87170i 0.768210 + 0.279606i
\(605\) −2.97178 2.49362i −0.120820 0.101380i
\(606\) −10.2344 + 58.0423i −0.415745 + 2.35781i
\(607\) −4.55438 −0.184856 −0.0924282 0.995719i \(-0.529463\pi\)
−0.0924282 + 0.995719i \(0.529463\pi\)
\(608\) −19.7041 3.62414i −0.799109 0.146978i
\(609\) −6.61081 −0.267884
\(610\) 1.99613 11.3206i 0.0808209 0.458358i
\(611\) −16.5232 13.8646i −0.668458 0.560903i
\(612\) 14.3760 + 5.23243i 0.581115 + 0.211508i
\(613\) 5.37686 1.95702i 0.217169 0.0790432i −0.231144 0.972919i \(-0.574247\pi\)
0.448314 + 0.893876i \(0.352025\pi\)
\(614\) −10.3157 + 8.65588i −0.416307 + 0.349323i
\(615\) 13.2344 + 22.9227i 0.533663 + 0.924332i
\(616\) −10.7836 + 18.6777i −0.434483 + 0.752547i
\(617\) 0.257588 + 1.46086i 0.0103701 + 0.0588119i 0.989554 0.144165i \(-0.0460495\pi\)
−0.979184 + 0.202977i \(0.934938\pi\)
\(618\) −0.106067 0.601535i −0.00426663 0.0241973i
\(619\) 18.9623 32.8436i 0.762159 1.32010i −0.179577 0.983744i \(-0.557473\pi\)
0.941736 0.336354i \(-0.109194\pi\)
\(620\) 44.9149 + 77.7949i 1.80383 + 3.12432i
\(621\) −16.0155 + 13.4386i −0.642679 + 0.539272i
\(622\) 56.4090 20.5312i 2.26180 0.823226i
\(623\) −3.99747 1.45496i −0.160155 0.0582918i
\(624\) −33.4688 28.0837i −1.33983 1.12425i
\(625\) 4.47090 25.3558i 0.178836 1.01423i
\(626\) −36.3806 −1.45406
\(627\) 7.51754 + 4.41436i 0.300222 + 0.176293i
\(628\) −34.2918 −1.36839
\(629\) 1.59745 9.05958i 0.0636945 0.361229i
\(630\) −26.5783 22.3019i −1.05891 0.888527i
\(631\) 9.11633 + 3.31807i 0.362916 + 0.132090i 0.517041 0.855961i \(-0.327034\pi\)
−0.154125 + 0.988051i \(0.549256\pi\)
\(632\) −55.3021 + 20.1283i −2.19980 + 0.800661i
\(633\) −16.2121 + 13.6036i −0.644374 + 0.540694i
\(634\) −8.64677 14.9767i −0.343407 0.594799i
\(635\) −0.994070 + 1.72178i −0.0394485 + 0.0683268i
\(636\) 7.78880 + 44.1725i 0.308846 + 1.75155i
\(637\) 3.12907 + 17.7458i 0.123978 + 0.703116i
\(638\) −1.18479 + 2.05212i −0.0469064 + 0.0812442i
\(639\) −7.57785 13.1252i −0.299775 0.519226i
\(640\) −39.6450 + 33.2661i −1.56711 + 1.31496i
\(641\) −37.7768 + 13.7496i −1.49209 + 0.543077i −0.954000 0.299808i \(-0.903077\pi\)
−0.538093 + 0.842885i \(0.680855\pi\)
\(642\) 75.2978 + 27.4062i 2.97177 + 1.08163i
\(643\) −28.7429 24.1181i −1.13351 0.951127i −0.134301 0.990941i \(-0.542879\pi\)
−0.999207 + 0.0398140i \(0.987323\pi\)
\(644\) 14.1420 80.2034i 0.557274 3.16046i
\(645\) −8.19665 −0.322743
\(646\) −12.8259 36.0628i −0.504630 1.41887i
\(647\) 40.2704 1.58319 0.791597 0.611043i \(-0.209250\pi\)
0.791597 + 0.611043i \(0.209250\pi\)
\(648\) 11.6634 66.1463i 0.458181 2.59847i
\(649\) −8.87211 7.44459i −0.348261 0.292226i
\(650\) 78.6908 + 28.6411i 3.08651 + 1.12340i
\(651\) −34.8435 + 12.6820i −1.36562 + 0.497046i
\(652\) −32.3141 + 27.1147i −1.26552 + 1.06189i
\(653\) 21.0214 + 36.4102i 0.822631 + 1.42484i 0.903716 + 0.428132i \(0.140828\pi\)
−0.0810847 + 0.996707i \(0.525838\pi\)
\(654\) −0.786112 + 1.36159i −0.0307394 + 0.0532422i
\(655\) 3.90760 + 22.1611i 0.152683 + 0.865907i
\(656\) −3.93242 22.3019i −0.153535 0.870741i
\(657\) 6.85844 11.8792i 0.267573 0.463450i
\(658\) 29.3097 + 50.7660i 1.14261 + 1.97906i
\(659\) 1.81521 1.52314i 0.0707104 0.0593331i −0.606747 0.794895i \(-0.707526\pi\)
0.677458 + 0.735562i \(0.263082\pi\)
\(660\) −32.1634 + 11.7065i −1.25196 + 0.455676i
\(661\) −20.3100 7.39225i −0.789969 0.287525i −0.0846460 0.996411i \(-0.526976\pi\)
−0.705323 + 0.708886i \(0.749198\pi\)
\(662\) 6.87598 + 5.76963i 0.267243 + 0.224243i
\(663\) 3.96349 22.4781i 0.153929 0.872975i
\(664\) −30.6973 −1.19129
\(665\) −0.439693 + 59.7255i −0.0170505 + 2.31605i
\(666\) 6.71688 0.260274
\(667\) 0.849356 4.81694i 0.0328872 0.186512i
\(668\) 11.1702 + 9.37295i 0.432190 + 0.362650i
\(669\) −31.0993 11.3192i −1.20237 0.437626i
\(670\) 134.211 48.8487i 5.18501 1.88719i
\(671\) 0.896459 0.752219i 0.0346074 0.0290391i
\(672\) 16.2344 + 28.1188i 0.626256 + 1.08471i
\(673\) 10.3910 17.9977i 0.400543 0.693762i −0.593248 0.805020i \(-0.702155\pi\)
0.993792 + 0.111258i \(0.0354880\pi\)
\(674\) −3.00118 17.0205i −0.115601 0.655607i
\(675\) 6.98040 + 39.5878i 0.268676 + 1.52374i
\(676\) 4.78699 8.29131i 0.184115 0.318896i
\(677\) −9.13610 15.8242i −0.351129 0.608173i 0.635319 0.772250i \(-0.280869\pi\)
−0.986447 + 0.164077i \(0.947535\pi\)
\(678\) −19.5699 + 16.4211i −0.751576 + 0.630647i
\(679\) 28.8097 10.4859i 1.10562 0.402412i
\(680\) 77.1931 + 28.0960i 2.96022 + 1.07743i
\(681\) 11.1807 + 9.38170i 0.428444 + 0.359507i
\(682\) −2.30793 + 13.0889i −0.0883753 + 0.501201i
\(683\) 42.7657 1.63638 0.818192 0.574945i \(-0.194977\pi\)
0.818192 + 0.574945i \(0.194977\pi\)
\(684\) 16.7233 9.49173i 0.639431 0.362925i
\(685\) 21.9486 0.838613
\(686\) −2.36736 + 13.4260i −0.0903864 + 0.512607i
\(687\) 35.6168 + 29.8860i 1.35887 + 1.14022i
\(688\) 6.58987 + 2.39852i 0.251236 + 0.0914426i
\(689\) 15.7211 5.72200i 0.598925 0.217991i
\(690\) 78.6596 66.0033i 2.99452 2.51270i
\(691\) −24.9518 43.2177i −0.949210 1.64408i −0.747094 0.664719i \(-0.768551\pi\)
−0.202116 0.979362i \(-0.564782\pi\)
\(692\) 41.3127 71.5558i 1.57047 2.72014i
\(693\) −0.613341 3.47843i −0.0232989 0.132135i
\(694\) 1.24867 + 7.08153i 0.0473987 + 0.268811i
\(695\) −23.1951 + 40.1750i −0.879839 + 1.52393i
\(696\) 5.71419 + 9.89727i 0.216596 + 0.375155i
\(697\) 9.06283 7.60462i 0.343279 0.288046i
\(698\) 46.4744 16.9153i 1.75908 0.640253i
\(699\) −30.5844 11.1318i −1.15681 0.421044i
\(700\) −119.955 100.654i −4.53388 3.80438i
\(701\) −3.88578 + 22.0374i −0.146764 + 0.832340i 0.819170 + 0.573551i \(0.194435\pi\)
−0.965934 + 0.258789i \(0.916677\pi\)
\(702\) −33.3310 −1.25800
\(703\) −7.36706 8.91215i −0.277854 0.336128i
\(704\) −1.63816 −0.0617403
\(705\) −8.83069 + 50.0813i −0.332583 + 1.88617i
\(706\) −14.0908 11.8236i −0.530314 0.444987i
\(707\) −38.6279 14.0594i −1.45275 0.528759i
\(708\) −96.0224 + 34.9493i −3.60874 + 1.31347i
\(709\) −5.31727 + 4.46172i −0.199694 + 0.167563i −0.737151 0.675728i \(-0.763829\pi\)
0.537457 + 0.843291i \(0.319385\pi\)
\(710\) −74.4368 128.928i −2.79356 4.83859i
\(711\) 4.81908 8.34689i 0.180730 0.313033i
\(712\) 1.27703 + 7.24238i 0.0478586 + 0.271420i
\(713\) −4.76399 27.0179i −0.178413 1.01183i
\(714\) −31.0155 + 53.7204i −1.16073 + 2.01044i
\(715\) 6.38326 + 11.0561i 0.238720 + 0.413476i
\(716\) −26.9950 + 22.6515i −1.00885 + 0.846526i
\(717\) −34.2276 + 12.4578i −1.27825 + 0.465246i
\(718\) −41.7870 15.2092i −1.55948 0.567604i
\(719\) −19.3871 16.2677i −0.723018 0.606684i 0.205201 0.978720i \(-0.434215\pi\)
−0.928218 + 0.372036i \(0.878660\pi\)
\(720\) −4.47178 + 25.3607i −0.166653 + 0.945139i
\(721\) 0.426022 0.0158659
\(722\) −44.9612 17.1183i −1.67328 0.637077i
\(723\) −30.8075 −1.14574
\(724\) −5.54782 + 31.4632i −0.206183 + 1.16932i
\(725\) −7.20439 6.04520i −0.267564 0.224513i
\(726\) −4.75877 1.73205i −0.176615 0.0642824i
\(727\) 35.9102 13.0702i 1.33184 0.484748i 0.424603 0.905379i \(-0.360414\pi\)
0.907232 + 0.420631i \(0.138191\pi\)
\(728\) 54.3696 45.6215i 2.01507 1.69085i
\(729\) −6.50000 11.2583i −0.240741 0.416975i
\(730\) 67.3701 116.688i 2.49348 4.31883i
\(731\) 0.636183 + 3.60797i 0.0235301 + 0.133446i
\(732\) −1.79292 10.1681i −0.0662682 0.375826i
\(733\) −23.2927 + 40.3441i −0.860334 + 1.49014i 0.0112719 + 0.999936i \(0.496412\pi\)
−0.871606 + 0.490206i \(0.836921\pi\)
\(734\) −27.1425 47.0122i −1.00185 1.73525i
\(735\) 32.5449 27.3084i 1.20044 1.00729i
\(736\) −22.5744 + 8.21643i −0.832105 + 0.302861i
\(737\) 13.6630 + 4.97291i 0.503282 + 0.183180i
\(738\) 6.61721 + 5.55250i 0.243583 + 0.204390i
\(739\) −8.88507 + 50.3897i −0.326842 + 1.85362i 0.169556 + 0.985521i \(0.445767\pi\)
−0.496398 + 0.868095i \(0.665344\pi\)
\(740\) 45.3979 1.66886
\(741\) −18.2787 22.1122i −0.671484 0.812314i
\(742\) −45.4671 −1.66915
\(743\) 1.43598 8.14387i 0.0526812 0.298770i −0.947071 0.321024i \(-0.895973\pi\)
0.999752 + 0.0222539i \(0.00708423\pi\)
\(744\) 49.1043 + 41.2034i 1.80025 + 1.51059i
\(745\) 23.2383 + 8.45805i 0.851385 + 0.309879i
\(746\) −89.4334 + 32.5511i −3.27439 + 1.19178i
\(747\) 3.85117 3.23151i 0.140907 0.118235i
\(748\) 7.64930 + 13.2490i 0.279686 + 0.484431i
\(749\) −27.9440 + 48.4005i −1.02105 + 1.76852i
\(750\) −17.2267 97.6974i −0.629029 3.56740i
\(751\) 3.26723 + 18.5294i 0.119223 + 0.676146i 0.984572 + 0.174977i \(0.0559852\pi\)
−0.865350 + 0.501169i \(0.832904\pi\)
\(752\) 21.7545 37.6799i 0.793305 1.37404i
\(753\) 15.3550 + 26.5957i 0.559569 + 0.969201i
\(754\) 5.97359 5.01244i 0.217545 0.182542i
\(755\) −16.6027 + 6.04288i −0.604233 + 0.219923i
\(756\) 58.5681 + 21.3170i 2.13010 + 0.775293i
\(757\) 30.4800 + 25.5757i 1.10781 + 0.929566i 0.997926 0.0643776i \(-0.0205062\pi\)
0.109888 + 0.993944i \(0.464951\pi\)
\(758\) −2.36777 + 13.4283i −0.0860014 + 0.487738i
\(759\) 10.4534 0.379433
\(760\) 89.7971 50.9667i 3.25728 1.84875i
\(761\) −7.02910 −0.254805 −0.127402 0.991851i \(-0.540664\pi\)
−0.127402 + 0.991851i \(0.540664\pi\)
\(762\) −0.450675 + 2.55590i −0.0163262 + 0.0925906i
\(763\) −0.840022 0.704862i −0.0304109 0.0255177i
\(764\) 63.2948 + 23.0374i 2.28992 + 0.833465i