Properties

Label 209.2.j.a.177.1
Level $209$
Weight $2$
Character 209.177
Analytic conductor $1.669$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(23,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.j (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 177.1
Root \(0.939693 + 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 209.177
Dual form 209.2.j.a.111.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.673648 - 0.565258i) q^{2} +(1.87939 + 0.684040i) q^{3} +(-0.213011 + 1.20805i) q^{4} +(-0.286989 - 1.62760i) q^{5} +(1.65270 - 0.601535i) q^{6} +(0.0603074 - 0.104455i) q^{7} +(1.41875 + 2.45734i) q^{8} +(0.766044 + 0.642788i) q^{9} +O(q^{10})\) \(q+(0.673648 - 0.565258i) q^{2} +(1.87939 + 0.684040i) q^{3} +(-0.213011 + 1.20805i) q^{4} +(-0.286989 - 1.62760i) q^{5} +(1.65270 - 0.601535i) q^{6} +(0.0603074 - 0.104455i) q^{7} +(1.41875 + 2.45734i) q^{8} +(0.766044 + 0.642788i) q^{9} +(-1.11334 - 0.934204i) q^{10} +(-0.500000 - 0.866025i) q^{11} +(-1.22668 + 2.12467i) q^{12} +(4.29813 - 1.56439i) q^{13} +(-0.0184183 - 0.104455i) q^{14} +(0.573978 - 3.25519i) q^{15} +(0.0393628 + 0.0143269i) q^{16} +(-5.26991 + 4.42198i) q^{17} +0.879385 q^{18} +(-4.11721 - 1.43128i) q^{19} +2.02734 q^{20} +(0.184793 - 0.155059i) q^{21} +(-0.826352 - 0.300767i) q^{22} +(-0.726682 + 4.12122i) q^{23} +(0.985452 + 5.58878i) q^{24} +(2.13176 - 0.775897i) q^{25} +(2.01114 - 3.48340i) q^{26} +(-2.00000 - 3.46410i) q^{27} +(0.113341 + 0.0951042i) q^{28} +(-5.94356 - 4.98724i) q^{29} +(-1.45336 - 2.51730i) q^{30} +(3.08512 - 5.34359i) q^{31} +(-5.29813 + 1.92836i) q^{32} +(-0.347296 - 1.96962i) q^{33} +(-1.05051 + 5.95772i) q^{34} +(-0.187319 - 0.0681784i) q^{35} +(-0.939693 + 0.788496i) q^{36} -1.46791 q^{37} +(-3.58260 + 1.36310i) q^{38} +9.14796 q^{39} +(3.59240 - 3.01438i) q^{40} +(-2.09240 - 0.761570i) q^{41} +(0.0368366 - 0.208911i) q^{42} +(-1.75490 - 9.95253i) q^{43} +(1.15270 - 0.419550i) q^{44} +(0.826352 - 1.43128i) q^{45} +(1.84002 + 3.18701i) q^{46} +(5.54189 + 4.65020i) q^{47} +(0.0641778 + 0.0538515i) q^{48} +(3.49273 + 6.04958i) q^{49} +(0.997474 - 1.72768i) q^{50} +(-12.9290 + 4.70578i) q^{51} +(0.974308 + 5.52557i) q^{52} +(-2.11721 + 12.0073i) q^{53} +(-3.30541 - 1.20307i) q^{54} +(-1.26604 + 1.06234i) q^{55} +0.342244 q^{56} +(-6.75877 - 5.50627i) q^{57} -6.82295 q^{58} +(3.17752 - 2.66625i) q^{59} +(3.81016 + 1.38678i) q^{60} +(-1.54916 + 8.78574i) q^{61} +(-0.942219 - 5.34359i) q^{62} +(0.113341 - 0.0412527i) q^{63} +(-2.52094 + 4.36640i) q^{64} +(-3.77972 - 6.54666i) q^{65} +(-1.34730 - 1.13052i) q^{66} +(3.63429 + 3.04953i) q^{67} +(-4.21941 - 7.30823i) q^{68} +(-4.18479 + 7.24827i) q^{69} +(-0.164725 + 0.0599551i) q^{70} +(-0.0748553 - 0.424525i) q^{71} +(-0.492726 + 2.79439i) q^{72} +(5.36484 + 1.95264i) q^{73} +(-0.988856 + 0.829748i) q^{74} +4.53714 q^{75} +(2.60607 - 4.66890i) q^{76} -0.120615 q^{77} +(6.16250 - 5.17095i) q^{78} +(2.77972 + 1.01173i) q^{79} +(0.0120217 - 0.0681784i) q^{80} +(-1.91013 - 10.8329i) q^{81} +(-1.84002 + 0.669713i) q^{82} +(-1.54323 + 2.67296i) q^{83} +(0.147956 + 0.256267i) q^{84} +(8.70961 + 7.30823i) q^{85} +(-6.80793 - 5.71253i) q^{86} +(-7.75877 - 13.4386i) q^{87} +(1.41875 - 2.45734i) q^{88} +(9.90420 - 3.60483i) q^{89} +(-0.252374 - 1.43128i) q^{90} +(0.0957998 - 0.543308i) q^{91} +(-4.82383 - 1.75573i) q^{92} +(9.45336 - 7.93231i) q^{93} +6.36184 q^{94} +(-1.14796 + 7.11192i) q^{95} -11.2763 q^{96} +(4.25490 - 3.57029i) q^{97} +(5.77244 + 2.10100i) q^{98} +(0.173648 - 0.984808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8} - 3 q^{11} + 6 q^{12} + 12 q^{13} - 12 q^{14} - 12 q^{15} + 9 q^{16} - 3 q^{17} - 6 q^{18} + 6 q^{19} - 30 q^{20} - 6 q^{21} - 6 q^{22} + 9 q^{23} - 30 q^{24} + 18 q^{25} + 6 q^{26} - 12 q^{27} - 6 q^{28} - 6 q^{29} + 18 q^{30} - 3 q^{31} - 18 q^{32} - 9 q^{34} + 21 q^{35} - 18 q^{37} - 15 q^{38} + 24 q^{39} + 18 q^{40} - 9 q^{41} + 24 q^{42} - 12 q^{43} + 9 q^{44} + 6 q^{45} - 9 q^{46} + 27 q^{47} - 18 q^{48} + 3 q^{49} + 21 q^{50} - 12 q^{51} - 24 q^{52} + 18 q^{53} - 24 q^{54} - 3 q^{55} + 30 q^{56} - 18 q^{57} - 6 q^{59} + 60 q^{60} - 21 q^{61} + 15 q^{62} - 6 q^{63} - 12 q^{64} + 3 q^{65} - 6 q^{66} + 12 q^{67} + 6 q^{68} - 18 q^{69} - 54 q^{70} - 42 q^{71} + 15 q^{72} - 15 q^{73} - 12 q^{74} - 12 q^{75} - 9 q^{76} - 12 q^{77} + 42 q^{78} - 9 q^{79} + 51 q^{80} + 9 q^{82} + 6 q^{83} - 30 q^{84} + 18 q^{85} - 30 q^{86} - 24 q^{87} + 6 q^{88} + 21 q^{89} - 18 q^{90} + 39 q^{91} - 45 q^{92} + 30 q^{93} + 72 q^{94} + 24 q^{95} + 27 q^{97} - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.673648 0.565258i 0.476341 0.399698i −0.372760 0.927928i \(-0.621589\pi\)
0.849101 + 0.528230i \(0.177144\pi\)
\(3\) 1.87939 + 0.684040i 1.08506 + 0.394931i 0.821790 0.569790i \(-0.192976\pi\)
0.263274 + 0.964721i \(0.415198\pi\)
\(4\) −0.213011 + 1.20805i −0.106506 + 0.604023i
\(5\) −0.286989 1.62760i −0.128345 0.727883i −0.979264 0.202586i \(-0.935065\pi\)
0.850919 0.525297i \(-0.176046\pi\)
\(6\) 1.65270 0.601535i 0.674713 0.245576i
\(7\) 0.0603074 0.104455i 0.0227940 0.0394804i −0.854403 0.519610i \(-0.826077\pi\)
0.877197 + 0.480130i \(0.159410\pi\)
\(8\) 1.41875 + 2.45734i 0.501603 + 0.868802i
\(9\) 0.766044 + 0.642788i 0.255348 + 0.214263i
\(10\) −1.11334 0.934204i −0.352069 0.295421i
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) −1.22668 + 2.12467i −0.354112 + 0.613341i
\(13\) 4.29813 1.56439i 1.19209 0.433884i 0.331632 0.943409i \(-0.392401\pi\)
0.860456 + 0.509525i \(0.170179\pi\)
\(14\) −0.0184183 0.104455i −0.00492250 0.0279169i
\(15\) 0.573978 3.25519i 0.148200 0.840487i
\(16\) 0.0393628 + 0.0143269i 0.00984071 + 0.00358173i
\(17\) −5.26991 + 4.42198i −1.27814 + 1.07249i −0.284645 + 0.958633i \(0.591876\pi\)
−0.993497 + 0.113855i \(0.963680\pi\)
\(18\) 0.879385 0.207273
\(19\) −4.11721 1.43128i −0.944553 0.328359i
\(20\) 2.02734 0.453327
\(21\) 0.184793 0.155059i 0.0403250 0.0338367i
\(22\) −0.826352 0.300767i −0.176179 0.0641238i
\(23\) −0.726682 + 4.12122i −0.151524 + 0.859333i 0.810372 + 0.585916i \(0.199265\pi\)
−0.961896 + 0.273417i \(0.911846\pi\)
\(24\) 0.985452 + 5.58878i 0.201155 + 1.14080i
\(25\) 2.13176 0.775897i 0.426352 0.155179i
\(26\) 2.01114 3.48340i 0.394418 0.683152i
\(27\) −2.00000 3.46410i −0.384900 0.666667i
\(28\) 0.113341 + 0.0951042i 0.0214194 + 0.0179730i
\(29\) −5.94356 4.98724i −1.10369 0.926108i −0.106024 0.994364i \(-0.533812\pi\)
−0.997668 + 0.0682561i \(0.978257\pi\)
\(30\) −1.45336 2.51730i −0.265347 0.459594i
\(31\) 3.08512 5.34359i 0.554104 0.959737i −0.443868 0.896092i \(-0.646394\pi\)
0.997973 0.0636448i \(-0.0202725\pi\)
\(32\) −5.29813 + 1.92836i −0.936587 + 0.340890i
\(33\) −0.347296 1.96962i −0.0604565 0.342866i
\(34\) −1.05051 + 5.95772i −0.180160 + 1.02174i
\(35\) −0.187319 0.0681784i −0.0316626 0.0115243i
\(36\) −0.939693 + 0.788496i −0.156615 + 0.131416i
\(37\) −1.46791 −0.241323 −0.120662 0.992694i \(-0.538502\pi\)
−0.120662 + 0.992694i \(0.538502\pi\)
\(38\) −3.58260 + 1.36310i −0.581174 + 0.221125i
\(39\) 9.14796 1.46485
\(40\) 3.59240 3.01438i 0.568008 0.476615i
\(41\) −2.09240 0.761570i −0.326777 0.118937i 0.173422 0.984848i \(-0.444518\pi\)
−0.500199 + 0.865910i \(0.666740\pi\)
\(42\) 0.0368366 0.208911i 0.00568401 0.0322357i
\(43\) −1.75490 9.95253i −0.267620 1.51775i −0.761470 0.648200i \(-0.775522\pi\)
0.493850 0.869547i \(-0.335589\pi\)
\(44\) 1.15270 0.419550i 0.173777 0.0632495i
\(45\) 0.826352 1.43128i 0.123185 0.213363i
\(46\) 1.84002 + 3.18701i 0.271297 + 0.469899i
\(47\) 5.54189 + 4.65020i 0.808368 + 0.678301i 0.950218 0.311587i \(-0.100861\pi\)
−0.141850 + 0.989888i \(0.545305\pi\)
\(48\) 0.0641778 + 0.0538515i 0.00926326 + 0.00777280i
\(49\) 3.49273 + 6.04958i 0.498961 + 0.864226i
\(50\) 0.997474 1.72768i 0.141064 0.244330i
\(51\) −12.9290 + 4.70578i −1.81042 + 0.658941i
\(52\) 0.974308 + 5.52557i 0.135112 + 0.766259i
\(53\) −2.11721 + 12.0073i −0.290821 + 1.64933i 0.392896 + 0.919583i \(0.371473\pi\)
−0.683717 + 0.729747i \(0.739638\pi\)
\(54\) −3.30541 1.20307i −0.449809 0.163717i
\(55\) −1.26604 + 1.06234i −0.170713 + 0.143246i
\(56\) 0.342244 0.0457343
\(57\) −6.75877 5.50627i −0.895221 0.729323i
\(58\) −6.82295 −0.895897
\(59\) 3.17752 2.66625i 0.413678 0.347117i −0.412074 0.911150i \(-0.635196\pi\)
0.825752 + 0.564033i \(0.190751\pi\)
\(60\) 3.81016 + 1.38678i 0.491889 + 0.179033i
\(61\) −1.54916 + 8.78574i −0.198350 + 1.12490i 0.709217 + 0.704991i \(0.249049\pi\)
−0.907567 + 0.419908i \(0.862062\pi\)
\(62\) −0.942219 5.34359i −0.119662 0.678636i
\(63\) 0.113341 0.0412527i 0.0142796 0.00519735i
\(64\) −2.52094 + 4.36640i −0.315118 + 0.545801i
\(65\) −3.77972 6.54666i −0.468816 0.812013i
\(66\) −1.34730 1.13052i −0.165841 0.139157i
\(67\) 3.63429 + 3.04953i 0.443999 + 0.372559i 0.837203 0.546892i \(-0.184189\pi\)
−0.393205 + 0.919451i \(0.628634\pi\)
\(68\) −4.21941 7.30823i −0.511678 0.886253i
\(69\) −4.18479 + 7.24827i −0.503790 + 0.872590i
\(70\) −0.164725 + 0.0599551i −0.0196884 + 0.00716601i
\(71\) −0.0748553 0.424525i −0.00888369 0.0503819i 0.980044 0.198782i \(-0.0636987\pi\)
−0.988927 + 0.148400i \(0.952588\pi\)
\(72\) −0.492726 + 2.79439i −0.0580683 + 0.329322i
\(73\) 5.36484 + 1.95264i 0.627907 + 0.228539i 0.636320 0.771425i \(-0.280456\pi\)
−0.00841323 + 0.999965i \(0.502678\pi\)
\(74\) −0.988856 + 0.829748i −0.114952 + 0.0964563i
\(75\) 4.53714 0.523904
\(76\) 2.60607 4.66890i 0.298936 0.535560i
\(77\) −0.120615 −0.0137453
\(78\) 6.16250 5.17095i 0.697766 0.585495i
\(79\) 2.77972 + 1.01173i 0.312742 + 0.113829i 0.493623 0.869676i \(-0.335672\pi\)
−0.180880 + 0.983505i \(0.557895\pi\)
\(80\) 0.0120217 0.0681784i 0.00134407 0.00762258i
\(81\) −1.91013 10.8329i −0.212237 1.20365i
\(82\) −1.84002 + 0.669713i −0.203196 + 0.0739575i
\(83\) −1.54323 + 2.67296i −0.169392 + 0.293395i −0.938206 0.346077i \(-0.887514\pi\)
0.768814 + 0.639472i \(0.220847\pi\)
\(84\) 0.147956 + 0.256267i 0.0161433 + 0.0279610i
\(85\) 8.70961 + 7.30823i 0.944690 + 0.792689i
\(86\) −6.80793 5.71253i −0.734118 0.615998i
\(87\) −7.75877 13.4386i −0.831828 1.44077i
\(88\) 1.41875 2.45734i 0.151239 0.261954i
\(89\) 9.90420 3.60483i 1.04984 0.382112i 0.241240 0.970466i \(-0.422446\pi\)
0.808604 + 0.588354i \(0.200224\pi\)
\(90\) −0.252374 1.43128i −0.0266025 0.150871i
\(91\) 0.0957998 0.543308i 0.0100426 0.0569541i
\(92\) −4.82383 1.75573i −0.502919 0.183047i
\(93\) 9.45336 7.93231i 0.980268 0.822543i
\(94\) 6.36184 0.656174
\(95\) −1.14796 + 7.11192i −0.117778 + 0.729667i
\(96\) −11.2763 −1.15088
\(97\) 4.25490 3.57029i 0.432020 0.362508i −0.400693 0.916212i \(-0.631231\pi\)
0.832713 + 0.553705i \(0.186786\pi\)
\(98\) 5.77244 + 2.10100i 0.583105 + 0.212233i
\(99\) 0.173648 0.984808i 0.0174523 0.0989769i
\(100\) 0.483231 + 2.74054i 0.0483231 + 0.274054i
\(101\) 4.65910 1.69577i 0.463598 0.168736i −0.0996522 0.995022i \(-0.531773\pi\)
0.563250 + 0.826287i \(0.309551\pi\)
\(102\) −6.04963 + 10.4783i −0.599003 + 1.03750i
\(103\) 1.17365 + 2.03282i 0.115643 + 0.200300i 0.918037 0.396496i \(-0.129774\pi\)
−0.802394 + 0.596795i \(0.796440\pi\)
\(104\) 9.94222 + 8.34251i 0.974915 + 0.818051i
\(105\) −0.305407 0.256267i −0.0298047 0.0250091i
\(106\) 5.36097 + 9.28547i 0.520703 + 0.901884i
\(107\) 2.27332 3.93750i 0.219770 0.380653i −0.734968 0.678102i \(-0.762803\pi\)
0.954738 + 0.297449i \(0.0961360\pi\)
\(108\) 4.61081 1.67820i 0.443676 0.161485i
\(109\) 1.10741 + 6.28044i 0.106071 + 0.601557i 0.990787 + 0.135428i \(0.0432408\pi\)
−0.884717 + 0.466129i \(0.845648\pi\)
\(110\) −0.252374 + 1.43128i −0.0240629 + 0.136468i
\(111\) −2.75877 1.00411i −0.261851 0.0953059i
\(112\) 0.00387039 0.00324765i 0.000365718 0.000306874i
\(113\) 15.7101 1.47788 0.738940 0.673772i \(-0.235327\pi\)
0.738940 + 0.673772i \(0.235327\pi\)
\(114\) −7.66550 + 0.111159i −0.717940 + 0.0104110i
\(115\) 6.91622 0.644941
\(116\) 7.29086 6.11776i 0.676939 0.568020i
\(117\) 4.29813 + 1.56439i 0.397363 + 0.144628i
\(118\) 0.633408 3.59224i 0.0583099 0.330692i
\(119\) 0.144086 + 0.817150i 0.0132083 + 0.0749080i
\(120\) 8.81345 3.20783i 0.804554 0.292834i
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 3.92262 + 6.79417i 0.355137 + 0.615116i
\(123\) −3.41147 2.86257i −0.307602 0.258109i
\(124\) 5.79813 + 4.86521i 0.520688 + 0.436909i
\(125\) −6.00640 10.4034i −0.537228 0.930507i
\(126\) 0.0530334 0.0918566i 0.00472459 0.00818323i
\(127\) −15.8157 + 5.75643i −1.40341 + 0.510801i −0.929190 0.369603i \(-0.879494\pi\)
−0.474224 + 0.880404i \(0.657271\pi\)
\(128\) −1.18820 6.73859i −0.105023 0.595613i
\(129\) 3.50980 19.9051i 0.309021 1.75254i
\(130\) −6.24675 2.27363i −0.547876 0.199411i
\(131\) −3.75490 + 3.15074i −0.328067 + 0.275281i −0.791912 0.610636i \(-0.790914\pi\)
0.463845 + 0.885917i \(0.346470\pi\)
\(132\) 2.45336 0.213538
\(133\) −0.397804 + 0.343748i −0.0344939 + 0.0298067i
\(134\) 4.17200 0.360406
\(135\) −5.06418 + 4.24935i −0.435855 + 0.365726i
\(136\) −18.3430 6.67631i −1.57290 0.572489i
\(137\) −2.24170 + 12.7133i −0.191521 + 1.08617i 0.725766 + 0.687942i \(0.241486\pi\)
−0.917287 + 0.398228i \(0.869625\pi\)
\(138\) 1.27807 + 7.24827i 0.108796 + 0.617014i
\(139\) 7.89693 2.87425i 0.669809 0.243790i 0.0153431 0.999882i \(-0.495116\pi\)
0.654465 + 0.756092i \(0.272894\pi\)
\(140\) 0.122264 0.211767i 0.0103332 0.0178976i
\(141\) 7.23442 + 12.5304i 0.609248 + 1.05525i
\(142\) −0.290393 0.243668i −0.0243692 0.0204482i
\(143\) −3.50387 2.94010i −0.293008 0.245863i
\(144\) 0.0209445 + 0.0362770i 0.00174538 + 0.00302308i
\(145\) −6.41147 + 11.1050i −0.532444 + 0.922220i
\(146\) 4.71776 1.71712i 0.390444 0.142110i
\(147\) 2.42602 + 13.7587i 0.200095 + 1.13479i
\(148\) 0.312681 1.77330i 0.0257022 0.145765i
\(149\) −5.27972 1.92166i −0.432531 0.157428i 0.116574 0.993182i \(-0.462809\pi\)
−0.549105 + 0.835754i \(0.685031\pi\)
\(150\) 3.05644 2.56466i 0.249557 0.209403i
\(151\) 9.23442 0.751487 0.375743 0.926724i \(-0.377387\pi\)
0.375743 + 0.926724i \(0.377387\pi\)
\(152\) −2.32413 12.1480i −0.188512 0.985336i
\(153\) −6.87939 −0.556165
\(154\) −0.0812519 + 0.0681784i −0.00654747 + 0.00549398i
\(155\) −9.58260 3.48778i −0.769693 0.280145i
\(156\) −1.94862 + 11.0511i −0.156014 + 0.884800i
\(157\) −1.53074 8.68128i −0.122167 0.692842i −0.982950 0.183871i \(-0.941137\pi\)
0.860784 0.508971i \(-0.169974\pi\)
\(158\) 2.44444 0.889704i 0.194469 0.0707810i
\(159\) −12.1925 + 21.1181i −0.966931 + 1.67477i
\(160\) 4.65910 + 8.06980i 0.368334 + 0.637974i
\(161\) 0.386659 + 0.324446i 0.0304730 + 0.0255699i
\(162\) −7.41013 6.21784i −0.582195 0.488519i
\(163\) −10.0496 17.4065i −0.787148 1.36338i −0.927708 0.373308i \(-0.878224\pi\)
0.140560 0.990072i \(-0.455110\pi\)
\(164\) 1.36571 2.36549i 0.106644 0.184714i
\(165\) −3.10607 + 1.13052i −0.241807 + 0.0880105i
\(166\) 0.471315 + 2.67296i 0.0365811 + 0.207462i
\(167\) 0.162504 0.921605i 0.0125749 0.0713159i −0.977875 0.209192i \(-0.932917\pi\)
0.990449 + 0.137876i \(0.0440277\pi\)
\(168\) 0.643208 + 0.234109i 0.0496246 + 0.0180619i
\(169\) 6.06805 5.09170i 0.466773 0.391669i
\(170\) 9.99825 0.766830
\(171\) −2.23396 3.74292i −0.170835 0.286228i
\(172\) 12.3969 0.945257
\(173\) −2.51707 + 2.11208i −0.191370 + 0.160578i −0.733438 0.679756i \(-0.762086\pi\)
0.542069 + 0.840334i \(0.317641\pi\)
\(174\) −12.8229 4.66717i −0.972105 0.353817i
\(175\) 0.0475142 0.269466i 0.00359173 0.0203697i
\(176\) −0.00727396 0.0412527i −0.000548295 0.00310954i
\(177\) 7.79561 2.83737i 0.585954 0.213270i
\(178\) 4.63429 8.02682i 0.347354 0.601635i
\(179\) −10.9081 18.8933i −0.815307 1.41215i −0.909107 0.416563i \(-0.863235\pi\)
0.0937994 0.995591i \(-0.470099\pi\)
\(180\) 1.55303 + 1.30315i 0.115756 + 0.0971310i
\(181\) 19.5685 + 16.4199i 1.45452 + 1.22048i 0.929200 + 0.369577i \(0.120497\pi\)
0.525316 + 0.850907i \(0.323947\pi\)
\(182\) −0.242574 0.420150i −0.0179808 0.0311436i
\(183\) −8.92127 + 15.4521i −0.659480 + 1.14225i
\(184\) −11.1582 + 4.06126i −0.822595 + 0.299400i
\(185\) 0.421274 + 2.38917i 0.0309727 + 0.175655i
\(186\) 1.88444 10.6872i 0.138174 0.783622i
\(187\) 6.46451 + 2.35289i 0.472732 + 0.172060i
\(188\) −6.79813 + 5.70431i −0.495805 + 0.416030i
\(189\) −0.482459 −0.0350937
\(190\) 3.24675 + 5.43982i 0.235544 + 0.394646i
\(191\) −17.7811 −1.28659 −0.643296 0.765617i \(-0.722434\pi\)
−0.643296 + 0.765617i \(0.722434\pi\)
\(192\) −7.72462 + 6.48173i −0.557477 + 0.467778i
\(193\) 16.4757 + 5.99665i 1.18594 + 0.431648i 0.858297 0.513152i \(-0.171522\pi\)
0.327646 + 0.944801i \(0.393745\pi\)
\(194\) 0.848174 4.81023i 0.0608953 0.345355i
\(195\) −2.62536 14.8892i −0.188006 1.06624i
\(196\) −8.05216 + 2.93075i −0.575154 + 0.209339i
\(197\) −0.0282185 + 0.0488759i −0.00201048 + 0.00348226i −0.867029 0.498258i \(-0.833973\pi\)
0.865018 + 0.501740i \(0.167307\pi\)
\(198\) −0.439693 0.761570i −0.0312476 0.0541224i
\(199\) −10.4645 8.78076i −0.741809 0.622452i 0.191514 0.981490i \(-0.438660\pi\)
−0.933323 + 0.359038i \(0.883105\pi\)
\(200\) 4.93107 + 4.13766i 0.348680 + 0.292577i
\(201\) 4.74422 + 8.21723i 0.334632 + 0.579599i
\(202\) 2.18004 3.77595i 0.153387 0.265675i
\(203\) −0.879385 + 0.320070i −0.0617207 + 0.0224645i
\(204\) −2.93077 16.6212i −0.205195 1.16372i
\(205\) −0.639033 + 3.62414i −0.0446320 + 0.253121i
\(206\) 1.93969 + 0.705990i 0.135145 + 0.0491887i
\(207\) −3.20574 + 2.68993i −0.222814 + 0.186963i
\(208\) 0.191600 0.0132850
\(209\) 0.819078 + 4.28125i 0.0566568 + 0.296140i
\(210\) −0.350594 −0.0241933
\(211\) −3.94356 + 3.30904i −0.271486 + 0.227804i −0.768358 0.640020i \(-0.778926\pi\)
0.496872 + 0.867824i \(0.334482\pi\)
\(212\) −14.0544 5.11538i −0.965259 0.351325i
\(213\) 0.149711 0.849051i 0.0102580 0.0581760i
\(214\) −0.694288 3.93750i −0.0474606 0.269162i
\(215\) −15.6951 + 5.71253i −1.07039 + 0.389592i
\(216\) 5.67499 9.82938i 0.386134 0.668804i
\(217\) −0.372111 0.644516i −0.0252606 0.0437526i
\(218\) 4.29607 + 3.60483i 0.290967 + 0.244150i
\(219\) 8.74691 + 7.33953i 0.591061 + 0.495959i
\(220\) −1.01367 1.75573i −0.0683417 0.118371i
\(221\) −15.7331 + 27.2505i −1.05832 + 1.83307i
\(222\) −2.42602 + 0.883000i −0.162824 + 0.0592631i
\(223\) 3.23143 + 18.3263i 0.216393 + 1.22722i 0.878474 + 0.477791i \(0.158562\pi\)
−0.662081 + 0.749432i \(0.730327\pi\)
\(224\) −0.118089 + 0.669713i −0.00789012 + 0.0447471i
\(225\) 2.13176 + 0.775897i 0.142117 + 0.0517265i
\(226\) 10.5831 8.88024i 0.703975 0.590705i
\(227\) −20.8007 −1.38059 −0.690294 0.723529i \(-0.742519\pi\)
−0.690294 + 0.723529i \(0.742519\pi\)
\(228\) 8.09152 6.99201i 0.535874 0.463057i
\(229\) 1.10338 0.0729133 0.0364567 0.999335i \(-0.488393\pi\)
0.0364567 + 0.999335i \(0.488393\pi\)
\(230\) 4.65910 3.90945i 0.307212 0.257781i
\(231\) −0.226682 0.0825054i −0.0149146 0.00542845i
\(232\) 3.82295 21.6810i 0.250989 1.42343i
\(233\) −4.72715 26.8090i −0.309686 1.75632i −0.600584 0.799561i \(-0.705065\pi\)
0.290898 0.956754i \(-0.406046\pi\)
\(234\) 3.77972 1.37570i 0.247088 0.0899326i
\(235\) 5.97818 10.3545i 0.389973 0.675454i
\(236\) 2.54411 + 4.40653i 0.165607 + 0.286841i
\(237\) 4.53209 + 3.80287i 0.294391 + 0.247023i
\(238\) 0.558963 + 0.469026i 0.0362322 + 0.0304024i
\(239\) 5.83750 + 10.1108i 0.377596 + 0.654016i 0.990712 0.135977i \(-0.0434174\pi\)
−0.613116 + 0.789993i \(0.710084\pi\)
\(240\) 0.0692302 0.119910i 0.00446879 0.00774017i
\(241\) −24.0920 + 8.76877i −1.55190 + 0.564846i −0.968863 0.247599i \(-0.920359\pi\)
−0.583039 + 0.812444i \(0.698136\pi\)
\(242\) 0.152704 + 0.866025i 0.00981616 + 0.0556702i
\(243\) 1.73648 9.84808i 0.111395 0.631754i
\(244\) −10.2836 3.74292i −0.658339 0.239616i
\(245\) 8.84389 7.42091i 0.565016 0.474104i
\(246\) −3.91622 −0.249689
\(247\) −19.9354 + 0.289088i −1.26846 + 0.0183942i
\(248\) 17.5080 1.11176
\(249\) −4.72874 + 3.96788i −0.299672 + 0.251454i
\(250\) −9.92679 3.61306i −0.627826 0.228510i
\(251\) 0.115867 0.657115i 0.00731346 0.0414767i −0.980933 0.194348i \(-0.937741\pi\)
0.988246 + 0.152871i \(0.0488520\pi\)
\(252\) 0.0256923 + 0.145708i 0.00161846 + 0.00917875i
\(253\) 3.93242 1.43128i 0.247229 0.0899840i
\(254\) −7.40033 + 12.8177i −0.464338 + 0.804257i
\(255\) 11.3696 + 19.6927i 0.711991 + 1.23320i
\(256\) −12.3341 10.3495i −0.770881 0.646846i
\(257\) 7.94949 + 6.67042i 0.495876 + 0.416089i 0.856126 0.516766i \(-0.172864\pi\)
−0.360251 + 0.932856i \(0.617309\pi\)
\(258\) −8.88713 15.3930i −0.553288 0.958323i
\(259\) −0.0885259 + 0.153331i −0.00550073 + 0.00952754i
\(260\) 8.71378 3.17156i 0.540406 0.196692i
\(261\) −1.34730 7.64090i −0.0833956 0.472960i
\(262\) −0.748503 + 4.24497i −0.0462427 + 0.262255i
\(263\) −0.299011 0.108831i −0.0184378 0.00671081i 0.332785 0.943003i \(-0.392012\pi\)
−0.351223 + 0.936292i \(0.614234\pi\)
\(264\) 4.34730 3.64781i 0.267558 0.224507i
\(265\) 20.1506 1.23784
\(266\) −0.0736733 + 0.456427i −0.00451720 + 0.0279853i
\(267\) 21.0797 1.29005
\(268\) −4.45811 + 3.74080i −0.272322 + 0.228506i
\(269\) −11.7788 4.28715i −0.718168 0.261392i −0.0430204 0.999074i \(-0.513698\pi\)
−0.675148 + 0.737682i \(0.735920\pi\)
\(270\) −1.00950 + 5.72513i −0.0614359 + 0.348421i
\(271\) −2.70233 15.3257i −0.164155 0.930970i −0.949931 0.312459i \(-0.898847\pi\)
0.785776 0.618511i \(-0.212264\pi\)
\(272\) −0.270792 + 0.0985603i −0.0164192 + 0.00597610i
\(273\) 0.551689 0.955554i 0.0333898 0.0578327i
\(274\) 5.67617 + 9.83142i 0.342910 + 0.593938i
\(275\) −1.73783 1.45821i −0.104795 0.0879333i
\(276\) −7.86484 6.59938i −0.473408 0.397236i
\(277\) 7.07057 + 12.2466i 0.424830 + 0.735827i 0.996405 0.0847234i \(-0.0270007\pi\)
−0.571575 + 0.820550i \(0.693667\pi\)
\(278\) 3.69506 6.40003i 0.221615 0.383848i
\(279\) 5.79813 2.11035i 0.347125 0.126343i
\(280\) −0.0982202 0.557035i −0.00586978 0.0332892i
\(281\) 1.13697 6.44810i 0.0678262 0.384661i −0.931931 0.362635i \(-0.881877\pi\)
0.999757 0.0220262i \(-0.00701173\pi\)
\(282\) 11.9564 + 4.35176i 0.711991 + 0.259143i
\(283\) −5.34208 + 4.48254i −0.317554 + 0.266459i −0.787606 0.616179i \(-0.788680\pi\)
0.470052 + 0.882639i \(0.344235\pi\)
\(284\) 0.528791 0.0313780
\(285\) −7.02229 + 12.5808i −0.415964 + 0.745221i
\(286\) −4.02229 −0.237843
\(287\) −0.205737 + 0.172634i −0.0121443 + 0.0101903i
\(288\) −5.29813 1.92836i −0.312196 0.113630i
\(289\) 5.26604 29.8652i 0.309767 1.75678i
\(290\) 1.95811 + 11.1050i 0.114984 + 0.652108i
\(291\) 10.4388 3.79942i 0.611934 0.222726i
\(292\) −3.50165 + 6.06503i −0.204919 + 0.354929i
\(293\) 9.42989 + 16.3331i 0.550900 + 0.954187i 0.998210 + 0.0598080i \(0.0190488\pi\)
−0.447310 + 0.894379i \(0.647618\pi\)
\(294\) 9.41147 + 7.89716i 0.548888 + 0.460572i
\(295\) −5.25150 4.40653i −0.305754 0.256558i
\(296\) −2.08260 3.60716i −0.121048 0.209662i
\(297\) −2.00000 + 3.46410i −0.116052 + 0.201008i
\(298\) −4.64290 + 1.68988i −0.268956 + 0.0978920i
\(299\) 3.32383 + 18.8504i 0.192222 + 1.09014i
\(300\) −0.966461 + 5.48107i −0.0557987 + 0.316450i
\(301\) −1.14543 0.416902i −0.0660215 0.0240298i
\(302\) 6.22075 5.21983i 0.357964 0.300367i
\(303\) 9.91622 0.569672
\(304\) −0.141559 0.115326i −0.00811898 0.00661442i
\(305\) 14.7442 0.844252
\(306\) −4.63429 + 3.88863i −0.264924 + 0.222298i
\(307\) 4.21688 + 1.53482i 0.240670 + 0.0875968i 0.459539 0.888157i \(-0.348015\pi\)
−0.218869 + 0.975754i \(0.570237\pi\)
\(308\) 0.0256923 0.145708i 0.00146395 0.00830249i
\(309\) 0.815207 + 4.62327i 0.0463755 + 0.263009i
\(310\) −8.42679 + 3.06710i −0.478610 + 0.174200i
\(311\) −9.32042 + 16.1434i −0.528513 + 0.915411i 0.470935 + 0.882168i \(0.343917\pi\)
−0.999447 + 0.0332427i \(0.989417\pi\)
\(312\) 12.9786 + 22.4797i 0.734771 + 1.27266i
\(313\) −5.94150 4.98551i −0.335834 0.281798i 0.459238 0.888313i \(-0.348122\pi\)
−0.795072 + 0.606515i \(0.792567\pi\)
\(314\) −5.93835 4.98287i −0.335120 0.281199i
\(315\) −0.0996702 0.172634i −0.00561578 0.00972682i
\(316\) −1.81433 + 3.14251i −0.102064 + 0.176780i
\(317\) 15.9008 5.78742i 0.893078 0.325054i 0.145602 0.989343i \(-0.453488\pi\)
0.747475 + 0.664289i \(0.231266\pi\)
\(318\) 3.72369 + 21.1181i 0.208814 + 1.18424i
\(319\) −1.34730 + 7.64090i −0.0754341 + 0.427808i
\(320\) 7.83022 + 2.84997i 0.437723 + 0.159318i
\(321\) 6.96585 5.84504i 0.388796 0.326239i
\(322\) 0.443868 0.0247358
\(323\) 28.0265 10.6635i 1.55943 0.593333i
\(324\) 13.4935 0.749639
\(325\) 7.94878 6.66982i 0.440919 0.369975i
\(326\) −16.6091 6.04520i −0.919891 0.334813i
\(327\) −2.21482 + 12.5609i −0.122480 + 0.694618i
\(328\) −1.09714 6.22221i −0.0605796 0.343564i
\(329\) 0.819955 0.298439i 0.0452056 0.0164535i
\(330\) −1.45336 + 2.51730i −0.0800050 + 0.138573i
\(331\) −3.65136 6.32434i −0.200697 0.347617i 0.748056 0.663635i \(-0.230987\pi\)
−0.948753 + 0.316018i \(0.897654\pi\)
\(332\) −2.90033 2.43367i −0.159176 0.133565i
\(333\) −1.12449 0.943555i −0.0616214 0.0517065i
\(334\) −0.411474 0.712694i −0.0225149 0.0389969i
\(335\) 3.92040 6.79033i 0.214194 0.370995i
\(336\) 0.00949548 0.00345607i 0.000518021 0.000188544i
\(337\) −4.99407 28.3228i −0.272044 1.54284i −0.748196 0.663477i \(-0.769080\pi\)
0.476152 0.879363i \(-0.342031\pi\)
\(338\) 1.20961 6.86002i 0.0657940 0.373136i
\(339\) 29.5253 + 10.7463i 1.60359 + 0.583660i
\(340\) −10.6839 + 8.96487i −0.579417 + 0.486188i
\(341\) −6.17024 −0.334137
\(342\) −3.62061 1.25865i −0.195780 0.0680600i
\(343\) 1.68685 0.0910814
\(344\) 21.9670 18.4325i 1.18438 0.993815i
\(345\) 12.9982 + 4.73097i 0.699802 + 0.254707i
\(346\) −0.501755 + 2.84559i −0.0269745 + 0.152980i
\(347\) −5.17546 29.3515i −0.277833 1.57567i −0.729816 0.683644i \(-0.760394\pi\)
0.451983 0.892027i \(-0.350717\pi\)
\(348\) 17.8871 6.51038i 0.958851 0.348993i
\(349\) −8.06031 + 13.9609i −0.431458 + 0.747308i −0.996999 0.0774125i \(-0.975334\pi\)
0.565541 + 0.824720i \(0.308667\pi\)
\(350\) −0.120310 0.208383i −0.00643084 0.0111385i
\(351\) −14.0155 11.7604i −0.748091 0.627723i
\(352\) 4.31908 + 3.62414i 0.230208 + 0.193167i
\(353\) 17.9500 + 31.0902i 0.955380 + 1.65477i 0.733496 + 0.679693i \(0.237887\pi\)
0.221884 + 0.975073i \(0.428779\pi\)
\(354\) 3.64765 6.31792i 0.193870 0.335794i
\(355\) −0.669473 + 0.243668i −0.0355319 + 0.0129326i
\(356\) 2.24510 + 12.7326i 0.118990 + 0.674826i
\(357\) −0.288171 + 1.63430i −0.0152516 + 0.0864963i
\(358\) −18.0278 6.56159i −0.952799 0.346791i
\(359\) 9.26857 7.77725i 0.489176 0.410468i −0.364555 0.931182i \(-0.618779\pi\)
0.853731 + 0.520714i \(0.174334\pi\)
\(360\) 4.68954 0.247160
\(361\) 14.9029 + 11.7858i 0.784361 + 0.620305i
\(362\) 22.4638 1.18067
\(363\) −1.53209 + 1.28558i −0.0804138 + 0.0674752i
\(364\) 0.635934 + 0.231461i 0.0333320 + 0.0121319i
\(365\) 1.63846 9.29217i 0.0857609 0.486374i
\(366\) 2.72462 + 15.4521i 0.142418 + 0.807694i
\(367\) 13.0239 4.74033i 0.679844 0.247443i 0.0210635 0.999778i \(-0.493295\pi\)
0.658781 + 0.752335i \(0.271073\pi\)
\(368\) −0.0876485 + 0.151812i −0.00456900 + 0.00791373i
\(369\) −1.11334 1.92836i −0.0579582 0.100387i
\(370\) 1.63429 + 1.37133i 0.0849624 + 0.0712920i
\(371\) 1.12654 + 0.945283i 0.0584873 + 0.0490767i
\(372\) 7.56893 + 13.1098i 0.392431 + 0.679710i
\(373\) 15.1468 26.2350i 0.784270 1.35840i −0.145164 0.989408i \(-0.546371\pi\)
0.929434 0.368988i \(-0.120296\pi\)
\(374\) 5.68479 2.06910i 0.293954 0.106990i
\(375\) −4.17200 23.6606i −0.215441 1.22183i
\(376\) −3.56459 + 20.2158i −0.183830 + 1.04255i
\(377\) −33.3482 12.1378i −1.71752 0.625127i
\(378\) −0.325008 + 0.272714i −0.0167166 + 0.0140269i
\(379\) −35.5526 −1.82622 −0.913108 0.407718i \(-0.866325\pi\)
−0.913108 + 0.407718i \(0.866325\pi\)
\(380\) −8.34699 2.90170i −0.428192 0.148854i
\(381\) −33.6614 −1.72452
\(382\) −11.9782 + 10.0509i −0.612857 + 0.514248i
\(383\) 7.46538 + 2.71718i 0.381463 + 0.138841i 0.525632 0.850712i \(-0.323829\pi\)
−0.144169 + 0.989553i \(0.546051\pi\)
\(384\) 2.37639 13.4772i 0.121270 0.687755i
\(385\) 0.0346151 + 0.196312i 0.00176415 + 0.0100050i
\(386\) 14.4884 5.27336i 0.737442 0.268407i
\(387\) 5.05303 8.75211i 0.256860 0.444895i
\(388\) 3.40673 + 5.90062i 0.172950 + 0.299559i
\(389\) −1.48499 1.24605i −0.0752917 0.0631773i 0.604365 0.796708i \(-0.293427\pi\)
−0.679657 + 0.733530i \(0.737871\pi\)
\(390\) −10.1848 8.54606i −0.515727 0.432746i
\(391\) −14.3944 24.9318i −0.727956 1.26086i
\(392\) −9.91060 + 17.1657i −0.500561 + 0.866997i
\(393\) −9.21213 + 3.35294i −0.464691 + 0.169134i
\(394\) 0.00861813 + 0.0488759i 0.000434175 + 0.00246233i
\(395\) 0.848945 4.81461i 0.0427151 0.242249i
\(396\) 1.15270 + 0.419550i 0.0579255 + 0.0210832i
\(397\) 20.7463 17.4082i 1.04123 0.873692i 0.0490822 0.998795i \(-0.484370\pi\)
0.992144 + 0.125102i \(0.0399259\pi\)
\(398\) −12.0128 −0.602147
\(399\) −0.982764 + 0.373922i −0.0491997 + 0.0187195i
\(400\) 0.0950283 0.00475142
\(401\) −12.0478 + 10.1093i −0.601639 + 0.504835i −0.891972 0.452090i \(-0.850678\pi\)
0.290333 + 0.956926i \(0.406234\pi\)
\(402\) 7.84079 + 2.85382i 0.391063 + 0.142335i
\(403\) 4.90080 27.7938i 0.244126 1.38451i
\(404\) 1.05613 + 5.98962i 0.0525445 + 0.297995i
\(405\) −17.0834 + 6.21784i −0.848879 + 0.308967i
\(406\) −0.411474 + 0.712694i −0.0204211 + 0.0353704i
\(407\) 0.733956 + 1.27125i 0.0363808 + 0.0630134i
\(408\) −29.9067 25.0947i −1.48060 1.24237i
\(409\) −10.9042 9.14971i −0.539178 0.452424i 0.332079 0.943252i \(-0.392250\pi\)
−0.871257 + 0.490828i \(0.836694\pi\)
\(410\) 1.61809 + 2.80261i 0.0799117 + 0.138411i
\(411\) −12.9094 + 22.3598i −0.636774 + 1.10293i
\(412\) −2.70574 + 0.984808i −0.133302 + 0.0485180i
\(413\) −0.0868770 0.492704i −0.00427494 0.0242444i
\(414\) −0.639033 + 3.62414i −0.0314068 + 0.178117i
\(415\) 4.79339 + 1.74465i 0.235298 + 0.0856415i
\(416\) −19.7554 + 16.5767i −0.968587 + 0.812741i
\(417\) 16.8075 0.823065
\(418\) 2.97178 + 2.42107i 0.145355 + 0.118418i
\(419\) −25.0051 −1.22158 −0.610788 0.791794i \(-0.709147\pi\)
−0.610788 + 0.791794i \(0.709147\pi\)
\(420\) 0.374638 0.314358i 0.0182804 0.0153391i
\(421\) −31.1587 11.3408i −1.51858 0.552719i −0.557788 0.829983i \(-0.688350\pi\)
−0.960794 + 0.277265i \(0.910572\pi\)
\(422\) −0.786112 + 4.45826i −0.0382673 + 0.217025i
\(423\) 1.25624 + 7.12452i 0.0610807 + 0.346406i
\(424\) −32.5099 + 11.8326i −1.57882 + 0.574643i
\(425\) −7.80319 + 13.5155i −0.378510 + 0.655599i
\(426\) −0.379081 0.656587i −0.0183665 0.0318117i
\(427\) 0.824292 + 0.691663i 0.0398903 + 0.0334719i
\(428\) 4.27244 + 3.58500i 0.206516 + 0.173288i
\(429\) −4.57398 7.92236i −0.220834 0.382495i
\(430\) −7.34389 + 12.7200i −0.354154 + 0.613413i
\(431\) 20.6065 7.50016i 0.992582 0.361270i 0.205862 0.978581i \(-0.434000\pi\)
0.786719 + 0.617311i \(0.211778\pi\)
\(432\) −0.0290958 0.165011i −0.00139987 0.00793908i
\(433\) −3.69001 + 20.9271i −0.177330 + 1.00569i 0.758089 + 0.652151i \(0.226133\pi\)
−0.935419 + 0.353540i \(0.884978\pi\)
\(434\) −0.614990 0.223838i −0.0295204 0.0107446i
\(435\) −19.6459 + 16.4849i −0.941949 + 0.790389i
\(436\) −7.82295 −0.374651
\(437\) 8.89053 15.9278i 0.425292 0.761931i
\(438\) 10.0411 0.479781
\(439\) −7.13429 + 5.98638i −0.340501 + 0.285714i −0.796962 0.604029i \(-0.793561\pi\)
0.456461 + 0.889743i \(0.349117\pi\)
\(440\) −4.40673 1.60392i −0.210082 0.0764638i
\(441\) −1.21301 + 6.87933i −0.0577624 + 0.327587i
\(442\) 4.80500 + 27.2505i 0.228550 + 1.29617i
\(443\) 17.1420 6.23919i 0.814442 0.296433i 0.0989847 0.995089i \(-0.468441\pi\)
0.715458 + 0.698656i \(0.246218\pi\)
\(444\) 1.80066 3.11883i 0.0854555 0.148013i
\(445\) −8.70961 15.0855i −0.412875 0.715120i
\(446\) 12.5360 + 10.5189i 0.593595 + 0.498085i
\(447\) −8.60813 7.22308i −0.407150 0.341640i
\(448\) 0.304063 + 0.526653i 0.0143656 + 0.0248820i
\(449\) −0.496130 + 0.859322i −0.0234138 + 0.0405539i −0.877495 0.479586i \(-0.840787\pi\)
0.854081 + 0.520140i \(0.174120\pi\)
\(450\) 1.87464 0.682312i 0.0883713 0.0321645i
\(451\) 0.386659 + 2.19285i 0.0182071 + 0.103257i
\(452\) −3.34642 + 18.9785i −0.157402 + 0.892673i
\(453\) 17.3550 + 6.31672i 0.815411 + 0.296785i
\(454\) −14.0123 + 11.7577i −0.657631 + 0.551818i
\(455\) −0.911779 −0.0427449
\(456\) 3.94181 24.4206i 0.184592 1.14360i
\(457\) −16.3746 −0.765973 −0.382987 0.923754i \(-0.625104\pi\)
−0.382987 + 0.923754i \(0.625104\pi\)
\(458\) 0.743289 0.623693i 0.0347316 0.0291433i
\(459\) 25.8580 + 9.41155i 1.20695 + 0.439294i
\(460\) −1.47323 + 8.35511i −0.0686898 + 0.389559i
\(461\) 6.81773 + 38.6653i 0.317534 + 1.80082i 0.557648 + 0.830077i \(0.311704\pi\)
−0.240115 + 0.970745i \(0.577185\pi\)
\(462\) −0.199340 + 0.0725540i −0.00927416 + 0.00337552i
\(463\) 21.0167 36.4019i 0.976727 1.69174i 0.302614 0.953113i \(-0.402141\pi\)
0.674113 0.738628i \(-0.264526\pi\)
\(464\) −0.162504 0.281465i −0.00754405 0.0130667i
\(465\) −15.6236 13.1098i −0.724527 0.607951i
\(466\) −18.3384 15.3878i −0.849511 0.712825i
\(467\) −20.6434 35.7554i −0.955261 1.65456i −0.733769 0.679399i \(-0.762241\pi\)
−0.221492 0.975162i \(-0.571093\pi\)
\(468\) −2.80541 + 4.85911i −0.129680 + 0.224612i
\(469\) 0.537714 0.195712i 0.0248293 0.00903713i
\(470\) −1.82578 10.3545i −0.0842169 0.477618i
\(471\) 3.06149 17.3626i 0.141066 0.800025i
\(472\) 11.0600 + 4.02551i 0.509078 + 0.185289i
\(473\) −7.74170 + 6.49605i −0.355964 + 0.298689i
\(474\) 5.20264 0.238965
\(475\) −9.88743 + 0.143380i −0.453666 + 0.00657872i
\(476\) −1.01785 −0.0466529
\(477\) −9.34002 + 7.83721i −0.427650 + 0.358841i
\(478\) 9.64765 + 3.51146i 0.441273 + 0.160610i
\(479\) 2.26692 12.8564i 0.103578 0.587422i −0.888200 0.459456i \(-0.848044\pi\)
0.991779 0.127965i \(-0.0408446\pi\)
\(480\) 3.23618 + 18.3533i 0.147711 + 0.837708i
\(481\) −6.30928 + 2.29639i −0.287678 + 0.104706i
\(482\) −11.2729 + 19.5252i −0.513467 + 0.889351i
\(483\) 0.504748 + 0.874249i 0.0229668 + 0.0397797i
\(484\) −0.939693 0.788496i −0.0427133 0.0358407i
\(485\) −7.03209 5.90062i −0.319311 0.267933i
\(486\) −4.39693 7.61570i −0.199449 0.345455i
\(487\) −10.9907 + 19.0364i −0.498035 + 0.862621i −0.999997 0.00226791i \(-0.999278\pi\)
0.501963 + 0.864889i \(0.332611\pi\)
\(488\) −23.7875 + 8.65793i −1.07681 + 0.391926i
\(489\) −6.98040 39.5878i −0.315665 1.79022i
\(490\) 1.76295 9.99816i 0.0796418 0.451671i
\(491\) 12.7785 + 4.65101i 0.576687 + 0.209897i 0.613864 0.789412i \(-0.289614\pi\)
−0.0371769 + 0.999309i \(0.511837\pi\)
\(492\) 4.18479 3.51146i 0.188665 0.158309i
\(493\) 53.3756 2.40391
\(494\) −13.2660 + 11.4634i −0.596868 + 0.515762i
\(495\) −1.65270 −0.0742835
\(496\) 0.197996 0.166139i 0.00889030 0.00745984i
\(497\) −0.0488583 0.0177830i −0.00219160 0.000797676i
\(498\) −0.942629 + 5.34592i −0.0422402 + 0.239556i
\(499\) −0.646774 3.66804i −0.0289536 0.164204i 0.966903 0.255146i \(-0.0821234\pi\)
−0.995856 + 0.0909417i \(0.971012\pi\)
\(500\) 13.8472 5.03997i 0.619265 0.225394i
\(501\) 0.935822 1.62089i 0.0418095 0.0724161i
\(502\) −0.293386 0.508159i −0.0130944 0.0226802i
\(503\) 20.5431 + 17.2377i 0.915970 + 0.768590i 0.973245 0.229768i \(-0.0737968\pi\)
−0.0572751 + 0.998358i \(0.518241\pi\)
\(504\) 0.262174 + 0.219990i 0.0116782 + 0.00979914i
\(505\) −4.09714 7.09646i −0.182321 0.315788i
\(506\) 1.84002 3.18701i 0.0817990 0.141680i
\(507\) 14.8871 5.41847i 0.661160 0.240643i
\(508\) −3.58512 20.3322i −0.159064 0.902097i
\(509\) −1.15539 + 6.55255i −0.0512118 + 0.290437i −0.999648 0.0265315i \(-0.991554\pi\)
0.948436 + 0.316968i \(0.102665\pi\)
\(510\) 18.7906 + 6.83920i 0.832060 + 0.302845i
\(511\) 0.527503 0.442628i 0.0233354 0.0195807i
\(512\) −0.473897 −0.0209435
\(513\) 3.27631 + 17.1250i 0.144653 + 0.756087i
\(514\) 9.12567 0.402516
\(515\) 2.97178 2.49362i 0.130952 0.109882i
\(516\) 23.2986 + 8.48000i 1.02566 + 0.373311i
\(517\) 1.25624 7.12452i 0.0552496 0.313336i
\(518\) 0.0270364 + 0.153331i 0.00118791 + 0.00673699i
\(519\) −6.17530 + 2.24762i −0.271065 + 0.0986598i
\(520\) 10.7249 18.5761i 0.470319 0.814617i
\(521\) 2.41740 + 4.18707i 0.105908 + 0.183439i 0.914109 0.405469i \(-0.132892\pi\)
−0.808201 + 0.588907i \(0.799558\pi\)
\(522\) −5.22668 4.38571i −0.228766 0.191957i
\(523\) 19.7512 + 16.5733i 0.863662 + 0.724698i 0.962754 0.270380i \(-0.0871493\pi\)
−0.0990919 + 0.995078i \(0.531594\pi\)
\(524\) −3.00640 5.20723i −0.131335 0.227479i
\(525\) 0.273623 0.473929i 0.0119419 0.0206840i
\(526\) −0.262946 + 0.0957044i −0.0114650 + 0.00417291i
\(527\) 7.37093 + 41.8026i 0.321083 + 1.82095i
\(528\) 0.0145479 0.0825054i 0.000633117 0.00359058i
\(529\) 5.15657 + 1.87684i 0.224199 + 0.0816017i
\(530\) 13.5744 11.3903i 0.589636 0.494764i
\(531\) 4.14796 0.180006
\(532\) −0.330527 0.553787i −0.0143302 0.0240097i
\(533\) −10.1848 −0.441152
\(534\) 14.2003 11.9154i 0.614506 0.515632i
\(535\) −7.06108 2.57002i −0.305277 0.111112i
\(536\) −2.33760 + 13.2572i −0.100969 + 0.572624i
\(537\) −7.57667 42.9694i −0.326957 1.85427i
\(538\) −10.3581 + 3.77005i −0.446571 + 0.162539i
\(539\) 3.49273 6.04958i 0.150442 0.260574i
\(540\) −4.05468 7.02292i −0.174486 0.302218i
\(541\) −5.57604 4.67885i −0.239733 0.201160i 0.515003 0.857188i \(-0.327791\pi\)
−0.754736 + 0.656029i \(0.772235\pi\)
\(542\) −10.4834 8.79661i −0.450300 0.377847i
\(543\) 25.5449 + 44.2450i 1.09624 + 1.89874i
\(544\) 19.3935 33.5906i 0.831490 1.44018i
\(545\) 9.90420 3.60483i 0.424249 0.154414i
\(546\) −0.168490 0.955554i −0.00721070 0.0408939i
\(547\) −4.89037 + 27.7347i −0.209097 + 1.18585i 0.681764 + 0.731572i \(0.261213\pi\)
−0.890861 + 0.454276i \(0.849898\pi\)
\(548\) −14.8807 5.41614i −0.635673 0.231366i
\(549\) −6.83409 + 5.73448i −0.291672 + 0.244742i
\(550\) −1.99495 −0.0850648
\(551\) 17.3327 + 29.0404i 0.738400 + 1.23716i
\(552\) −23.7487 −1.01081
\(553\) 0.273318 0.229341i 0.0116227 0.00975259i
\(554\) 11.6856 + 4.25320i 0.496472 + 0.180701i
\(555\) −0.842549 + 4.77833i −0.0357642 + 0.202829i
\(556\) 1.79009 + 10.1521i 0.0759166 + 0.430545i
\(557\) −2.37716 + 0.865217i −0.100724 + 0.0366604i −0.391890 0.920012i \(-0.628179\pi\)
0.291167 + 0.956672i \(0.405957\pi\)
\(558\) 2.71301 4.69907i 0.114851 0.198928i
\(559\) −23.1125 40.0320i −0.977553 1.69317i
\(560\) −0.00639661 0.00536740i −0.000270306 0.000226814i
\(561\) 10.5398 + 8.84397i 0.444992 + 0.373393i
\(562\) −2.87892 4.98643i −0.121440 0.210340i
\(563\) 4.81861 8.34608i 0.203080 0.351745i −0.746439 0.665454i \(-0.768238\pi\)
0.949519 + 0.313708i \(0.101571\pi\)
\(564\) −16.6783 + 6.07040i −0.702283 + 0.255610i
\(565\) −4.50862 25.5696i −0.189679 1.07572i
\(566\) −1.06489 + 6.03931i −0.0447608 + 0.253851i
\(567\) −1.24675 0.453779i −0.0523585 0.0190569i
\(568\) 0.937004 0.786240i 0.0393158 0.0329899i
\(569\) −24.2790 −1.01783 −0.508914 0.860817i \(-0.669953\pi\)
−0.508914 + 0.860817i \(0.669953\pi\)
\(570\) 2.38084 + 12.4444i 0.0997222 + 0.521240i
\(571\) 15.0743 0.630839 0.315420 0.948952i \(-0.397855\pi\)
0.315420 + 0.948952i \(0.397855\pi\)
\(572\) 4.29813 3.60656i 0.179714 0.150798i
\(573\) −33.4175 12.1630i −1.39603 0.508115i
\(574\) −0.0410117 + 0.232589i −0.00171180 + 0.00970808i
\(575\) 1.64853 + 9.34927i 0.0687484 + 0.389892i
\(576\) −4.73783 + 1.72443i −0.197409 + 0.0718512i
\(577\) 10.2221 17.7052i 0.425551 0.737077i −0.570920 0.821005i \(-0.693413\pi\)
0.996472 + 0.0839288i \(0.0267468\pi\)
\(578\) −13.3341 23.0953i −0.554625 0.960639i
\(579\) 26.8621 + 22.5400i 1.11635 + 0.936731i
\(580\) −12.0496 10.1108i −0.500334 0.419830i
\(581\) 0.186137 + 0.322398i 0.00772225 + 0.0133753i
\(582\) 4.88444 8.46009i 0.202466 0.350682i
\(583\) 11.4572 4.17009i 0.474510 0.172708i
\(584\) 2.81304 + 15.9536i 0.116405 + 0.660163i
\(585\) 1.31268 7.44459i 0.0542727 0.307796i
\(586\) 15.5848 + 5.67241i 0.643803 + 0.234325i
\(587\) 27.8259 23.3487i 1.14850 0.963706i 0.148816 0.988865i \(-0.452454\pi\)
0.999683 + 0.0251594i \(0.00800932\pi\)
\(588\) −17.1379 −0.706753
\(589\) −20.3503 + 17.5850i −0.838519 + 0.724577i
\(590\) −6.02849 −0.248189
\(591\) −0.0864665 + 0.0725540i −0.00355676 + 0.00298447i
\(592\) −0.0577812 0.0210306i −0.00237479 0.000864353i
\(593\) −3.87598 + 21.9818i −0.159167 + 0.902684i 0.795709 + 0.605680i \(0.207099\pi\)
−0.954876 + 0.297004i \(0.904012\pi\)
\(594\) 0.610815 + 3.46410i 0.0250620 + 0.142134i
\(595\) 1.28864 0.469026i 0.0528290 0.0192282i
\(596\) 3.44609 5.96880i 0.141157 0.244492i
\(597\) −13.6604 23.6606i −0.559085 0.968363i
\(598\) 12.8944 + 10.8197i 0.527291 + 0.442450i
\(599\) 8.96039 + 7.51866i 0.366112 + 0.307204i 0.807221 0.590249i \(-0.200971\pi\)
−0.441110 + 0.897453i \(0.645415\pi\)
\(600\) 6.43706 + 11.1493i 0.262792 + 0.455169i
\(601\) −18.9650 + 32.8483i −0.773597 + 1.33991i 0.161982 + 0.986794i \(0.448211\pi\)
−0.935579 + 0.353116i \(0.885122\pi\)
\(602\) −1.00727 + 0.366618i −0.0410534 + 0.0149422i
\(603\) 0.823826 + 4.67215i 0.0335488 + 0.190265i
\(604\) −1.96703 + 11.1556i −0.0800375 + 0.453915i
\(605\) 1.55303 + 0.565258i 0.0631398 + 0.0229810i
\(606\) 6.68004 5.60522i 0.271358 0.227697i
\(607\) 9.23442 0.374814 0.187407 0.982282i \(-0.439992\pi\)
0.187407 + 0.982282i \(0.439992\pi\)
\(608\) 24.5736 0.356347i 0.996590 0.0144518i
\(609\) −1.87164 −0.0758429
\(610\) 9.93242 8.33429i 0.402152 0.337445i
\(611\) 31.0945 + 11.3175i 1.25795 + 0.457856i
\(612\) 1.46538 8.31061i 0.0592347 0.335937i
\(613\) −1.06805 6.05720i −0.0431381 0.244648i 0.955612 0.294627i \(-0.0951956\pi\)
−0.998750 + 0.0499794i \(0.984084\pi\)
\(614\) 3.70826 1.34970i 0.149653 0.0544694i
\(615\) −3.68004 + 6.37402i −0.148394 + 0.257025i
\(616\) −0.171122 0.296392i −0.00689470 0.0119420i
\(617\) −20.5685 17.2590i −0.828057 0.694823i 0.126787 0.991930i \(-0.459534\pi\)
−0.954844 + 0.297107i \(0.903978\pi\)
\(618\) 3.16250 + 2.65366i 0.127215 + 0.106746i
\(619\) 17.3787 + 30.1007i 0.698508 + 1.20985i 0.968984 + 0.247124i \(0.0794856\pi\)
−0.270476 + 0.962727i \(0.587181\pi\)
\(620\) 6.25460 10.8333i 0.251191 0.435075i
\(621\) 15.7297 5.72513i 0.631210 0.229742i
\(622\) 2.84652 + 16.1434i 0.114135 + 0.647293i
\(623\) 0.220752 1.25195i 0.00884423 0.0501581i
\(624\) 0.360090 + 0.131062i 0.0144151 + 0.00524667i
\(625\) −6.51960 + 5.47059i −0.260784 + 0.218824i
\(626\) −6.82058 −0.272605
\(627\) −1.38919 + 8.60640i −0.0554787 + 0.343707i
\(628\) 10.8135 0.431504
\(629\) 7.73577 6.49108i 0.308445 0.258816i
\(630\) −0.164725 0.0599551i −0.00656281 0.00238867i
\(631\) −5.80659 + 32.9308i −0.231157 + 1.31095i 0.619402 + 0.785074i \(0.287375\pi\)
−0.850558 + 0.525880i \(0.823736\pi\)
\(632\) 1.45754 + 8.26611i 0.0579778 + 0.328808i
\(633\) −9.67499 + 3.52141i −0.384546 + 0.139963i
\(634\) 7.44016 12.8867i 0.295486 0.511798i
\(635\) 13.9081 + 24.0895i 0.551925 + 0.955962i
\(636\) −22.9145 19.2275i −0.908618 0.762421i
\(637\) 24.4761 + 20.5379i 0.969779 + 0.813741i
\(638\) 3.41147 + 5.90885i 0.135062 + 0.233933i
\(639\) 0.215537 0.373321i 0.00852652 0.0147684i
\(640\) −10.6267 + 3.86780i −0.420057 + 0.152888i
\(641\) −5.79648 32.8735i −0.228947 1.29843i −0.854993 0.518639i \(-0.826439\pi\)
0.626046 0.779786i \(-0.284672\pi\)
\(642\) 1.38858 7.87501i 0.0548027 0.310802i
\(643\) −30.9488 11.2644i −1.22050 0.444226i −0.350166 0.936687i \(-0.613875\pi\)
−0.870334 + 0.492462i \(0.836097\pi\)
\(644\) −0.474308 + 0.397991i −0.0186903 + 0.0156831i
\(645\) −33.4047 −1.31531
\(646\) 12.8523 23.0256i 0.505669 0.905931i
\(647\) −31.6979 −1.24617 −0.623086 0.782153i \(-0.714121\pi\)
−0.623086 + 0.782153i \(0.714121\pi\)
\(648\) 23.9101 20.0630i 0.939279 0.788148i
\(649\) −3.89780 1.41868i −0.153002 0.0556882i
\(650\) 1.58451 8.98622i 0.0621497 0.352469i
\(651\) −0.258466 1.46583i −0.0101301 0.0574505i
\(652\) 23.1685 8.43264i 0.907348 0.330248i
\(653\) 4.17840 7.23719i 0.163513 0.283213i −0.772613 0.634877i \(-0.781051\pi\)
0.936126 + 0.351664i \(0.114384\pi\)
\(654\) 5.60813 + 9.71356i 0.219295 + 0.379830i
\(655\) 6.20574 + 5.20723i 0.242478 + 0.203463i
\(656\) −0.0714517 0.0599551i −0.00278972 0.00234085i
\(657\) 2.85457 + 4.94426i 0.111367 + 0.192894i
\(658\) 0.383666 0.664529i 0.0149569 0.0259060i
\(659\) 6.41147 2.33359i 0.249756 0.0909036i −0.214109 0.976810i \(-0.568685\pi\)
0.463864 + 0.885906i \(0.346462\pi\)
\(660\) −0.704088 3.99308i −0.0274066 0.155431i
\(661\) −1.29102 + 7.32175i −0.0502149 + 0.284783i −0.999567 0.0294320i \(-0.990630\pi\)
0.949352 + 0.314215i \(0.101741\pi\)
\(662\) −6.03462 2.19642i −0.234542 0.0853663i
\(663\) −48.2089 + 40.4521i −1.87228 + 1.57103i
\(664\) −8.75784 −0.339870
\(665\) 0.673648 + 0.548811i 0.0261230 + 0.0212820i
\(666\) −1.29086 −0.0500198
\(667\) 24.8726 20.8706i 0.963070 0.808112i
\(668\) 1.07873 + 0.392624i 0.0417372 + 0.0151911i
\(669\) −6.46286 + 36.6527i −0.249869 + 1.41707i
\(670\) −1.19732 6.79033i −0.0462564 0.262333i
\(671\) 8.38326 3.05126i 0.323632 0.117792i
\(672\) −0.680045 + 1.17787i −0.0262333 + 0.0454374i
\(673\) −15.6446 27.0972i −0.603053 1.04452i −0.992356 0.123409i \(-0.960617\pi\)
0.389303 0.921110i \(-0.372716\pi\)
\(674\) −19.3739 16.2567i −0.746256 0.626183i
\(675\) −6.95130 5.83284i −0.267556 0.224506i
\(676\) 4.85844 + 8.41507i 0.186863 + 0.323656i
\(677\) 20.3824 35.3033i 0.783358 1.35682i −0.146616 0.989193i \(-0.546838\pi\)
0.929975 0.367623i \(-0.119828\pi\)
\(678\) 25.9641 9.45016i 0.997145 0.362931i
\(679\) −0.116334 0.659762i −0.00446448 0.0253193i
\(680\) −5.60209 + 31.7710i −0.214830 + 1.21836i
\(681\) −39.0925 14.2285i −1.49803 0.545237i
\(682\) −4.15657 + 3.48778i −0.159163 + 0.133554i
\(683\) −27.7320 −1.06114 −0.530568 0.847642i \(-0.678022\pi\)
−0.530568 + 0.847642i \(0.678022\pi\)
\(684\) 4.99747 1.90144i 0.191083 0.0727033i
\(685\) 21.3354 0.815185
\(686\) 1.13634 0.953506i 0.0433858 0.0364050i
\(687\) 2.07367 + 0.754755i 0.0791156 + 0.0287957i
\(688\) 0.0735111 0.416902i 0.00280259 0.0158943i
\(689\) 9.68408 + 54.9211i 0.368934 + 2.09233i
\(690\) 11.4305 4.16035i 0.435150 0.158382i
\(691\) 18.5906 32.1999i 0.707221 1.22494i −0.258663 0.965968i \(-0.583282\pi\)
0.965884 0.258976i \(-0.0833849\pi\)
\(692\) −2.01532 3.49064i −0.0766110 0.132694i
\(693\) −0.0923963 0.0775297i −0.00350984 0.00294511i
\(694\) −20.0776 16.8471i −0.762135 0.639507i
\(695\) −6.94444 12.0281i −0.263418 0.456253i
\(696\) 22.0155 38.1319i 0.834495 1.44539i
\(697\) 14.3944 5.23913i 0.545227 0.198446i
\(698\) 2.46168 + 13.9609i 0.0931758 + 0.528426i
\(699\) 9.45430 53.6180i 0.357594 2.02802i
\(700\) 0.315406 + 0.114799i 0.0119212 + 0.00433898i
\(701\) 2.05896 1.72768i 0.0777660 0.0652534i −0.603076 0.797684i \(-0.706058\pi\)
0.680842 + 0.732430i \(0.261614\pi\)
\(702\) −16.0892 −0.607246
\(703\) 6.04370 + 2.10100i 0.227942 + 0.0792406i
\(704\) 5.04189 0.190023
\(705\) 18.3182 15.3708i 0.689903 0.578898i
\(706\) 29.6660 + 10.7975i 1.11649 + 0.406370i
\(707\) 0.103845 0.588936i 0.00390551 0.0221492i
\(708\) 1.76712 + 10.0218i 0.0664125 + 0.376644i
\(709\) −32.7520 + 11.9207i −1.23003 + 0.447693i −0.873606 0.486633i \(-0.838225\pi\)
−0.356419 + 0.934326i \(0.616003\pi\)
\(710\) −0.313254 + 0.542572i −0.0117562 + 0.0203624i
\(711\) 1.47906 + 2.56180i 0.0554689 + 0.0960750i
\(712\) 22.9099 + 19.2237i 0.858584 + 0.720438i
\(713\) 19.7802 + 16.5975i 0.740774 + 0.621583i
\(714\) 0.729675 + 1.26383i 0.0273074 + 0.0472978i
\(715\) −3.77972 + 6.54666i −0.141353 + 0.244831i
\(716\) 25.1475 9.15296i 0.939808 0.342062i
\(717\) 4.05468 + 22.9952i 0.151425 + 0.858773i
\(718\) 1.84760 10.4783i 0.0689519 0.391045i
\(719\) −1.28787 0.468745i −0.0480293 0.0174812i 0.317894 0.948126i \(-0.397024\pi\)
−0.365923 + 0.930645i \(0.619247\pi\)
\(720\) 0.0530334 0.0445003i 0.00197644 0.00165843i
\(721\) 0.283119 0.0105439
\(722\) 16.7013 0.484481i 0.621558 0.0180305i
\(723\) −51.2763 −1.90699
\(724\) −24.0043 + 20.1420i −0.892114 + 0.748573i
\(725\) −16.5398 6.02001i −0.614274 0.223577i
\(726\) −0.305407 + 1.73205i −0.0113347 + 0.0642824i
\(727\) −1.27955 7.25671i −0.0474560 0.269136i 0.951842 0.306588i \(-0.0991872\pi\)
−0.999298 + 0.0374512i \(0.988076\pi\)
\(728\) 1.47101 0.535404i 0.0545193 0.0198434i
\(729\) −6.50000 + 11.2583i −0.240741 + 0.416975i
\(730\) −4.14873 7.18581i −0.153551 0.265959i
\(731\) 53.2581 + 44.6889i 1.96982 + 1.65288i
\(732\) −16.7665 14.0688i −0.619708 0.519997i
\(733\) 15.3469 + 26.5816i 0.566850 + 0.981813i 0.996875 + 0.0789962i \(0.0251715\pi\)
−0.430025 + 0.902817i \(0.641495\pi\)
\(734\) 6.09405 10.5552i 0.224935 0.389599i
\(735\) 21.6973 7.89716i 0.800316 0.291291i
\(736\) −4.09714 23.2361i −0.151023 0.856492i
\(737\) 0.823826 4.67215i 0.0303460 0.172101i
\(738\) −1.84002 0.669713i −0.0677322 0.0246525i
\(739\) 32.0526 26.8953i 1.17907 0.989361i 0.179090 0.983833i \(-0.442685\pi\)
0.999985 0.00552854i \(-0.00175980\pi\)
\(740\) −2.97596 −0.109398
\(741\) −37.6641 13.0933i −1.38362 0.480995i
\(742\) 1.29322 0.0474757
\(743\) −20.2683 + 17.0071i −0.743573 + 0.623932i −0.933795 0.357810i \(-0.883524\pi\)
0.190222 + 0.981741i \(0.439079\pi\)
\(744\) 32.9044 + 11.9762i 1.20633 + 0.439069i
\(745\) −1.61246 + 9.14473i −0.0590761 + 0.335037i
\(746\) −4.62594 26.2350i −0.169368 0.960531i
\(747\) −2.90033 + 1.05563i −0.106118 + 0.0386236i
\(748\) −4.21941 + 7.30823i −0.154277 + 0.267215i
\(749\) −0.274196 0.474921i −0.0100189 0.0173532i
\(750\) −16.1848 13.5807i −0.590985 0.495895i
\(751\) 17.9342 + 15.0486i 0.654429 + 0.549131i 0.908411 0.418078i \(-0.137296\pi\)
−0.253982 + 0.967209i \(0.581740\pi\)
\(752\) 0.151522 + 0.262443i 0.00552542 + 0.00957032i
\(753\) 0.667252 1.15571i 0.0243160 0.0421165i
\(754\) −29.3259 + 10.6738i −1.06799 + 0.388716i
\(755\) −2.65018 15.0299i −0.0964498 0.546994i
\(756\) 0.102769 0.582832i 0.00373768 0.0211974i
\(757\) −8.53761 3.10744i −0.310305 0.112942i 0.182174 0.983266i \(-0.441687\pi\)
−0.492478 + 0.870325i \(0.663909\pi\)
\(758\) −23.9500 + 20.0964i −0.869902 + 0.729934i
\(759\) 8.36959 0.303797
\(760\) −19.1051 + 7.26910i −0.693014 + 0.263678i
\(761\) −18.0196 −0.653210 −0.326605 0.945161i \(-0.605905\pi\)
−0.326605 + 0.945161i \(0.605905\pi\)
\(762\) −22.6759 + 19.0274i −0.821462 + 0.689289i
\(763\) 0.722811 + 0.263082i 0.0261675 + 0.00952420i