Properties

Label 209.2.j.a.100.1
Level $209$
Weight $2$
Character 209.100
Analytic conductor $1.669$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(23,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.j (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 100.1
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 209.100
Dual form 209.2.j.a.23.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.26604 - 0.460802i) q^{2} +(-0.347296 + 1.96962i) q^{3} +(-0.141559 + 0.118782i) q^{4} +(-0.358441 - 0.300767i) q^{5} +(0.467911 + 2.65366i) q^{6} +(1.17365 + 2.03282i) q^{7} +(-1.47178 + 2.54920i) q^{8} +(-0.939693 - 0.342020i) q^{9} +O(q^{10})\) \(q+(1.26604 - 0.460802i) q^{2} +(-0.347296 + 1.96962i) q^{3} +(-0.141559 + 0.118782i) q^{4} +(-0.358441 - 0.300767i) q^{5} +(0.467911 + 2.65366i) q^{6} +(1.17365 + 2.03282i) q^{7} +(-1.47178 + 2.54920i) q^{8} +(-0.939693 - 0.342020i) q^{9} +(-0.592396 - 0.215615i) q^{10} +(-0.500000 + 0.866025i) q^{11} +(-0.184793 - 0.320070i) q^{12} +(-0.819078 - 4.64522i) q^{13} +(2.42262 + 2.03282i) q^{14} +(0.716881 - 0.601535i) q^{15} +(-0.624485 + 3.54163i) q^{16} +(4.37211 - 1.59132i) q^{17} -1.34730 q^{18} +(4.34002 + 0.405223i) q^{19} +0.0864665 q^{20} +(-4.41147 + 1.60565i) q^{21} +(-0.233956 + 1.32683i) q^{22} +(0.315207 - 0.264490i) q^{23} +(-4.50980 - 3.78417i) q^{24} +(-0.830222 - 4.70842i) q^{25} +(-3.17752 - 5.50362i) q^{26} +(-2.00000 + 3.46410i) q^{27} +(-0.407604 - 0.148356i) q^{28} +(3.10607 + 1.13052i) q^{29} +(0.630415 - 1.09191i) q^{30} +(-1.96064 - 3.39592i) q^{31} +(-0.180922 - 1.02606i) q^{32} +(-1.53209 - 1.28558i) q^{33} +(4.80200 - 4.02936i) q^{34} +(0.190722 - 1.08164i) q^{35} +(0.173648 - 0.0632028i) q^{36} -4.87939 q^{37} +(5.68139 - 1.48686i) q^{38} +9.43376 q^{39} +(1.29426 - 0.471073i) q^{40} +(0.205737 - 1.16679i) q^{41} +(-4.84524 + 4.06564i) q^{42} +(-5.23783 - 4.39506i) q^{43} +(-0.0320889 - 0.181985i) q^{44} +(0.233956 + 0.405223i) q^{45} +(0.277189 - 0.480105i) q^{46} +(9.09627 + 3.31077i) q^{47} +(-6.75877 - 2.45999i) q^{48} +(0.745100 - 1.29055i) q^{49} +(-3.22075 - 5.57851i) q^{50} +(1.61587 + 9.16404i) q^{51} +(0.667718 + 0.560282i) q^{52} +(6.34002 - 5.31991i) q^{53} +(-0.935822 + 5.30731i) q^{54} +(0.439693 - 0.160035i) q^{55} -6.90941 q^{56} +(-2.30541 + 8.40744i) q^{57} +4.45336 q^{58} +(-4.16637 + 1.51644i) q^{59} +(-0.0300295 + 0.170306i) q^{60} +(-7.85117 + 6.58791i) q^{61} +(-4.04710 - 3.39592i) q^{62} +(-0.407604 - 2.31164i) q^{63} +(-4.29813 - 7.44459i) q^{64} +(-1.10354 + 1.91139i) q^{65} +(-2.53209 - 0.921605i) q^{66} +(4.89053 + 1.78001i) q^{67} +(-0.429892 + 0.744596i) q^{68} +(0.411474 + 0.712694i) q^{69} +(-0.256959 - 1.45729i) q^{70} +(-6.68345 - 5.60808i) q^{71} +(2.25490 - 1.89209i) q^{72} +(-2.35710 + 13.3678i) q^{73} +(-6.17752 + 2.24843i) q^{74} +9.56212 q^{75} +(-0.662504 + 0.458155i) q^{76} -2.34730 q^{77} +(11.9436 - 4.34710i) q^{78} +(0.103541 - 0.587208i) q^{79} +(1.28905 - 1.08164i) q^{80} +(-8.42649 - 7.07066i) q^{81} +(-0.277189 - 1.57202i) q^{82} +(7.05690 + 12.2229i) q^{83} +(0.433763 - 0.751299i) q^{84} +(-2.04576 - 0.744596i) q^{85} +(-8.65657 - 3.15074i) q^{86} +(-3.30541 + 5.72513i) q^{87} +(-1.47178 - 2.54920i) q^{88} +(1.51842 + 8.61138i) q^{89} +(0.482926 + 0.405223i) q^{90} +(8.48158 - 7.11689i) q^{91} +(-0.0132037 + 0.0748822i) q^{92} +(7.36959 - 2.68231i) q^{93} +13.0419 q^{94} +(-1.43376 - 1.45059i) q^{95} +2.08378 q^{96} +(7.73783 - 2.81634i) q^{97} +(0.348641 - 1.97724i) q^{98} +(0.766044 - 0.642788i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8} - 3 q^{11} + 6 q^{12} + 12 q^{13} - 12 q^{14} - 12 q^{15} + 9 q^{16} - 3 q^{17} - 6 q^{18} + 6 q^{19} - 30 q^{20} - 6 q^{21} - 6 q^{22} + 9 q^{23} - 30 q^{24} + 18 q^{25} + 6 q^{26} - 12 q^{27} - 6 q^{28} - 6 q^{29} + 18 q^{30} - 3 q^{31} - 18 q^{32} - 9 q^{34} + 21 q^{35} - 18 q^{37} - 15 q^{38} + 24 q^{39} + 18 q^{40} - 9 q^{41} + 24 q^{42} - 12 q^{43} + 9 q^{44} + 6 q^{45} - 9 q^{46} + 27 q^{47} - 18 q^{48} + 3 q^{49} + 21 q^{50} - 12 q^{51} - 24 q^{52} + 18 q^{53} - 24 q^{54} - 3 q^{55} + 30 q^{56} - 18 q^{57} - 6 q^{59} + 60 q^{60} - 21 q^{61} + 15 q^{62} - 6 q^{63} - 12 q^{64} + 3 q^{65} - 6 q^{66} + 12 q^{67} + 6 q^{68} - 18 q^{69} - 54 q^{70} - 42 q^{71} + 15 q^{72} - 15 q^{73} - 12 q^{74} - 12 q^{75} - 9 q^{76} - 12 q^{77} + 42 q^{78} - 9 q^{79} + 51 q^{80} + 9 q^{82} + 6 q^{83} - 30 q^{84} + 18 q^{85} - 30 q^{86} - 24 q^{87} + 6 q^{88} + 21 q^{89} - 18 q^{90} + 39 q^{91} - 45 q^{92} + 30 q^{93} + 72 q^{94} + 24 q^{95} + 27 q^{97} - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26604 0.460802i 0.895229 0.325837i 0.146889 0.989153i \(-0.453074\pi\)
0.748339 + 0.663316i \(0.230852\pi\)
\(3\) −0.347296 + 1.96962i −0.200512 + 1.13716i 0.703836 + 0.710362i \(0.251469\pi\)
−0.904348 + 0.426796i \(0.859642\pi\)
\(4\) −0.141559 + 0.118782i −0.0707796 + 0.0593912i
\(5\) −0.358441 0.300767i −0.160300 0.134507i 0.559110 0.829094i \(-0.311143\pi\)
−0.719409 + 0.694586i \(0.755587\pi\)
\(6\) 0.467911 + 2.65366i 0.191024 + 1.08335i
\(7\) 1.17365 + 2.03282i 0.443597 + 0.768333i 0.997953 0.0639466i \(-0.0203687\pi\)
−0.554356 + 0.832280i \(0.687035\pi\)
\(8\) −1.47178 + 2.54920i −0.520353 + 0.901278i
\(9\) −0.939693 0.342020i −0.313231 0.114007i
\(10\) −0.592396 0.215615i −0.187332 0.0681833i
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) −0.184793 0.320070i −0.0533450 0.0923963i
\(13\) −0.819078 4.64522i −0.227171 1.28835i −0.858490 0.512829i \(-0.828597\pi\)
0.631319 0.775523i \(-0.282514\pi\)
\(14\) 2.42262 + 2.03282i 0.647472 + 0.543294i
\(15\) 0.716881 0.601535i 0.185098 0.155316i
\(16\) −0.624485 + 3.54163i −0.156121 + 0.885408i
\(17\) 4.37211 1.59132i 1.06039 0.385951i 0.247817 0.968807i \(-0.420287\pi\)
0.812576 + 0.582855i \(0.198065\pi\)
\(18\) −1.34730 −0.317561
\(19\) 4.34002 + 0.405223i 0.995669 + 0.0929645i
\(20\) 0.0864665 0.0193345
\(21\) −4.41147 + 1.60565i −0.962663 + 0.350381i
\(22\) −0.233956 + 1.32683i −0.0498795 + 0.282881i
\(23\) 0.315207 0.264490i 0.0657253 0.0551501i −0.609333 0.792914i \(-0.708563\pi\)
0.675059 + 0.737764i \(0.264118\pi\)
\(24\) −4.50980 3.78417i −0.920559 0.772441i
\(25\) −0.830222 4.70842i −0.166044 0.941685i
\(26\) −3.17752 5.50362i −0.623163 1.07935i
\(27\) −2.00000 + 3.46410i −0.384900 + 0.666667i
\(28\) −0.407604 0.148356i −0.0770299 0.0280366i
\(29\) 3.10607 + 1.13052i 0.576782 + 0.209932i 0.613906 0.789379i \(-0.289597\pi\)
−0.0371239 + 0.999311i \(0.511820\pi\)
\(30\) 0.630415 1.09191i 0.115097 0.199355i
\(31\) −1.96064 3.39592i −0.352141 0.609926i 0.634483 0.772936i \(-0.281213\pi\)
−0.986624 + 0.163011i \(0.947880\pi\)
\(32\) −0.180922 1.02606i −0.0319828 0.181384i
\(33\) −1.53209 1.28558i −0.266702 0.223790i
\(34\) 4.80200 4.02936i 0.823537 0.691029i
\(35\) 0.190722 1.08164i 0.0322380 0.182831i
\(36\) 0.173648 0.0632028i 0.0289414 0.0105338i
\(37\) −4.87939 −0.802166 −0.401083 0.916042i \(-0.631366\pi\)
−0.401083 + 0.916042i \(0.631366\pi\)
\(38\) 5.68139 1.48686i 0.921643 0.241201i
\(39\) 9.43376 1.51061
\(40\) 1.29426 0.471073i 0.204641 0.0744832i
\(41\) 0.205737 1.16679i 0.0321307 0.182222i −0.964519 0.264015i \(-0.914953\pi\)
0.996649 + 0.0817922i \(0.0260644\pi\)
\(42\) −4.84524 + 4.06564i −0.747636 + 0.627341i
\(43\) −5.23783 4.39506i −0.798761 0.670240i 0.149136 0.988817i \(-0.452351\pi\)
−0.947897 + 0.318577i \(0.896795\pi\)
\(44\) −0.0320889 0.181985i −0.00483758 0.0274353i
\(45\) 0.233956 + 0.405223i 0.0348760 + 0.0604071i
\(46\) 0.277189 0.480105i 0.0408693 0.0707876i
\(47\) 9.09627 + 3.31077i 1.32683 + 0.482925i 0.905640 0.424048i \(-0.139391\pi\)
0.421187 + 0.906974i \(0.361614\pi\)
\(48\) −6.75877 2.45999i −0.975544 0.355069i
\(49\) 0.745100 1.29055i 0.106443 0.184364i
\(50\) −3.22075 5.57851i −0.455483 0.788920i
\(51\) 1.61587 + 9.16404i 0.226267 + 1.28322i
\(52\) 0.667718 + 0.560282i 0.0925959 + 0.0776972i
\(53\) 6.34002 5.31991i 0.870869 0.730746i −0.0934119 0.995628i \(-0.529777\pi\)
0.964281 + 0.264882i \(0.0853329\pi\)
\(54\) −0.935822 + 5.30731i −0.127349 + 0.722234i
\(55\) 0.439693 0.160035i 0.0592881 0.0215791i
\(56\) −6.90941 −0.923309
\(57\) −2.30541 + 8.40744i −0.305359 + 1.11359i
\(58\) 4.45336 0.584755
\(59\) −4.16637 + 1.51644i −0.542416 + 0.197423i −0.598674 0.800993i \(-0.704305\pi\)
0.0562579 + 0.998416i \(0.482083\pi\)
\(60\) −0.0300295 + 0.170306i −0.00387679 + 0.0219864i
\(61\) −7.85117 + 6.58791i −1.00524 + 0.843496i −0.987702 0.156351i \(-0.950027\pi\)
−0.0175373 + 0.999846i \(0.505583\pi\)
\(62\) −4.04710 3.39592i −0.513983 0.431283i
\(63\) −0.407604 2.31164i −0.0513532 0.291239i
\(64\) −4.29813 7.44459i −0.537267 0.930573i
\(65\) −1.10354 + 1.91139i −0.136877 + 0.237079i
\(66\) −2.53209 0.921605i −0.311679 0.113442i
\(67\) 4.89053 + 1.78001i 0.597473 + 0.217462i 0.623013 0.782211i \(-0.285908\pi\)
−0.0255399 + 0.999674i \(0.508130\pi\)
\(68\) −0.429892 + 0.744596i −0.0521321 + 0.0902955i
\(69\) 0.411474 + 0.712694i 0.0495357 + 0.0857983i
\(70\) −0.256959 1.45729i −0.0307125 0.174179i
\(71\) −6.68345 5.60808i −0.793179 0.665557i 0.153351 0.988172i \(-0.450994\pi\)
−0.946530 + 0.322615i \(0.895438\pi\)
\(72\) 2.25490 1.89209i 0.265743 0.222984i
\(73\) −2.35710 + 13.3678i −0.275877 + 1.56458i 0.460284 + 0.887772i \(0.347748\pi\)
−0.736161 + 0.676806i \(0.763364\pi\)
\(74\) −6.17752 + 2.24843i −0.718122 + 0.261375i
\(75\) 9.56212 1.10414
\(76\) −0.662504 + 0.458155i −0.0759944 + 0.0525540i
\(77\) −2.34730 −0.267499
\(78\) 11.9436 4.34710i 1.35234 0.492212i
\(79\) 0.103541 0.587208i 0.0116492 0.0660661i −0.978429 0.206583i \(-0.933765\pi\)
0.990078 + 0.140517i \(0.0448766\pi\)
\(80\) 1.28905 1.08164i 0.144120 0.120931i
\(81\) −8.42649 7.07066i −0.936277 0.785629i
\(82\) −0.277189 1.57202i −0.0306104 0.173600i
\(83\) 7.05690 + 12.2229i 0.774596 + 1.34164i 0.935021 + 0.354591i \(0.115380\pi\)
−0.160426 + 0.987048i \(0.551287\pi\)
\(84\) 0.433763 0.751299i 0.0473274 0.0819735i
\(85\) −2.04576 0.744596i −0.221894 0.0807627i
\(86\) −8.65657 3.15074i −0.933462 0.339753i
\(87\) −3.30541 + 5.72513i −0.354377 + 0.613799i
\(88\) −1.47178 2.54920i −0.156892 0.271746i
\(89\) 1.51842 + 8.61138i 0.160952 + 0.912804i 0.953141 + 0.302528i \(0.0978305\pi\)
−0.792189 + 0.610276i \(0.791058\pi\)
\(90\) 0.482926 + 0.405223i 0.0509049 + 0.0427142i
\(91\) 8.48158 7.11689i 0.889111 0.746053i
\(92\) −0.0132037 + 0.0748822i −0.00137659 + 0.00780701i
\(93\) 7.36959 2.68231i 0.764190 0.278143i
\(94\) 13.0419 1.34517
\(95\) −1.43376 1.45059i −0.147101 0.148827i
\(96\) 2.08378 0.212675
\(97\) 7.73783 2.81634i 0.785657 0.285956i 0.0821276 0.996622i \(-0.473828\pi\)
0.703530 + 0.710666i \(0.251606\pi\)
\(98\) 0.348641 1.97724i 0.0352180 0.199731i
\(99\) 0.766044 0.642788i 0.0769904 0.0646026i
\(100\) 0.676803 + 0.567905i 0.0676803 + 0.0567905i
\(101\) −0.243756 1.38241i −0.0242546 0.137555i 0.970276 0.242002i \(-0.0778039\pi\)
−0.994530 + 0.104447i \(0.966693\pi\)
\(102\) 6.26857 + 10.8575i 0.620681 + 1.07505i
\(103\) 1.76604 3.05888i 0.174014 0.301400i −0.765806 0.643072i \(-0.777660\pi\)
0.939819 + 0.341671i \(0.110993\pi\)
\(104\) 13.0471 + 4.74876i 1.27937 + 0.465654i
\(105\) 2.06418 + 0.751299i 0.201443 + 0.0733193i
\(106\) 5.57532 9.65674i 0.541523 0.937946i
\(107\) 3.31521 + 5.74211i 0.320493 + 0.555111i 0.980590 0.196070i \(-0.0628180\pi\)
−0.660097 + 0.751181i \(0.729485\pi\)
\(108\) −0.128356 0.727940i −0.0123510 0.0700461i
\(109\) −14.3157 12.0123i −1.37119 1.15057i −0.972345 0.233551i \(-0.924966\pi\)
−0.398848 0.917017i \(-0.630590\pi\)
\(110\) 0.482926 0.405223i 0.0460452 0.0386365i
\(111\) 1.69459 9.61051i 0.160844 0.912190i
\(112\) −7.93242 + 2.88716i −0.749543 + 0.272811i
\(113\) −13.6655 −1.28554 −0.642771 0.766058i \(-0.722215\pi\)
−0.642771 + 0.766058i \(0.722215\pi\)
\(114\) 0.955423 + 11.7065i 0.0894835 + 1.09642i
\(115\) −0.192533 −0.0179538
\(116\) −0.573978 + 0.208911i −0.0532925 + 0.0193969i
\(117\) −0.819078 + 4.64522i −0.0757238 + 0.429451i
\(118\) −4.57604 + 3.83975i −0.421258 + 0.353478i
\(119\) 8.36618 + 7.02006i 0.766927 + 0.643528i
\(120\) 0.478340 + 2.71280i 0.0436663 + 0.247644i
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) −6.90420 + 11.9584i −0.625077 + 1.08266i
\(123\) 2.22668 + 0.810446i 0.200773 + 0.0730754i
\(124\) 0.680922 + 0.247835i 0.0611486 + 0.0222563i
\(125\) −2.28833 + 3.96351i −0.204675 + 0.354507i
\(126\) −1.58125 2.73881i −0.140869 0.243992i
\(127\) −1.79174 10.1614i −0.158991 0.901682i −0.955046 0.296458i \(-0.904195\pi\)
0.796055 0.605224i \(-0.206917\pi\)
\(128\) −7.27584 6.10516i −0.643100 0.539625i
\(129\) 10.4757 8.79012i 0.922330 0.773927i
\(130\) −0.516359 + 2.92842i −0.0452877 + 0.256839i
\(131\) −7.23783 + 2.63435i −0.632372 + 0.230165i −0.638263 0.769818i \(-0.720347\pi\)
0.00589151 + 0.999983i \(0.498125\pi\)
\(132\) 0.369585 0.0321683
\(133\) 4.26991 + 9.29807i 0.370249 + 0.806245i
\(134\) 7.01186 0.605732
\(135\) 1.75877 0.640140i 0.151371 0.0550945i
\(136\) −2.37820 + 13.4875i −0.203929 + 1.15654i
\(137\) 11.9251 10.0064i 1.01883 0.854903i 0.0293533 0.999569i \(-0.490655\pi\)
0.989481 + 0.144666i \(0.0462108\pi\)
\(138\) 0.849356 + 0.712694i 0.0723020 + 0.0606686i
\(139\) −3.23648 18.3550i −0.274515 1.55685i −0.740499 0.672058i \(-0.765411\pi\)
0.465984 0.884793i \(-0.345700\pi\)
\(140\) 0.101481 + 0.175771i 0.00857673 + 0.0148553i
\(141\) −9.68004 + 16.7663i −0.815207 + 1.41198i
\(142\) −11.0458 4.02033i −0.926940 0.337378i
\(143\) 4.43242 + 1.61327i 0.370657 + 0.134908i
\(144\) 1.79813 3.11446i 0.149844 0.259538i
\(145\) −0.773318 1.33943i −0.0642206 0.111233i
\(146\) 3.17571 + 18.0103i 0.262823 + 1.49055i
\(147\) 2.28312 + 1.91576i 0.188308 + 0.158010i
\(148\) 0.690722 0.579585i 0.0567770 0.0476416i
\(149\) −2.60354 + 14.7654i −0.213290 + 1.20963i 0.670558 + 0.741857i \(0.266055\pi\)
−0.883849 + 0.467773i \(0.845057\pi\)
\(150\) 12.1061 4.40625i 0.988456 0.359769i
\(151\) −7.68004 −0.624993 −0.312497 0.949919i \(-0.601165\pi\)
−0.312497 + 0.949919i \(0.601165\pi\)
\(152\) −7.42056 + 10.4672i −0.601887 + 0.849001i
\(153\) −4.65270 −0.376149
\(154\) −2.97178 + 1.08164i −0.239473 + 0.0871610i
\(155\) −0.318611 + 1.80693i −0.0255915 + 0.145136i
\(156\) −1.33544 + 1.12056i −0.106921 + 0.0897170i
\(157\) −10.2738 8.62073i −0.819937 0.688009i 0.133020 0.991113i \(-0.457533\pi\)
−0.952957 + 0.303104i \(0.901977\pi\)
\(158\) −0.139500 0.791143i −0.0110980 0.0629400i
\(159\) 8.27631 + 14.3350i 0.656354 + 1.13684i
\(160\) −0.243756 + 0.422197i −0.0192706 + 0.0333776i
\(161\) 0.907604 + 0.330341i 0.0715292 + 0.0260345i
\(162\) −13.9265 5.06883i −1.09417 0.398245i
\(163\) 2.26857 3.92928i 0.177688 0.307765i −0.763400 0.645926i \(-0.776471\pi\)
0.941088 + 0.338161i \(0.109805\pi\)
\(164\) 0.109470 + 0.189608i 0.00854820 + 0.0148059i
\(165\) 0.162504 + 0.921605i 0.0126509 + 0.0717469i
\(166\) 14.5667 + 12.2229i 1.13060 + 0.948682i
\(167\) 5.94356 4.98724i 0.459927 0.385924i −0.383177 0.923675i \(-0.625170\pi\)
0.843104 + 0.537750i \(0.180726\pi\)
\(168\) 2.39961 13.6089i 0.185134 1.04995i
\(169\) −8.69119 + 3.16333i −0.668553 + 0.243333i
\(170\) −2.93313 −0.224961
\(171\) −3.93969 1.86516i −0.301276 0.142632i
\(172\) 1.26352 0.0963424
\(173\) −12.2306 + 4.45156i −0.929872 + 0.338446i −0.762159 0.647390i \(-0.775860\pi\)
−0.167713 + 0.985836i \(0.553638\pi\)
\(174\) −1.54664 + 8.77141i −0.117250 + 0.664959i
\(175\) 8.59698 7.21372i 0.649871 0.545306i
\(176\) −2.75490 2.31164i −0.207658 0.174246i
\(177\) −1.53983 8.73281i −0.115741 0.656398i
\(178\) 5.89053 + 10.2027i 0.441514 + 0.764724i
\(179\) 5.41400 9.37732i 0.404661 0.700894i −0.589621 0.807680i \(-0.700723\pi\)
0.994282 + 0.106786i \(0.0340561\pi\)
\(180\) −0.0812519 0.0295733i −0.00605616 0.00220426i
\(181\) −13.8109 5.02677i −1.02656 0.373637i −0.226789 0.973944i \(-0.572823\pi\)
−0.799769 + 0.600307i \(0.795045\pi\)
\(182\) 7.45858 12.9186i 0.552867 0.957593i
\(183\) −10.2490 17.7517i −0.757626 1.31225i
\(184\) 0.210323 + 1.19280i 0.0155052 + 0.0879343i
\(185\) 1.74897 + 1.46756i 0.128587 + 0.107897i
\(186\) 8.09421 6.79185i 0.593496 0.498002i
\(187\) −0.807934 + 4.58202i −0.0590819 + 0.335070i
\(188\) −1.68092 + 0.611806i −0.122594 + 0.0446205i
\(189\) −9.38919 −0.682963
\(190\) −2.48364 1.17582i −0.180182 0.0853033i
\(191\) −2.95037 −0.213481 −0.106741 0.994287i \(-0.534041\pi\)
−0.106741 + 0.994287i \(0.534041\pi\)
\(192\) 16.1557 5.88019i 1.16594 0.424366i
\(193\) 4.01455 22.7676i 0.288973 1.63885i −0.401763 0.915744i \(-0.631602\pi\)
0.690737 0.723106i \(-0.257286\pi\)
\(194\) 8.49866 7.13122i 0.610168 0.511992i
\(195\) −3.38144 2.83737i −0.242150 0.203188i
\(196\) 0.0478189 + 0.271194i 0.00341563 + 0.0193710i
\(197\) −4.55303 7.88609i −0.324390 0.561860i 0.656999 0.753892i \(-0.271826\pi\)
−0.981389 + 0.192032i \(0.938492\pi\)
\(198\) 0.673648 1.16679i 0.0478741 0.0829204i
\(199\) −3.19207 1.16182i −0.226280 0.0823590i 0.226392 0.974036i \(-0.427307\pi\)
−0.452672 + 0.891677i \(0.649529\pi\)
\(200\) 13.2246 + 4.81337i 0.935122 + 0.340357i
\(201\) −5.20439 + 9.01427i −0.367090 + 0.635818i
\(202\) −0.945622 1.63787i −0.0665338 0.115240i
\(203\) 1.34730 + 7.64090i 0.0945617 + 0.536286i
\(204\) −1.31727 1.10532i −0.0922271 0.0773877i
\(205\) −0.424678 + 0.356347i −0.0296608 + 0.0248884i
\(206\) 0.826352 4.68647i 0.0575747 0.326522i
\(207\) −0.386659 + 0.140732i −0.0268747 + 0.00978158i
\(208\) 16.9632 1.17618
\(209\) −2.52094 + 3.55596i −0.174377 + 0.245971i
\(210\) 2.95954 0.204228
\(211\) 5.10607 1.85846i 0.351516 0.127941i −0.160226 0.987080i \(-0.551222\pi\)
0.511742 + 0.859139i \(0.329000\pi\)
\(212\) −0.265578 + 1.50617i −0.0182399 + 0.103444i
\(213\) 13.3669 11.2162i 0.915885 0.768518i
\(214\) 6.84318 + 5.74211i 0.467790 + 0.392522i
\(215\) 0.555560 + 3.15074i 0.0378889 + 0.214878i
\(216\) −5.88713 10.1968i −0.400568 0.693804i
\(217\) 4.60220 7.97124i 0.312417 0.541123i
\(218\) −23.6596 8.61138i −1.60243 0.583236i
\(219\) −25.5107 9.28515i −1.72386 0.627432i
\(220\) −0.0432332 + 0.0748822i −0.00291478 + 0.00504855i
\(221\) −10.9731 19.0060i −0.738132 1.27848i
\(222\) −2.28312 12.9482i −0.153233 0.869027i
\(223\) 0.718941 + 0.603263i 0.0481438 + 0.0403975i 0.666542 0.745467i \(-0.267774\pi\)
−0.618398 + 0.785865i \(0.712218\pi\)
\(224\) 1.87346 1.57202i 0.125176 0.105035i
\(225\) −0.830222 + 4.70842i −0.0553481 + 0.313895i
\(226\) −17.3011 + 6.29710i −1.15085 + 0.418877i
\(227\) −19.9017 −1.32092 −0.660460 0.750861i \(-0.729639\pi\)
−0.660460 + 0.750861i \(0.729639\pi\)
\(228\) −0.672304 1.46399i −0.0445244 0.0969553i
\(229\) 22.1438 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(230\) −0.243756 + 0.0887198i −0.0160728 + 0.00585001i
\(231\) 0.815207 4.62327i 0.0536367 0.304189i
\(232\) −7.45336 + 6.25411i −0.489337 + 0.410603i
\(233\) 14.9349 + 12.5319i 0.978421 + 0.820993i 0.983850 0.178993i \(-0.0572839\pi\)
−0.00542962 + 0.999985i \(0.501728\pi\)
\(234\) 1.10354 + 6.25849i 0.0721407 + 0.409130i
\(235\) −2.26470 3.92258i −0.147733 0.255881i
\(236\) 0.409663 0.709557i 0.0266668 0.0461882i
\(237\) 1.12061 + 0.407870i 0.0727918 + 0.0264940i
\(238\) 13.8268 + 5.03255i 0.896260 + 0.326212i
\(239\) 0.0564370 0.0977517i 0.00365061 0.00632303i −0.864194 0.503158i \(-0.832171\pi\)
0.867845 + 0.496835i \(0.165505\pi\)
\(240\) 1.68273 + 2.91458i 0.108620 + 0.188135i
\(241\) 3.29204 + 18.6701i 0.212059 + 1.20265i 0.885938 + 0.463804i \(0.153516\pi\)
−0.673879 + 0.738842i \(0.735373\pi\)
\(242\) −1.03209 0.866025i −0.0663452 0.0556702i
\(243\) 7.66044 6.42788i 0.491418 0.412348i
\(244\) 0.328878 1.86516i 0.0210543 0.119405i
\(245\) −0.655230 + 0.238484i −0.0418611 + 0.0152362i
\(246\) 3.19253 0.203548
\(247\) −1.67247 20.4923i −0.106416 1.30389i
\(248\) 11.5425 0.732951
\(249\) −26.5253 + 9.65441i −1.68097 + 0.611824i
\(250\) −1.07074 + 6.07245i −0.0677193 + 0.384055i
\(251\) 3.81315 3.19961i 0.240684 0.201958i −0.514465 0.857512i \(-0.672009\pi\)
0.755148 + 0.655554i \(0.227565\pi\)
\(252\) 0.332282 + 0.278817i 0.0209318 + 0.0175638i
\(253\) 0.0714517 + 0.405223i 0.00449213 + 0.0254761i
\(254\) −6.95084 12.0392i −0.436134 0.755407i
\(255\) 2.17705 3.77076i 0.136332 0.236134i
\(256\) 4.13088 + 1.50352i 0.258180 + 0.0939699i
\(257\) 13.8020 + 5.02352i 0.860945 + 0.313358i 0.734495 0.678614i \(-0.237419\pi\)
0.126451 + 0.991973i \(0.459641\pi\)
\(258\) 9.21213 15.9559i 0.573522 0.993370i
\(259\) −5.72668 9.91890i −0.355839 0.616331i
\(260\) −0.0708228 0.401656i −0.00439224 0.0249096i
\(261\) −2.53209 2.12467i −0.156732 0.131514i
\(262\) −7.94949 + 6.67042i −0.491121 + 0.412100i
\(263\) −1.64749 + 9.34337i −0.101589 + 0.576137i 0.890940 + 0.454122i \(0.150047\pi\)
−0.992528 + 0.122015i \(0.961064\pi\)
\(264\) 5.53209 2.01352i 0.340477 0.123923i
\(265\) −3.87258 −0.237891
\(266\) 9.69047 + 9.80418i 0.594161 + 0.601133i
\(267\) −17.4884 −1.07028
\(268\) −0.903733 + 0.328932i −0.0552043 + 0.0200927i
\(269\) −2.63697 + 14.9550i −0.160779 + 0.911824i 0.792531 + 0.609831i \(0.208763\pi\)
−0.953310 + 0.301992i \(0.902348\pi\)
\(270\) 1.93170 1.62089i 0.117560 0.0986443i
\(271\) 10.8007 + 9.06283i 0.656093 + 0.550528i 0.908913 0.416986i \(-0.136913\pi\)
−0.252820 + 0.967513i \(0.581358\pi\)
\(272\) 2.90554 + 16.4782i 0.176175 + 0.999135i
\(273\) 11.0719 + 19.1771i 0.670103 + 1.16065i
\(274\) 10.4868 18.1637i 0.633531 1.09731i
\(275\) 4.49273 + 1.63522i 0.270922 + 0.0986074i
\(276\) −0.142903 0.0520126i −0.00860178 0.00313079i
\(277\) −3.47044 + 6.01097i −0.208518 + 0.361164i −0.951248 0.308427i \(-0.900197\pi\)
0.742730 + 0.669591i \(0.233531\pi\)
\(278\) −12.5556 21.7469i −0.753032 1.30429i
\(279\) 0.680922 + 3.86170i 0.0407657 + 0.231194i
\(280\) 2.47662 + 2.07813i 0.148006 + 0.124192i
\(281\) −21.9158 + 18.3895i −1.30739 + 1.09703i −0.318570 + 0.947899i \(0.603203\pi\)
−0.988818 + 0.149129i \(0.952353\pi\)
\(282\) −4.52940 + 25.6875i −0.269722 + 1.52967i
\(283\) −26.6177 + 9.68804i −1.58226 + 0.575894i −0.975693 0.219141i \(-0.929675\pi\)
−0.606563 + 0.795035i \(0.707452\pi\)
\(284\) 1.61225 0.0956691
\(285\) 3.35504 2.32018i 0.198735 0.137436i
\(286\) 6.35504 0.375781
\(287\) 2.61334 0.951178i 0.154261 0.0561463i
\(288\) −0.180922 + 1.02606i −0.0106609 + 0.0604612i
\(289\) 3.56031 2.98745i 0.209430 0.175733i
\(290\) −1.59627 1.33943i −0.0937360 0.0786538i
\(291\) 2.85978 + 16.2186i 0.167644 + 0.950754i
\(292\) −1.25418 2.17231i −0.0733956 0.127125i
\(293\) 1.35070 2.33948i 0.0789087 0.136674i −0.823871 0.566778i \(-0.808190\pi\)
0.902779 + 0.430104i \(0.141523\pi\)
\(294\) 3.77332 + 1.37338i 0.220064 + 0.0800969i
\(295\) 1.94949 + 0.709557i 0.113504 + 0.0413120i
\(296\) 7.18139 12.4385i 0.417410 0.722975i
\(297\) −2.00000 3.46410i −0.116052 0.201008i
\(298\) 3.50774 + 19.8934i 0.203198 + 1.15239i
\(299\) −1.48680 1.24757i −0.0859836 0.0721488i
\(300\) −1.35361 + 1.13581i −0.0781505 + 0.0655761i
\(301\) 2.78699 15.8058i 0.160639 0.911031i
\(302\) −9.72328 + 3.53898i −0.559512 + 0.203646i
\(303\) 2.80747 0.161285
\(304\) −4.14543 + 15.1177i −0.237757 + 0.867060i
\(305\) 4.79561 0.274596
\(306\) −5.89053 + 2.14398i −0.336739 + 0.122563i
\(307\) −3.79086 + 21.4990i −0.216356 + 1.22701i 0.662183 + 0.749343i \(0.269630\pi\)
−0.878538 + 0.477672i \(0.841481\pi\)
\(308\) 0.332282 0.278817i 0.0189335 0.0158871i
\(309\) 5.41147 + 4.54077i 0.307848 + 0.258315i
\(310\) 0.429263 + 2.43447i 0.0243805 + 0.138269i
\(311\) 6.17412 + 10.6939i 0.350102 + 0.606394i 0.986267 0.165159i \(-0.0528136\pi\)
−0.636165 + 0.771553i \(0.719480\pi\)
\(312\) −13.8844 + 24.0486i −0.786051 + 1.36148i
\(313\) 25.9466 + 9.44377i 1.46659 + 0.533794i 0.947171 0.320729i \(-0.103928\pi\)
0.519415 + 0.854522i \(0.326150\pi\)
\(314\) −16.9795 6.18004i −0.958210 0.348760i
\(315\) −0.549163 + 0.951178i −0.0309418 + 0.0535928i
\(316\) 0.0550928 + 0.0954236i 0.00309921 + 0.00536799i
\(317\) −3.16890 17.9717i −0.177983 1.00939i −0.934644 0.355585i \(-0.884282\pi\)
0.756661 0.653808i \(-0.226829\pi\)
\(318\) 17.0838 + 14.3350i 0.958011 + 0.803866i
\(319\) −2.53209 + 2.12467i −0.141770 + 0.118959i
\(320\) −0.698463 + 3.96118i −0.0390453 + 0.221437i
\(321\) −12.4611 + 4.53547i −0.695511 + 0.253145i
\(322\) 1.30129 0.0725180
\(323\) 19.6199 5.13468i 1.09168 0.285701i
\(324\) 2.03272 0.112929
\(325\) −21.1917 + 7.71313i −1.17550 + 0.427848i
\(326\) 1.06149 6.02001i 0.0587905 0.333417i
\(327\) 28.6313 24.0246i 1.58332 1.32856i
\(328\) 2.67159 + 2.24173i 0.147514 + 0.123779i
\(329\) 3.94562 + 22.3767i 0.217529 + 1.23367i
\(330\) 0.630415 + 1.09191i 0.0347032 + 0.0601077i
\(331\) −14.6211 + 25.3245i −0.803647 + 1.39196i 0.113553 + 0.993532i \(0.463777\pi\)
−0.917200 + 0.398426i \(0.869557\pi\)
\(332\) −2.45084 0.892032i −0.134507 0.0489566i
\(333\) 4.58512 + 1.66885i 0.251263 + 0.0914523i
\(334\) 5.22668 9.05288i 0.285991 0.495351i
\(335\) −1.21760 2.10894i −0.0665244 0.115224i
\(336\) −2.93170 16.6265i −0.159938 0.907051i
\(337\) 9.90807 + 8.31386i 0.539727 + 0.452885i 0.871445 0.490494i \(-0.163184\pi\)
−0.331718 + 0.943379i \(0.607628\pi\)
\(338\) −9.54576 + 8.00984i −0.519221 + 0.435678i
\(339\) 4.74598 26.9158i 0.257766 1.46186i
\(340\) 0.378041 0.137596i 0.0205022 0.00746217i
\(341\) 3.92127 0.212349
\(342\) −5.84730 0.545955i −0.316186 0.0295219i
\(343\) 19.9290 1.07607
\(344\) 18.9128 6.88370i 1.01971 0.371144i
\(345\) 0.0668661 0.379217i 0.00359995 0.0204163i
\(346\) −13.4331 + 11.2717i −0.722170 + 0.605972i
\(347\) 25.0069 + 20.9832i 1.34244 + 1.12644i 0.980992 + 0.194047i \(0.0621614\pi\)
0.361447 + 0.932393i \(0.382283\pi\)
\(348\) −0.212134 1.20307i −0.0113716 0.0644913i
\(349\) −9.17365 15.8892i −0.491054 0.850531i 0.508893 0.860830i \(-0.330055\pi\)
−0.999947 + 0.0102992i \(0.996722\pi\)
\(350\) 7.56006 13.0944i 0.404102 0.699925i
\(351\) 17.7297 + 6.45307i 0.946340 + 0.344440i
\(352\) 0.979055 + 0.356347i 0.0521838 + 0.0189934i
\(353\) 5.18227 8.97595i 0.275824 0.477742i −0.694519 0.719475i \(-0.744383\pi\)
0.970343 + 0.241733i \(0.0777159\pi\)
\(354\) −5.97359 10.3466i −0.317493 0.549914i
\(355\) 0.708892 + 4.02033i 0.0376241 + 0.213377i
\(356\) −1.23783 1.03866i −0.0656046 0.0550488i
\(357\) −16.7324 + 14.0401i −0.885571 + 0.743082i
\(358\) 2.53327 14.3669i 0.133888 0.759314i
\(359\) 11.7811 4.28795i 0.621781 0.226310i −0.0118694 0.999930i \(-0.503778\pi\)
0.633650 + 0.773620i \(0.281556\pi\)
\(360\) −1.37733 −0.0725914
\(361\) 18.6716 + 3.51735i 0.982715 + 0.185124i
\(362\) −19.8016 −1.04075
\(363\) 1.87939 0.684040i 0.0986421 0.0359028i
\(364\) −0.355286 + 2.01492i −0.0186220 + 0.105611i
\(365\) 4.86547 4.08261i 0.254670 0.213694i
\(366\) −21.1557 17.7517i −1.10583 0.927898i
\(367\) 0.399148 + 2.26368i 0.0208353 + 0.118163i 0.993452 0.114254i \(-0.0364477\pi\)
−0.972616 + 0.232417i \(0.925337\pi\)
\(368\) 0.739885 + 1.28152i 0.0385692 + 0.0668038i
\(369\) −0.592396 + 1.02606i −0.0308389 + 0.0534146i
\(370\) 2.89053 + 1.05207i 0.150271 + 0.0546943i
\(371\) 18.2554 + 6.64441i 0.947771 + 0.344961i
\(372\) −0.724622 + 1.25508i −0.0375699 + 0.0650730i
\(373\) −0.940159 1.62840i −0.0486796 0.0843156i 0.840659 0.541565i \(-0.182168\pi\)
−0.889338 + 0.457249i \(0.848835\pi\)
\(374\) 1.08853 + 6.17334i 0.0562863 + 0.319216i
\(375\) −7.01186 5.88365i −0.362091 0.303830i
\(376\) −21.8275 + 18.3155i −1.12567 + 0.944549i
\(377\) 2.70739 15.3543i 0.139437 0.790789i
\(378\) −11.8871 + 4.32656i −0.611408 + 0.222534i
\(379\) −8.83244 −0.453692 −0.226846 0.973931i \(-0.572841\pi\)
−0.226846 + 0.973931i \(0.572841\pi\)
\(380\) 0.375266 + 0.0350382i 0.0192508 + 0.00179742i
\(381\) 20.6364 1.05723
\(382\) −3.73530 + 1.35954i −0.191115 + 0.0695600i
\(383\) 6.65863 37.7630i 0.340240 1.92960i −0.0273862 0.999625i \(-0.508718\pi\)
0.367626 0.929974i \(-0.380171\pi\)
\(384\) 14.5517 12.2103i 0.742588 0.623105i
\(385\) 0.841367 + 0.705990i 0.0428800 + 0.0359806i
\(386\) −5.40879 30.6747i −0.275300 1.56130i
\(387\) 3.41875 + 5.92145i 0.173785 + 0.301004i
\(388\) −0.760830 + 1.31780i −0.0386253 + 0.0669010i
\(389\) −14.6099 5.31758i −0.740753 0.269612i −0.0560438 0.998428i \(-0.517849\pi\)
−0.684709 + 0.728816i \(0.740071\pi\)
\(390\) −5.58853 2.03406i −0.282986 0.102998i
\(391\) 0.957234 1.65798i 0.0484094 0.0838475i
\(392\) 2.19325 + 3.79882i 0.110776 + 0.191869i
\(393\) −2.67499 15.1706i −0.134936 0.765257i
\(394\) −9.39827 7.88609i −0.473478 0.397295i
\(395\) −0.213726 + 0.179338i −0.0107537 + 0.00902345i
\(396\) −0.0320889 + 0.181985i −0.00161253 + 0.00914510i
\(397\) 33.6361 12.2425i 1.68815 0.614435i 0.693757 0.720209i \(-0.255954\pi\)
0.994390 + 0.105774i \(0.0337319\pi\)
\(398\) −4.57667 −0.229408
\(399\) −19.7965 + 5.18091i −0.991067 + 0.259370i
\(400\) 17.1940 0.859698
\(401\) −30.5043 + 11.1027i −1.52331 + 0.554441i −0.961973 0.273144i \(-0.911936\pi\)
−0.561341 + 0.827585i \(0.689714\pi\)
\(402\) −2.43519 + 13.8107i −0.121456 + 0.688813i
\(403\) −14.1689 + 11.8891i −0.705803 + 0.592239i
\(404\) 0.198711 + 0.166739i 0.00988627 + 0.00829556i
\(405\) 0.893771 + 5.06883i 0.0444118 + 0.251872i
\(406\) 5.22668 + 9.05288i 0.259396 + 0.449287i
\(407\) 2.43969 4.22567i 0.120931 0.209459i
\(408\) −25.7392 9.36829i −1.27428 0.463800i
\(409\) −2.51842 0.916629i −0.124528 0.0453244i 0.279005 0.960290i \(-0.409996\pi\)
−0.403532 + 0.914965i \(0.632218\pi\)
\(410\) −0.373455 + 0.646844i −0.0184437 + 0.0319453i
\(411\) 15.5672 + 26.9631i 0.767872 + 1.32999i
\(412\) 0.113341 + 0.642788i 0.00558390 + 0.0316679i
\(413\) −7.97250 6.68972i −0.392301 0.329180i
\(414\) −0.424678 + 0.356347i −0.0208718 + 0.0175135i
\(415\) 1.14677 6.50368i 0.0562929 0.319253i
\(416\) −4.61809 + 1.68085i −0.226420 + 0.0824103i
\(417\) 37.2763 1.82543
\(418\) −1.55303 + 5.66366i −0.0759613 + 0.277019i
\(419\) −33.4415 −1.63372 −0.816862 0.576833i \(-0.804288\pi\)
−0.816862 + 0.576833i \(0.804288\pi\)
\(420\) −0.381445 + 0.138834i −0.0186126 + 0.00677443i
\(421\) −1.16994 + 6.63506i −0.0570194 + 0.323373i −0.999954 0.00960533i \(-0.996942\pi\)
0.942934 + 0.332978i \(0.108054\pi\)
\(422\) 5.60813 4.70578i 0.272999 0.229074i
\(423\) −7.41534 6.22221i −0.360546 0.302534i
\(424\) 4.23039 + 23.9917i 0.205446 + 1.16514i
\(425\) −11.1224 19.2646i −0.539517 0.934471i
\(426\) 11.7547 20.3597i 0.569515 0.986428i
\(427\) −22.6065 8.22811i −1.09401 0.398186i
\(428\) −1.15136 0.419061i −0.0556531 0.0202561i
\(429\) −4.71688 + 8.16988i −0.227733 + 0.394445i
\(430\) 2.15523 + 3.73297i 0.103934 + 0.180020i
\(431\) −1.28224 7.27195i −0.0617634 0.350278i −0.999991 0.00425868i \(-0.998644\pi\)
0.938228 0.346019i \(-0.112467\pi\)
\(432\) −11.0196 9.24654i −0.530181 0.444874i
\(433\) 20.9971 17.6186i 1.00905 0.846697i 0.0208415 0.999783i \(-0.493365\pi\)
0.988213 + 0.153086i \(0.0489210\pi\)
\(434\) 2.15342 12.2126i 0.103367 0.586226i
\(435\) 2.90673 1.05796i 0.139367 0.0507254i
\(436\) 3.45336 0.165386
\(437\) 1.47519 1.02017i 0.0705677 0.0488011i
\(438\) −36.5763 −1.74769
\(439\) −8.39053 + 3.05390i −0.400458 + 0.145755i −0.534395 0.845235i \(-0.679460\pi\)
0.133937 + 0.990990i \(0.457238\pi\)
\(440\) −0.239170 + 1.35640i −0.0114020 + 0.0646639i
\(441\) −1.14156 + 0.957882i −0.0543600 + 0.0456134i
\(442\) −22.6505 19.0060i −1.07737 0.904024i
\(443\) 2.52569 + 14.3239i 0.119999 + 0.680550i 0.984153 + 0.177322i \(0.0567433\pi\)
−0.864154 + 0.503228i \(0.832146\pi\)
\(444\) 0.901674 + 1.56175i 0.0427916 + 0.0741171i
\(445\) 2.04576 3.54336i 0.0969783 0.167971i
\(446\) 1.18820 + 0.432468i 0.0562627 + 0.0204780i
\(447\) −28.1780 10.2559i −1.33277 0.485090i
\(448\) 10.0890 17.4746i 0.476660 0.825600i
\(449\) −8.43242 14.6054i −0.397950 0.689270i 0.595522 0.803339i \(-0.296945\pi\)
−0.993473 + 0.114068i \(0.963612\pi\)
\(450\) 1.11856 + 6.34364i 0.0527292 + 0.299042i
\(451\) 0.907604 + 0.761570i 0.0427374 + 0.0358609i
\(452\) 1.93448 1.62322i 0.0909902 0.0763498i
\(453\) 2.66725 15.1267i 0.125318 0.710716i
\(454\) −25.1964 + 9.17074i −1.18253 + 0.430404i
\(455\) −5.18067 −0.242874
\(456\) −18.0392 18.2509i −0.844763 0.854675i
\(457\) −15.6186 −0.730605 −0.365303 0.930889i \(-0.619034\pi\)
−0.365303 + 0.930889i \(0.619034\pi\)
\(458\) 28.0351 10.2039i 1.30999 0.476799i
\(459\) −3.23173 + 18.3281i −0.150844 + 0.855481i
\(460\) 0.0272549 0.0228696i 0.00127077 0.00106630i
\(461\) 15.6322 + 13.1170i 0.728065 + 0.610919i 0.929603 0.368561i \(-0.120150\pi\)
−0.201538 + 0.979481i \(0.564594\pi\)
\(462\) −1.09833 6.22892i −0.0510988 0.289795i
\(463\) 5.64425 + 9.77612i 0.262310 + 0.454335i 0.966855 0.255324i \(-0.0821822\pi\)
−0.704545 + 0.709659i \(0.748849\pi\)
\(464\) −5.94356 + 10.2946i −0.275923 + 0.477913i
\(465\) −3.44831 1.25508i −0.159912 0.0582031i
\(466\) 24.6830 + 8.98389i 1.14342 + 0.416171i
\(467\) 6.12748 10.6131i 0.283546 0.491116i −0.688710 0.725037i \(-0.741823\pi\)
0.972256 + 0.233921i \(0.0751558\pi\)
\(468\) −0.435822 0.754866i −0.0201459 0.0348937i
\(469\) 2.12133 + 12.0307i 0.0979539 + 0.555524i
\(470\) −4.67474 3.92258i −0.215630 0.180935i
\(471\) 20.5476 17.2415i 0.946782 0.794444i
\(472\) 2.26629 12.8528i 0.104315 0.591597i
\(473\) 6.42514 2.33856i 0.295428 0.107527i
\(474\) 1.60670 0.0737980
\(475\) −1.69522 20.7711i −0.0777821 0.953043i
\(476\) −2.01817 −0.0925027
\(477\) −7.77719 + 2.83067i −0.356093 + 0.129607i
\(478\) 0.0264075 0.149764i 0.00120785 0.00685006i
\(479\) 7.02687 5.89625i 0.321066 0.269406i −0.467982 0.883738i \(-0.655019\pi\)
0.789048 + 0.614332i \(0.210574\pi\)
\(480\) −0.746911 0.626733i −0.0340917 0.0286063i
\(481\) 3.99660 + 22.6658i 0.182229 + 1.03347i
\(482\) 12.7711 + 22.1202i 0.581708 + 1.00755i
\(483\) −0.965852 + 1.67290i −0.0439478 + 0.0761198i
\(484\) 0.173648 + 0.0632028i 0.00789310 + 0.00287285i
\(485\) −3.62061 1.31780i −0.164404 0.0598380i
\(486\) 6.73648 11.6679i 0.305573 0.529268i
\(487\) 14.5954 + 25.2800i 0.661380 + 1.14554i 0.980253 + 0.197747i \(0.0633623\pi\)
−0.318873 + 0.947797i \(0.603304\pi\)
\(488\) −5.23870 29.7102i −0.237145 1.34492i
\(489\) 6.95130 + 5.83284i 0.314349 + 0.263770i
\(490\) −0.719656 + 0.603863i −0.0325107 + 0.0272798i
\(491\) −6.27038 + 35.5611i −0.282978 + 1.60485i 0.429440 + 0.903095i \(0.358711\pi\)
−0.712419 + 0.701755i \(0.752400\pi\)
\(492\) −0.411474 + 0.149764i −0.0185507 + 0.00675190i
\(493\) 15.3791 0.692639
\(494\) −11.5603 25.1735i −0.520123 1.13261i
\(495\) −0.467911 −0.0210310
\(496\) 13.2515 4.82315i 0.595010 0.216566i
\(497\) 3.55619 20.1681i 0.159517 0.904665i
\(498\) −29.1334 + 24.4458i −1.30550 + 1.09544i
\(499\) 15.4402 + 12.9558i 0.691196 + 0.579983i 0.919254 0.393665i \(-0.128793\pi\)
−0.228058 + 0.973648i \(0.573237\pi\)
\(500\) −0.146860 0.832885i −0.00656778 0.0372478i
\(501\) 7.75877 + 13.4386i 0.346636 + 0.600392i
\(502\) 3.35323 5.80796i 0.149662 0.259222i
\(503\) 40.4702 + 14.7299i 1.80448 + 0.656776i 0.997837 + 0.0657316i \(0.0209381\pi\)
0.806639 + 0.591044i \(0.201284\pi\)
\(504\) 6.49273 + 2.36316i 0.289209 + 0.105263i
\(505\) −0.328411 + 0.568825i −0.0146141 + 0.0253124i
\(506\) 0.277189 + 0.480105i 0.0123225 + 0.0213433i
\(507\) −3.21213 18.2169i −0.142656 0.809042i
\(508\) 1.46064 + 1.22562i 0.0648053 + 0.0543781i
\(509\) 24.3384 20.4224i 1.07878 0.905206i 0.0829628 0.996553i \(-0.473562\pi\)
0.995819 + 0.0913471i \(0.0291173\pi\)
\(510\) 1.01867 5.77715i 0.0451073 0.255816i
\(511\) −29.9406 + 10.8975i −1.32450 + 0.482077i
\(512\) 24.9186 1.10126
\(513\) −10.0838 + 14.2238i −0.445210 + 0.627998i
\(514\) 19.7888 0.872847
\(515\) −1.55303 + 0.565258i −0.0684348 + 0.0249082i
\(516\) −0.438815 + 2.48865i −0.0193178 + 0.109556i
\(517\) −7.41534 + 6.22221i −0.326126 + 0.273653i
\(518\) −11.8209 9.91890i −0.519380 0.435812i
\(519\) −4.52023 25.6355i −0.198416 1.12527i
\(520\) −3.24834 5.62629i −0.142449 0.246729i
\(521\) 11.6814 20.2328i 0.511771 0.886413i −0.488136 0.872768i \(-0.662323\pi\)
0.999907 0.0136457i \(-0.00434369\pi\)
\(522\) −4.18479 1.52314i −0.183163 0.0666660i
\(523\) −41.0629 14.9457i −1.79555 0.653529i −0.998787 0.0492432i \(-0.984319\pi\)
−0.796768 0.604285i \(-0.793459\pi\)
\(524\) 0.711667 1.23264i 0.0310893 0.0538483i
\(525\) 11.2226 + 19.4380i 0.489793 + 0.848346i
\(526\) 2.21966 + 12.5883i 0.0967816 + 0.548876i
\(527\) −13.9761 11.7274i −0.608809 0.510852i
\(528\) 5.50980 4.62327i 0.239783 0.201202i
\(529\) −3.96451 + 22.4838i −0.172370 + 0.977558i
\(530\) −4.90286 + 1.78449i −0.212966 + 0.0775135i
\(531\) 4.43376 0.192409
\(532\) −1.70889 0.809037i −0.0740899 0.0350762i
\(533\) −5.58853 −0.242066
\(534\) −22.1411 + 8.05872i −0.958141 + 0.348735i
\(535\) 0.538734 3.05531i 0.0232915 0.132093i
\(536\) −11.7354 + 9.84716i −0.506891 + 0.425332i
\(537\) 16.5895 + 13.9202i 0.715888 + 0.600701i
\(538\) 3.55279 + 20.1488i 0.153171 + 0.868678i
\(539\) 0.745100 + 1.29055i 0.0320937 + 0.0555880i
\(540\) −0.172933 + 0.299529i −0.00744185 + 0.0128897i
\(541\) −28.5574 10.3940i −1.22778 0.446874i −0.354942 0.934889i \(-0.615499\pi\)
−0.872836 + 0.488014i \(0.837721\pi\)
\(542\) 17.8503 + 6.49697i 0.766736 + 0.279069i
\(543\) 14.6973 25.4564i 0.630721 1.09244i
\(544\) −2.42380 4.19815i −0.103920 0.179994i
\(545\) 1.51842 + 8.61138i 0.0650419 + 0.368871i
\(546\) 22.8544 + 19.1771i 0.978078 + 0.820705i
\(547\) −26.0023 + 21.8185i −1.11178 + 0.932892i −0.998160 0.0606329i \(-0.980688\pi\)
−0.113617 + 0.993525i \(0.536244\pi\)
\(548\) −0.499533 + 2.83299i −0.0213390 + 0.121019i
\(549\) 9.63088 3.50535i 0.411036 0.149605i
\(550\) 6.44150 0.274667
\(551\) 13.0223 + 6.16511i 0.554768 + 0.262643i
\(552\) −2.42240 −0.103104
\(553\) 1.31521 0.478696i 0.0559283 0.0203562i
\(554\) −1.62386 + 9.20935i −0.0689910 + 0.391268i
\(555\) −3.49794 + 2.93512i −0.148479 + 0.124589i
\(556\) 2.63840 + 2.21388i 0.111893 + 0.0938896i
\(557\) −5.83931 33.1164i −0.247419 1.40319i −0.814806 0.579734i \(-0.803157\pi\)
0.567387 0.823451i \(-0.307954\pi\)
\(558\) 2.64156 + 4.57531i 0.111826 + 0.193689i
\(559\) −16.1258 + 27.9308i −0.682050 + 1.18135i
\(560\) 3.71167 + 1.35094i 0.156847 + 0.0570875i
\(561\) −8.74422 3.18264i −0.369181 0.134371i
\(562\) −19.2724 + 33.3808i −0.812959 + 1.40809i
\(563\) 20.0988 + 34.8121i 0.847063 + 1.46716i 0.883817 + 0.467832i \(0.154965\pi\)
−0.0367543 + 0.999324i \(0.511702\pi\)
\(564\) −0.621244 3.52325i −0.0261591 0.148356i
\(565\) 4.89827 + 4.11014i 0.206072 + 0.172915i
\(566\) −29.2349 + 24.5310i −1.22883 + 1.03111i
\(567\) 4.48364 25.4280i 0.188295 1.06788i
\(568\) 24.1327 8.78358i 1.01259 0.368551i
\(569\) 13.3901 0.561343 0.280671 0.959804i \(-0.409443\pi\)
0.280671 + 0.959804i \(0.409443\pi\)
\(570\) 3.17848 4.48346i 0.133132 0.187791i
\(571\) 25.1242 1.05142 0.525708 0.850665i \(-0.323800\pi\)
0.525708 + 0.850665i \(0.323800\pi\)
\(572\) −0.819078 + 0.298120i −0.0342474 + 0.0124650i
\(573\) 1.02465 5.81109i 0.0428055 0.242762i
\(574\) 2.87030 2.40847i 0.119804 0.100528i
\(575\) −1.50703 1.26454i −0.0628473 0.0527352i
\(576\) 1.49273 + 8.46567i 0.0621969 + 0.352736i
\(577\) −17.8764 30.9629i −0.744206 1.28900i −0.950565 0.310527i \(-0.899495\pi\)
0.206358 0.978476i \(-0.433839\pi\)
\(578\) 3.13088 5.42285i 0.130228 0.225561i
\(579\) 43.4492 + 15.8142i 1.80569 + 0.657217i
\(580\) 0.268571 + 0.0977517i 0.0111518 + 0.00405892i
\(581\) −16.5646 + 28.6908i −0.687217 + 1.19030i
\(582\) 11.0942 + 19.2157i 0.459870 + 0.796518i
\(583\) 1.43717 + 8.15058i 0.0595214 + 0.337562i
\(584\) −30.6080 25.6831i −1.26657 1.06278i
\(585\) 1.69072 1.41868i 0.0699028 0.0586554i
\(586\) 0.632008 3.58429i 0.0261080 0.148066i
\(587\) 2.14765 0.781681i 0.0886431 0.0322634i −0.297318 0.954779i \(-0.596092\pi\)
0.385961 + 0.922515i \(0.373870\pi\)
\(588\) −0.550756 −0.0227128
\(589\) −7.13310 15.5329i −0.293914 0.640021i
\(590\) 2.79511 0.115073
\(591\) 17.1138 6.22892i 0.703968 0.256223i
\(592\) 3.04710 17.2810i 0.125235 0.710244i
\(593\) 9.03462 7.58094i 0.371007 0.311312i −0.438153 0.898901i \(-0.644367\pi\)
0.809160 + 0.587589i \(0.199923\pi\)
\(594\) −4.12836 3.46410i −0.169388 0.142134i
\(595\) −0.887374 5.03255i −0.0363788 0.206314i
\(596\) −1.38532 2.39944i −0.0567447 0.0982847i
\(597\) 3.39693 5.88365i 0.139027 0.240802i
\(598\) −2.45723 0.894360i −0.100484 0.0365731i
\(599\) −43.9889 16.0107i −1.79734 0.654178i −0.998623 0.0524690i \(-0.983291\pi\)
−0.798716 0.601709i \(-0.794487\pi\)
\(600\) −14.0733 + 24.3758i −0.574542 + 0.995136i
\(601\) 6.92767 + 11.9991i 0.282586 + 0.489453i 0.972021 0.234895i \(-0.0754745\pi\)
−0.689435 + 0.724347i \(0.742141\pi\)
\(602\) −3.75490 21.2951i −0.153038 0.867923i
\(603\) −3.98680 3.34532i −0.162355 0.136232i
\(604\) 1.08718 0.912254i 0.0442368 0.0371191i
\(605\) −0.0812519 + 0.460802i −0.00330336 + 0.0187343i
\(606\) 3.55438 1.29369i 0.144387 0.0525525i
\(607\) −7.68004 −0.311723 −0.155862 0.987779i \(-0.549815\pi\)
−0.155862 + 0.987779i \(0.549815\pi\)
\(608\) −0.369423 4.52644i −0.0149821 0.183571i
\(609\) −15.5175 −0.628802
\(610\) 6.07145 2.20983i 0.245826 0.0894733i
\(611\) 7.92871 44.9660i 0.320761 1.81913i
\(612\) 0.658633 0.552659i 0.0266237 0.0223399i
\(613\) 13.6912 + 11.4883i 0.552982 + 0.464007i 0.875949 0.482403i \(-0.160236\pi\)
−0.322967 + 0.946410i \(0.604680\pi\)
\(614\) 5.10741 + 28.9656i 0.206118 + 1.16896i
\(615\) −0.554378 0.960210i −0.0223547 0.0387194i
\(616\) 3.45471 5.98373i 0.139194 0.241091i
\(617\) 12.8109 + 4.66280i 0.515748 + 0.187717i 0.586764 0.809758i \(-0.300402\pi\)
−0.0710153 + 0.997475i \(0.522624\pi\)
\(618\) 8.94356 + 3.25519i 0.359763 + 0.130943i
\(619\) −19.8410 + 34.3655i −0.797475 + 1.38127i 0.123780 + 0.992310i \(0.460498\pi\)
−0.921255 + 0.388958i \(0.872835\pi\)
\(620\) −0.169529 0.293634i −0.00680846 0.0117926i
\(621\) 0.285807 + 1.62089i 0.0114690 + 0.0650441i
\(622\) 12.7445 + 10.6939i 0.511007 + 0.428786i
\(623\) −15.7233 + 13.1934i −0.629940 + 0.528582i
\(624\) −5.89124 + 33.4109i −0.235839 + 1.33751i
\(625\) −20.4513 + 7.44367i −0.818052 + 0.297747i
\(626\) 37.2012 1.48686
\(627\) −6.12836 6.20026i −0.244743 0.247615i
\(628\) 2.47834 0.0988965
\(629\) −21.3332 + 7.76466i −0.850611 + 0.309597i
\(630\) −0.256959 + 1.45729i −0.0102375 + 0.0580598i
\(631\) −19.8097 + 16.6223i −0.788613 + 0.661725i −0.945402 0.325907i \(-0.894330\pi\)
0.156788 + 0.987632i \(0.449886\pi\)
\(632\) 1.34452 + 1.12819i 0.0534822 + 0.0448769i
\(633\) 1.88713 + 10.7024i 0.0750065 + 0.425383i
\(634\) −12.2934 21.2928i −0.488233 0.845644i
\(635\) −2.41400 + 4.18117i −0.0957967 + 0.165925i
\(636\) −2.87433 1.04617i −0.113975 0.0414834i
\(637\) −6.60519 2.40409i −0.261707 0.0952536i
\(638\) −2.22668 + 3.85673i −0.0881552 + 0.152689i
\(639\) 4.36231 + 7.55574i 0.172570 + 0.298901i
\(640\) 0.771726 + 4.37667i 0.0305051 + 0.173003i
\(641\) −2.92674 2.45582i −0.115599 0.0969992i 0.583156 0.812360i \(-0.301818\pi\)
−0.698755 + 0.715361i \(0.746262\pi\)
\(642\) −13.6864 + 11.4842i −0.540157 + 0.453246i
\(643\) −1.80834 + 10.2556i −0.0713141 + 0.404443i 0.928165 + 0.372169i \(0.121386\pi\)
−0.999479 + 0.0322734i \(0.989725\pi\)
\(644\) −0.167718 + 0.0610445i −0.00660903 + 0.00240549i
\(645\) −6.39868 −0.251948
\(646\) 22.4736 15.5416i 0.884212 0.611477i
\(647\) −29.5725 −1.16262 −0.581308 0.813683i \(-0.697459\pi\)
−0.581308 + 0.813683i \(0.697459\pi\)
\(648\) 30.4265 11.0743i 1.19527 0.435041i
\(649\) 0.769915 4.36640i 0.0302218 0.171396i
\(650\) −23.2753 + 19.5303i −0.912934 + 0.766043i
\(651\) 14.1019 + 11.8329i 0.552699 + 0.463769i
\(652\) 0.145592 + 0.825692i 0.00570182 + 0.0323366i
\(653\) 3.30019 + 5.71610i 0.129147 + 0.223688i 0.923346 0.383969i \(-0.125443\pi\)
−0.794200 + 0.607657i \(0.792110\pi\)
\(654\) 25.1780 43.6095i 0.984537 1.70527i
\(655\) 3.38666 + 1.23264i 0.132328 + 0.0481634i
\(656\) 4.00387 + 1.45729i 0.156325 + 0.0568976i
\(657\) 6.78699 11.7554i 0.264786 0.458622i
\(658\) 15.3066 + 26.5118i 0.596713 + 1.03354i
\(659\) 0.773318 + 4.38571i 0.0301242 + 0.170843i 0.996158 0.0875723i \(-0.0279109\pi\)
−0.966034 + 0.258415i \(0.916800\pi\)
\(660\) −0.132474 0.111159i −0.00515656 0.00432686i
\(661\) 35.1011 29.4533i 1.36527 1.14560i 0.390959 0.920408i \(-0.372143\pi\)
0.974314 0.225192i \(-0.0723011\pi\)
\(662\) −6.84137 + 38.7993i −0.265897 + 1.50798i
\(663\) 41.2455 15.0121i 1.60184 0.583022i
\(664\) −41.5449 −1.61225
\(665\) 1.26604 4.61706i 0.0490951 0.179042i
\(666\) 6.57398 0.254736
\(667\) 1.27807 0.465178i 0.0494869 0.0180118i
\(668\) −0.248970 + 1.41198i −0.00963295 + 0.0546312i
\(669\) −1.43788 + 1.20653i −0.0555917 + 0.0466470i
\(670\) −2.51334 2.10894i −0.0970986 0.0814754i
\(671\) −1.77972 10.0933i −0.0687051 0.389646i
\(672\) 2.44562 + 4.23594i 0.0943419 + 0.163405i
\(673\) −5.24644 + 9.08711i −0.202236 + 0.350282i −0.949248 0.314527i \(-0.898154\pi\)
0.747013 + 0.664810i \(0.231487\pi\)
\(674\) 16.3751 + 5.96005i 0.630745 + 0.229573i
\(675\) 17.9709 + 6.54087i 0.691700 + 0.251758i
\(676\) 0.854570 1.48016i 0.0328681 0.0569292i
\(677\) 3.75372 + 6.50163i 0.144267 + 0.249878i 0.929099 0.369830i \(-0.120584\pi\)
−0.784832 + 0.619708i \(0.787251\pi\)
\(678\) −6.39424 36.2635i −0.245569 1.39269i
\(679\) 14.8066 + 12.4242i 0.568225 + 0.476797i
\(680\) 4.90903 4.11917i 0.188253 0.157963i
\(681\) 6.91178 39.1986i 0.264860 1.50210i
\(682\) 4.96451 1.80693i 0.190101 0.0691910i
\(683\) −45.0337 −1.72316 −0.861582 0.507618i \(-0.830526\pi\)
−0.861582 + 0.507618i \(0.830526\pi\)
\(684\) 0.779248 0.203935i 0.0297953 0.00779766i
\(685\) −7.28405 −0.278309
\(686\) 25.2310 9.18334i 0.963325 0.350622i
\(687\) −7.69047 + 43.6148i −0.293410 + 1.66401i
\(688\) 18.8366 15.8058i 0.718139 0.602590i
\(689\) −29.9051 25.0934i −1.13929 0.955982i
\(690\) −0.0900885 0.510917i −0.00342961 0.0194503i
\(691\) 3.36113 + 5.82165i 0.127863 + 0.221466i 0.922849 0.385163i \(-0.125855\pi\)
−0.794985 + 0.606629i \(0.792521\pi\)
\(692\) 1.20258 2.08293i 0.0457153 0.0791812i
\(693\) 2.20574 + 0.802823i 0.0837890 + 0.0304967i
\(694\) 41.3289 + 15.0425i 1.56882 + 0.571006i
\(695\) −4.36050 + 7.55261i −0.165403 + 0.286487i
\(696\) −9.72967 16.8523i −0.368802 0.638784i
\(697\) −0.957234 5.42874i −0.0362578 0.205628i
\(698\) −18.9360 15.8892i −0.716740 0.601416i
\(699\) −29.8699 + 25.0638i −1.12978 + 0.948000i
\(700\) −0.360120 + 2.04234i −0.0136112 + 0.0771932i
\(701\) 15.3268 5.57851i 0.578886 0.210697i −0.0359482 0.999354i \(-0.511445\pi\)
0.614834 + 0.788656i \(0.289223\pi\)
\(702\) 25.4201 0.959422
\(703\) −21.1766 1.97724i −0.798692 0.0745730i
\(704\) 8.59627 0.323984
\(705\) 8.51249 3.09829i 0.320599 0.116688i
\(706\) 2.42484 13.7520i 0.0912601 0.517562i
\(707\) 2.52410 2.11797i 0.0949285 0.0796545i
\(708\) 1.25528 + 1.05331i 0.0471763 + 0.0395856i
\(709\) −6.93077 39.3063i −0.260291 1.47618i −0.782118 0.623130i \(-0.785861\pi\)
0.521828 0.853051i \(-0.325250\pi\)
\(710\) 2.75007 + 4.76325i 0.103208 + 0.178762i
\(711\) −0.298133 + 0.516382i −0.0111809 + 0.0193658i
\(712\) −24.1869 8.80331i −0.906443 0.329918i
\(713\) −1.51620 0.551851i −0.0567820 0.0206670i
\(714\) −14.7142 + 25.4857i −0.550665 + 0.953779i
\(715\) −1.10354 1.91139i −0.0412701 0.0714819i
\(716\) 0.347458 + 1.97053i 0.0129851 + 0.0736423i
\(717\) 0.172933 + 0.145108i 0.00645830 + 0.00541916i
\(718\) 12.9394 10.8575i 0.482896 0.405198i
\(719\) −7.82501 + 44.3778i −0.291824 + 1.65501i 0.388016 + 0.921653i \(0.373161\pi\)
−0.679840 + 0.733361i \(0.737951\pi\)
\(720\) −1.58125 + 0.575529i −0.0589298 + 0.0214487i
\(721\) 8.29086 0.308768
\(722\) 25.2599 4.15079i 0.940075 0.154476i
\(723\) −37.9162 −1.41012
\(724\) 2.55216 0.928909i 0.0948501 0.0345226i
\(725\) 2.74422 15.5633i 0.101918 0.578005i
\(726\) 2.06418 1.73205i 0.0766088 0.0642824i
\(727\) −27.1306 22.7653i −1.00622 0.844318i −0.0183856 0.999831i \(-0.505853\pi\)
−0.987834 + 0.155513i \(0.950297\pi\)
\(728\) 5.65935 + 32.0958i 0.209749 + 1.18955i
\(729\) −6.50000 11.2583i −0.240741 0.416975i
\(730\) 4.27862 7.41079i 0.158359 0.274285i
\(731\) −29.8943 10.8806i −1.10568 0.402435i
\(732\) 3.55943 + 1.29553i 0.131560 + 0.0478840i
\(733\) −8.55422 + 14.8163i −0.315957 + 0.547254i −0.979640 0.200760i \(-0.935659\pi\)
0.663683 + 0.748014i \(0.268992\pi\)
\(734\) 1.54845 + 2.68199i 0.0571543 + 0.0989941i
\(735\) −0.242163 1.37338i −0.00893232 0.0506577i
\(736\) −0.328411 0.275570i −0.0121054 0.0101576i
\(737\) −3.98680 + 3.34532i −0.146856 + 0.123226i
\(738\) −0.277189 + 1.57202i −0.0102035 + 0.0578667i
\(739\) 5.33244 1.94085i 0.196157 0.0713954i −0.242074 0.970258i \(-0.577828\pi\)
0.438231 + 0.898863i \(0.355605\pi\)
\(740\) −0.421903 −0.0155095
\(741\) 40.9427 + 3.82278i 1.50407 + 0.140433i
\(742\) 26.1739 0.960873
\(743\) 30.8323 11.2221i 1.13113 0.411697i 0.292427 0.956288i \(-0.405537\pi\)
0.838702 + 0.544591i \(0.183315\pi\)
\(744\) −4.00867 + 22.7343i −0.146965 + 0.833481i
\(745\) 5.37417 4.50946i 0.196894 0.165214i
\(746\) −1.94066 1.62840i −0.0710525 0.0596201i
\(747\) −2.45084 13.8994i −0.0896714 0.508552i
\(748\) −0.429892 0.744596i −0.0157184 0.0272251i
\(749\) −7.78177 + 13.4784i −0.284340 + 0.492491i
\(750\) −11.5885 4.21788i −0.423153 0.154015i
\(751\) −16.7015 6.07883i −0.609445 0.221820i 0.0188155 0.999823i \(-0.494010\pi\)
−0.628260 + 0.778003i \(0.716233\pi\)
\(752\) −17.4060 + 30.1481i −0.634732 + 1.09939i
\(753\) 4.97771 + 8.62165i 0.181398 + 0.314190i
\(754\) −3.64765 20.6869i −0.132840 0.753371i
\(755\) 2.75284 + 2.30991i 0.100186 + 0.0840661i
\(756\) 1.32913 1.11527i 0.0483399 0.0405620i
\(757\) 5.05762 28.6832i 0.183822 1.04251i −0.743637 0.668584i \(-0.766901\pi\)
0.927459 0.373924i \(-0.121988\pi\)
\(758\) −11.1823 + 4.07001i −0.406158 + 0.147829i
\(759\) −0.822948 −0.0298711
\(760\) 5.80802 1.52000i 0.210679 0.0551363i
\(761\) −31.9513 −1.15823 −0.579117 0.815244i \(-0.696603\pi\)
−0.579117 + 0.815244i \(0.696603\pi\)
\(762\) 26.1266 9.50931i 0.946467 0.344486i
\(763\) 7.61721 43.1994i 0.275762 1.56392i