Properties

Label 209.2.j.a
Level $209$
Weight $2$
Character orbit 209.j
Analytic conductor $1.669$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [209,2,Mod(23,209)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("209.23"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(209, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.j (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{18}^{5} + \zeta_{18}^{4} + \cdots + 1) q^{2} + 2 \zeta_{18} q^{3} + ( - \zeta_{18}^{5} + \zeta_{18}^{4} + \cdots - 2) q^{4} + (\zeta_{18}^{5} - 2 \zeta_{18}^{4} + \cdots + 1) q^{5} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + \cdots + 2) q^{6}+ \cdots - \zeta_{18}^{5} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8} - 3 q^{11} + 6 q^{12} + 12 q^{13} - 12 q^{14} - 12 q^{15} + 9 q^{16} - 3 q^{17} - 6 q^{18} + 6 q^{19} - 30 q^{20} - 6 q^{21} - 6 q^{22} + 9 q^{23}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(-\zeta_{18}^{5}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
23.1
−0.173648 0.984808i
−0.173648 + 0.984808i
0.939693 0.342020i
0.939693 + 0.342020i
−0.766044 0.642788i
−0.766044 + 0.642788i
1.26604 + 0.460802i −0.347296 1.96962i −0.141559 0.118782i −0.358441 + 0.300767i 0.467911 2.65366i 1.17365 2.03282i −1.47178 2.54920i −0.939693 + 0.342020i −0.592396 + 0.215615i
100.1 1.26604 0.460802i −0.347296 + 1.96962i −0.141559 + 0.118782i −0.358441 0.300767i 0.467911 + 2.65366i 1.17365 + 2.03282i −1.47178 + 2.54920i −0.939693 0.342020i −0.592396 0.215615i
111.1 0.673648 + 0.565258i 1.87939 0.684040i −0.213011 1.20805i −0.286989 + 1.62760i 1.65270 + 0.601535i 0.0603074 + 0.104455i 1.41875 2.45734i 0.766044 0.642788i −1.11334 + 0.934204i
177.1 0.673648 0.565258i 1.87939 + 0.684040i −0.213011 + 1.20805i −0.286989 1.62760i 1.65270 0.601535i 0.0603074 0.104455i 1.41875 + 2.45734i 0.766044 + 0.642788i −1.11334 0.934204i
188.1 −0.439693 + 2.49362i −1.53209 1.28558i −4.14543 1.50881i 3.64543 1.32683i 3.87939 3.25519i 1.76604 + 3.05888i 3.05303 5.28801i 0.173648 + 0.984808i 1.70574 + 9.67372i
199.1 −0.439693 2.49362i −1.53209 + 1.28558i −4.14543 + 1.50881i 3.64543 + 1.32683i 3.87939 + 3.25519i 1.76604 3.05888i 3.05303 + 5.28801i 0.173648 0.984808i 1.70574 9.67372i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 23.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 209.2.j.a 6
19.e even 9 1 inner 209.2.j.a 6
19.e even 9 1 3971.2.a.e 3
19.f odd 18 1 3971.2.a.f 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
209.2.j.a 6 1.a even 1 1 trivial
209.2.j.a 6 19.e even 9 1 inner
3971.2.a.e 3 19.e even 9 1
3971.2.a.f 3 19.f odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 3T_{2}^{5} + 9T_{2}^{4} - 24T_{2}^{3} + 36T_{2}^{2} - 27T_{2} + 9 \) acting on \(S_{2}^{\mathrm{new}}(209, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 3 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{6} - 8T^{3} + 64 \) Copy content Toggle raw display
$5$ \( T^{6} - 6 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{6} - 6 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{6} - 12 T^{5} + \cdots + 5041 \) Copy content Toggle raw display
$17$ \( T^{6} + 3 T^{5} + \cdots + 12321 \) Copy content Toggle raw display
$19$ \( T^{6} - 6 T^{5} + \cdots + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} - 9 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$29$ \( T^{6} + 6 T^{5} + \cdots + 576 \) Copy content Toggle raw display
$31$ \( T^{6} + 3 T^{5} + \cdots + 16129 \) Copy content Toggle raw display
$37$ \( (T^{3} + 9 T^{2} + 24 T + 19)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 9 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$43$ \( T^{6} + 12 T^{5} + \cdots + 5329 \) Copy content Toggle raw display
$47$ \( T^{6} - 27 T^{5} + \cdots + 210681 \) Copy content Toggle raw display
$53$ \( T^{6} - 18 T^{5} + \cdots + 263169 \) Copy content Toggle raw display
$59$ \( T^{6} + 6 T^{5} + \cdots + 45369 \) Copy content Toggle raw display
$61$ \( T^{6} + 21 T^{5} + \cdots + 11449 \) Copy content Toggle raw display
$67$ \( T^{6} - 12 T^{5} + \cdots + 128881 \) Copy content Toggle raw display
$71$ \( T^{6} + 42 T^{5} + \cdots + 3249 \) Copy content Toggle raw display
$73$ \( T^{6} + 15 T^{5} + \cdots + 1129969 \) Copy content Toggle raw display
$79$ \( T^{6} + 9 T^{5} + \cdots + 289 \) Copy content Toggle raw display
$83$ \( T^{6} - 6 T^{5} + \cdots + 47961 \) Copy content Toggle raw display
$89$ \( T^{6} - 21 T^{5} + \cdots + 12321 \) Copy content Toggle raw display
$97$ \( T^{6} - 27 T^{5} + \cdots + 157609 \) Copy content Toggle raw display
show more
show less