Properties

Label 209.2.j.a
Level $209$
Weight $2$
Character orbit 209.j
Analytic conductor $1.669$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(23,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.j (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{18}^{5} + \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}^{2} - \zeta_{18} + 1) q^{2} + 2 \zeta_{18} q^{3} + ( - \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} + \zeta_{18} - 2) q^{4} + (\zeta_{18}^{5} - 2 \zeta_{18}^{4} - \zeta_{18}^{2} + 1) q^{5} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{2} + 2 \zeta_{18} + 2) q^{6} + (\zeta_{18}^{5} + \zeta_{18}^{4} - 2 \zeta_{18}^{3} - \zeta_{18} + 2) q^{7} + (3 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 3 \zeta_{18}) q^{8} + \zeta_{18}^{2} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{18}^{5} + \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}^{2} - \zeta_{18} + 1) q^{2} + 2 \zeta_{18} q^{3} + ( - \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} + \zeta_{18} - 2) q^{4} + (\zeta_{18}^{5} - 2 \zeta_{18}^{4} - \zeta_{18}^{2} + 1) q^{5} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{2} + 2 \zeta_{18} + 2) q^{6} + (\zeta_{18}^{5} + \zeta_{18}^{4} - 2 \zeta_{18}^{3} - \zeta_{18} + 2) q^{7} + (3 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 3 \zeta_{18}) q^{8} + \zeta_{18}^{2} q^{9} + (2 \zeta_{18}^{4} - 4 \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 4 \zeta_{18} + 2) q^{10} - \zeta_{18}^{3} q^{11} + (2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 4 \zeta_{18} + 2) q^{12} + ( - 2 \zeta_{18}^{5} - 3 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} + \zeta_{18} + 1) q^{13} + ( - 3 \zeta_{18}^{5} + 4 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + \zeta_{18}^{2} - 1) q^{14} + ( - 4 \zeta_{18}^{5} + 2 \zeta_{18} - 2) q^{15} + (3 \zeta_{18}^{5} - 3 \zeta_{18}^{3} - \zeta_{18} + 3) q^{16} + (\zeta_{18}^{5} + 5 \zeta_{18}^{4} + \zeta_{18}^{3} - \zeta_{18}^{2} - 5 \zeta_{18} - 1) q^{17} + ( - \zeta_{18}^{5} + \zeta_{18}^{2} + \zeta_{18} - 1) q^{18} + (\zeta_{18}^{5} + 2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} - 4 \zeta_{18} + 2) q^{19} + ( - 7 \zeta_{18}^{5} + 4 \zeta_{18}^{4} + 3 \zeta_{18}^{2} + 3 \zeta_{18} - 5) q^{20} + (2 \zeta_{18}^{5} - 4 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 4 \zeta_{18} - 2) q^{21} + ( - \zeta_{18}^{2} + \zeta_{18} - 1) q^{22} + (3 \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} - 2 \zeta_{18} + 1) q^{23} + ( - 4 \zeta_{18}^{5} + 4 \zeta_{18}^{4} + 2 \zeta_{18}^{3} + 6 \zeta_{18}^{2} - 6) q^{24} + (\zeta_{18}^{5} - 5 \zeta_{18}^{4} + 4 \zeta_{18}^{3} - \zeta_{18}^{2} + \zeta_{18} + 1) q^{25} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 5 \zeta_{18}^{2} - 3 \zeta_{18} + 2) q^{26} - 4 \zeta_{18}^{3} q^{27} + ( - 4 \zeta_{18}^{4} + 6 \zeta_{18}^{3} - 5 \zeta_{18}^{2} + 6 \zeta_{18} - 4) q^{28} + ( - 2 \zeta_{18}^{3} - 4 \zeta_{18}^{2} - 2 \zeta_{18}) q^{29} + (4 \zeta_{18}^{5} - 8 \zeta_{18}^{4} + 6 \zeta_{18}^{3} - 8 \zeta_{18}^{2} + 4 \zeta_{18}) q^{30} + ( - 4 \zeta_{18}^{5} - 4 \zeta_{18}^{4} + \zeta_{18}^{3} + \zeta_{18}^{2} + 3 \zeta_{18} - 1) q^{31} + (3 \zeta_{18}^{4} - 3 \zeta_{18} - 3) q^{32} - 2 \zeta_{18}^{4} q^{33} + ( - 3 \zeta_{18}^{5} + 5 \zeta_{18}^{4} + 5 \zeta_{18}^{3} - \zeta_{18} - 4) q^{34} + (3 \zeta_{18}^{5} - 3 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 5 \zeta_{18} + 5) q^{35} + (\zeta_{18}^{5} - \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + \zeta_{18} - 1) q^{36} + ( - \zeta_{18}^{4} + \zeta_{18}^{2} + \zeta_{18} - 3) q^{37} + ( - 4 \zeta_{18}^{5} + 7 \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}^{2} - 4 \zeta_{18} - 2) q^{38} + ( - 6 \zeta_{18}^{5} + 4 \zeta_{18}^{4} + 2 \zeta_{18}^{2} + 2 \zeta_{18} + 4) q^{39} + (\zeta_{18}^{5} - 9 \zeta_{18}^{4} + 8 \zeta_{18}^{3} - 8 \zeta_{18}^{2} + 9 \zeta_{18} - 1) q^{40} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} - \zeta_{18}^{2} - 2) q^{41} + (8 \zeta_{18}^{5} - 4 \zeta_{18}^{4} - 4 \zeta_{18}^{3} - 2 \zeta_{18} + 6) q^{42} + ( - 3 \zeta_{18}^{5} - 6 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + \zeta_{18}^{2} - 1) q^{43} + (\zeta_{18}^{5} - 2 \zeta_{18}^{4} + \zeta_{18}^{3} - \zeta_{18}^{2} + \zeta_{18} + 1) q^{44} + ( - 2 \zeta_{18}^{3} + \zeta_{18}^{2} - \zeta_{18} + 2) q^{45} + ( - 3 \zeta_{18}^{5} + 6 \zeta_{18}^{4} - 3 \zeta_{18}^{3} + 6 \zeta_{18}^{2} - 3 \zeta_{18}) q^{46} + (3 \zeta_{18}^{4} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{2} + 3 \zeta_{18} + 3) q^{47} + ( - 6 \zeta_{18}^{4} + 6 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 6 \zeta_{18} - 6) q^{48} + ( - \zeta_{18}^{5} + 4 \zeta_{18}^{4} + \zeta_{18}^{3} + 4 \zeta_{18}^{2} - \zeta_{18}) q^{49} + (\zeta_{18}^{5} + \zeta_{18}^{4} - 7 \zeta_{18}^{3} + 9 \zeta_{18}^{2} - 10 \zeta_{18} + 7) q^{50} + (10 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - 10 \zeta_{18}^{2} - 2 \zeta_{18} - 2) q^{51} + ( - 4 \zeta_{18}^{5} + 7 \zeta_{18}^{4} + 4 \zeta_{18}^{2} - 4) q^{52} + (3 \zeta_{18}^{5} + 6 \zeta_{18}^{4} + 6 \zeta_{18}^{3} - 6 \zeta_{18}) q^{53} + ( - 4 \zeta_{18}^{2} + 4 \zeta_{18} - 4) q^{54} + (2 \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}^{2} - 2 \zeta_{18}) q^{55} + (9 \zeta_{18}^{5} - 8 \zeta_{18}^{4} - \zeta_{18}^{2} - \zeta_{18} + 5) q^{56} + (4 \zeta_{18}^{5} - 4 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 8 \zeta_{18}^{2} + 4 \zeta_{18} - 2) q^{57} + (2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - 4 \zeta_{18}^{2} - 4 \zeta_{18}) q^{58} + ( - 2 \zeta_{18}^{5} + \zeta_{18}^{4} - 6 \zeta_{18}^{3} + 6 \zeta_{18}^{2} - \zeta_{18} + 2) q^{59} + (8 \zeta_{18}^{5} - 8 \zeta_{18}^{3} + 6 \zeta_{18}^{2} - 10 \zeta_{18} + 14) q^{60} + (6 \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} + 3 \zeta_{18} - 4) q^{61} + (3 \zeta_{18}^{5} - 8 \zeta_{18}^{4} + \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 2) q^{62} + ( - 2 \zeta_{18}^{5} + \zeta_{18}^{4} + 2 \zeta_{18}^{2} - \zeta_{18} - 1) q^{63} + (4 \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 3 \zeta_{18} - 4) q^{64} + (3 \zeta_{18}^{5} - 7 \zeta_{18}^{4} + \zeta_{18}^{3} - 7 \zeta_{18}^{2} + 3 \zeta_{18}) q^{65} + ( - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 2 \zeta_{18}) q^{66} + ( - \zeta_{18}^{4} + 6 \zeta_{18}^{3} - 5 \zeta_{18}^{2} + 6 \zeta_{18} - 1) q^{67} + (3 \zeta_{18}^{5} - 8 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 8 \zeta_{18}^{2} + 3 \zeta_{18}) q^{68} + (2 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 6 \zeta_{18}^{3} - 4 \zeta_{18}^{2} + 2 \zeta_{18} - 6) q^{69} + ( - 12 \zeta_{18}^{5} + 13 \zeta_{18}^{4} - 8 \zeta_{18}^{3} + 12 \zeta_{18}^{2} - 5 \zeta_{18} - 5) q^{70} + ( - 7 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 7 \zeta_{18}^{2} - 7) q^{71} + (2 \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} - 3 \zeta_{18} + 2) q^{72} + (\zeta_{18}^{5} - \zeta_{18}^{3} - 3 \zeta_{18}^{2} + 11 \zeta_{18} - 2) q^{73} + (3 \zeta_{18}^{5} - 4 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{2} + 4 \zeta_{18} - 3) q^{74} + ( - 10 \zeta_{18}^{5} + 8 \zeta_{18}^{4} + 2 \zeta_{18}^{2} + 2 \zeta_{18} - 2) q^{75} + ( - 3 \zeta_{18}^{5} - 6 \zeta_{18}^{4} + 5 \zeta_{18}^{3} - 5 \zeta_{18}^{2} + 9 \zeta_{18} - 4) q^{76} + ( - \zeta_{18}^{5} + \zeta_{18}^{2} + \zeta_{18} - 2) q^{77} + ( - 4 \zeta_{18}^{5} - 4 \zeta_{18}^{4} + 6 \zeta_{18}^{3} - 6 \zeta_{18}^{2} + 4 \zeta_{18} + 4) q^{78} + ( - 3 \zeta_{18}^{5} + 3 \zeta_{18}^{3} + 4 \zeta_{18} - 3) q^{79} + (8 \zeta_{18}^{5} - 3 \zeta_{18}^{4} - 3 \zeta_{18}^{3} - 7 \zeta_{18} + 10) q^{80} - 11 \zeta_{18}^{4} q^{81} + (3 \zeta_{18}^{5} - 3 \zeta_{18}^{4} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{2}) q^{82} + (4 \zeta_{18}^{5} + 4 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 7 \zeta_{18}^{2} + 3 \zeta_{18} + 2) q^{83} + ( - 8 \zeta_{18}^{5} + 12 \zeta_{18}^{4} - 10 \zeta_{18}^{3} + 12 \zeta_{18}^{2} - 8 \zeta_{18}) q^{84} + (4 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 9 \zeta_{18}^{2} - 2 \zeta_{18} + 4) q^{85} + ( - 4 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + \zeta_{18}^{2} - 2 \zeta_{18} - 4) q^{86} + ( - 4 \zeta_{18}^{4} - 8 \zeta_{18}^{3} - 4 \zeta_{18}^{2}) q^{87} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 2 \zeta_{18} + 2) q^{88} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} - 5 \zeta_{18}^{3} + \zeta_{18}^{2} + 6 \zeta_{18} + 6) q^{89} + ( - 4 \zeta_{18}^{5} + 3 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{2} - 2) q^{90} + (\zeta_{18}^{4} + \zeta_{18}^{3} - 7 \zeta_{18} + 6) q^{91} + ( - 5 \zeta_{18}^{5} + 5 \zeta_{18}^{3} - 5 \zeta_{18}^{2} + 6 \zeta_{18} - 10) q^{92} + ( - 8 \zeta_{18}^{5} + 2 \zeta_{18}^{4} - 6 \zeta_{18}^{3} + 6 \zeta_{18}^{2} - 2 \zeta_{18} + 8) q^{93} + (3 \zeta_{18}^{5} - 3 \zeta_{18}^{2} - 3 \zeta_{18} + 12) q^{94} + (7 \zeta_{18}^{5} + \zeta_{18}^{4} + 2 \zeta_{18}^{2} - 6 \zeta_{18} + 4) q^{95} + (6 \zeta_{18}^{5} - 6 \zeta_{18}^{2} - 6 \zeta_{18}) q^{96} + ( - 3 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{2} + 2 \zeta_{18} + 3) q^{97} + ( - 5 \zeta_{18}^{5} + 5 \zeta_{18}^{3} + \zeta_{18}^{2} + 6 \zeta_{18} - 4) q^{98} - \zeta_{18}^{5} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 12 q^{6} + 6 q^{7} + 6 q^{8} - 3 q^{11} + 6 q^{12} + 12 q^{13} - 12 q^{14} - 12 q^{15} + 9 q^{16} - 3 q^{17} - 6 q^{18} + 6 q^{19} - 30 q^{20} - 6 q^{21} - 6 q^{22} + 9 q^{23} - 30 q^{24} + 18 q^{25} + 6 q^{26} - 12 q^{27} - 6 q^{28} - 6 q^{29} + 18 q^{30} - 3 q^{31} - 18 q^{32} - 9 q^{34} + 21 q^{35} - 18 q^{37} - 15 q^{38} + 24 q^{39} + 18 q^{40} - 9 q^{41} + 24 q^{42} - 12 q^{43} + 9 q^{44} + 6 q^{45} - 9 q^{46} + 27 q^{47} - 18 q^{48} + 3 q^{49} + 21 q^{50} - 12 q^{51} - 24 q^{52} + 18 q^{53} - 24 q^{54} - 3 q^{55} + 30 q^{56} - 18 q^{57} - 6 q^{59} + 60 q^{60} - 21 q^{61} + 15 q^{62} - 6 q^{63} - 12 q^{64} + 3 q^{65} - 6 q^{66} + 12 q^{67} + 6 q^{68} - 18 q^{69} - 54 q^{70} - 42 q^{71} + 15 q^{72} - 15 q^{73} - 12 q^{74} - 12 q^{75} - 9 q^{76} - 12 q^{77} + 42 q^{78} - 9 q^{79} + 51 q^{80} + 9 q^{82} + 6 q^{83} - 30 q^{84} + 18 q^{85} - 30 q^{86} - 24 q^{87} + 6 q^{88} + 21 q^{89} - 18 q^{90} + 39 q^{91} - 45 q^{92} + 30 q^{93} + 72 q^{94} + 24 q^{95} + 27 q^{97} - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(-\zeta_{18}^{5}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
23.1
−0.173648 0.984808i
−0.173648 + 0.984808i
0.939693 0.342020i
0.939693 + 0.342020i
−0.766044 0.642788i
−0.766044 + 0.642788i
1.26604 + 0.460802i −0.347296 1.96962i −0.141559 0.118782i −0.358441 + 0.300767i 0.467911 2.65366i 1.17365 2.03282i −1.47178 2.54920i −0.939693 + 0.342020i −0.592396 + 0.215615i
100.1 1.26604 0.460802i −0.347296 + 1.96962i −0.141559 + 0.118782i −0.358441 0.300767i 0.467911 + 2.65366i 1.17365 + 2.03282i −1.47178 + 2.54920i −0.939693 0.342020i −0.592396 0.215615i
111.1 0.673648 + 0.565258i 1.87939 0.684040i −0.213011 1.20805i −0.286989 + 1.62760i 1.65270 + 0.601535i 0.0603074 + 0.104455i 1.41875 2.45734i 0.766044 0.642788i −1.11334 + 0.934204i
177.1 0.673648 0.565258i 1.87939 + 0.684040i −0.213011 + 1.20805i −0.286989 1.62760i 1.65270 0.601535i 0.0603074 0.104455i 1.41875 + 2.45734i 0.766044 + 0.642788i −1.11334 0.934204i
188.1 −0.439693 + 2.49362i −1.53209 1.28558i −4.14543 1.50881i 3.64543 1.32683i 3.87939 3.25519i 1.76604 + 3.05888i 3.05303 5.28801i 0.173648 + 0.984808i 1.70574 + 9.67372i
199.1 −0.439693 2.49362i −1.53209 + 1.28558i −4.14543 + 1.50881i 3.64543 + 1.32683i 3.87939 + 3.25519i 1.76604 3.05888i 3.05303 + 5.28801i 0.173648 0.984808i 1.70574 9.67372i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 23.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 209.2.j.a 6
19.e even 9 1 inner 209.2.j.a 6
19.e even 9 1 3971.2.a.e 3
19.f odd 18 1 3971.2.a.f 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
209.2.j.a 6 1.a even 1 1 trivial
209.2.j.a 6 19.e even 9 1 inner
3971.2.a.e 3 19.e even 9 1
3971.2.a.f 3 19.f odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 3T_{2}^{5} + 9T_{2}^{4} - 24T_{2}^{3} + 36T_{2}^{2} - 27T_{2} + 9 \) acting on \(S_{2}^{\mathrm{new}}(209, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 3 T^{5} + 9 T^{4} - 24 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{6} - 8T^{3} + 64 \) Copy content Toggle raw display
$5$ \( T^{6} - 6 T^{5} + 9 T^{4} - 3 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{6} - 6 T^{5} + 27 T^{4} - 52 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{6} - 12 T^{5} + 75 T^{4} + \cdots + 5041 \) Copy content Toggle raw display
$17$ \( T^{6} + 3 T^{5} - 9 T^{4} + \cdots + 12321 \) Copy content Toggle raw display
$19$ \( T^{6} - 6 T^{5} - 12 T^{4} + \cdots + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} - 9 T^{5} + 36 T^{4} - 153 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$29$ \( T^{6} + 6 T^{5} - 240 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$31$ \( T^{6} + 3 T^{5} + 45 T^{4} + \cdots + 16129 \) Copy content Toggle raw display
$37$ \( (T^{3} + 9 T^{2} + 24 T + 19)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 9 T^{5} + 36 T^{4} + 72 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$43$ \( T^{6} + 12 T^{5} + 159 T^{4} + \cdots + 5329 \) Copy content Toggle raw display
$47$ \( T^{6} - 27 T^{5} + 324 T^{4} + \cdots + 210681 \) Copy content Toggle raw display
$53$ \( T^{6} - 18 T^{5} + 270 T^{4} + \cdots + 263169 \) Copy content Toggle raw display
$59$ \( T^{6} + 6 T^{5} + 126 T^{4} + \cdots + 45369 \) Copy content Toggle raw display
$61$ \( T^{6} + 21 T^{5} + 276 T^{4} + \cdots + 11449 \) Copy content Toggle raw display
$67$ \( T^{6} - 12 T^{5} + 246 T^{4} + \cdots + 128881 \) Copy content Toggle raw display
$71$ \( T^{6} + 42 T^{5} + 693 T^{4} + \cdots + 3249 \) Copy content Toggle raw display
$73$ \( T^{6} + 15 T^{5} + 228 T^{4} + \cdots + 1129969 \) Copy content Toggle raw display
$79$ \( T^{6} + 9 T^{5} + 18 T^{4} - 388 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$83$ \( T^{6} - 6 T^{5} + 135 T^{4} + \cdots + 47961 \) Copy content Toggle raw display
$89$ \( T^{6} - 21 T^{5} + 207 T^{4} + \cdots + 12321 \) Copy content Toggle raw display
$97$ \( T^{6} - 27 T^{5} + 378 T^{4} + \cdots + 157609 \) Copy content Toggle raw display
show more
show less