Defining parameters
| Level: | \( N \) | \(=\) | \( 209 = 11 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 209.f (of order \(5\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
| Character field: | \(\Q(\zeta_{5})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(40\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(209, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 88 | 72 | 16 |
| Cusp forms | 72 | 72 | 0 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(209, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 209.2.f.a | $4$ | $1.669$ | \(\Q(\zeta_{10})\) | None | \(-5\) | \(-6\) | \(-2\) | \(-1\) | \(q+(-1-\zeta_{10}+\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\) |
| 209.2.f.b | $28$ | $1.669$ | None | \(-2\) | \(1\) | \(7\) | \(-12\) | ||
| 209.2.f.c | $40$ | $1.669$ | None | \(3\) | \(3\) | \(-9\) | \(4\) | ||