Properties

Label 209.2.f
Level $209$
Weight $2$
Character orbit 209.f
Rep. character $\chi_{209}(20,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $72$
Newform subspaces $3$
Sturm bound $40$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.f (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 3 \)
Sturm bound: \(40\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(209, [\chi])\).

Total New Old
Modular forms 88 72 16
Cusp forms 72 72 0
Eisenstein series 16 0 16

Trace form

\( 72 q - 4 q^{2} - 2 q^{3} - 22 q^{4} - 4 q^{5} - 4 q^{6} - 9 q^{7} + 8 q^{8} - 8 q^{9} - 24 q^{10} - q^{11} + 16 q^{12} + 6 q^{13} - 2 q^{14} + 14 q^{15} - 10 q^{16} - 9 q^{17} + 14 q^{18} - 4 q^{19} - 24 q^{20}+ \cdots + 63 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(209, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
209.2.f.a 209.f 11.c $4$ $1.669$ \(\Q(\zeta_{10})\) None 209.2.f.a \(-5\) \(-6\) \(-2\) \(-1\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1-\zeta_{10}+\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\)
209.2.f.b 209.f 11.c $28$ $1.669$ None 209.2.f.b \(-2\) \(1\) \(7\) \(-12\) $\mathrm{SU}(2)[C_{5}]$
209.2.f.c 209.f 11.c $40$ $1.669$ None 209.2.f.c \(3\) \(3\) \(-9\) \(4\) $\mathrm{SU}(2)[C_{5}]$