Properties

Label 209.2.e.b.45.6
Level $209$
Weight $2$
Character 209.45
Analytic conductor $1.669$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(45,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 14 x^{16} - 11 x^{15} + 130 x^{14} - 92 x^{13} + 629 x^{12} - 276 x^{11} + 2060 x^{10} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 45.6
Root \(0.527190 + 0.913120i\) of defining polynomial
Character \(\chi\) \(=\) 209.45
Dual form 209.2.e.b.144.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.527190 + 0.913120i) q^{2} +(1.63062 + 2.82432i) q^{3} +(0.444141 - 0.769275i) q^{4} +(-0.650102 - 1.12601i) q^{5} +(-1.71929 + 2.97791i) q^{6} -1.25919 q^{7} +3.04535 q^{8} +(-3.81785 + 6.61271i) q^{9} +O(q^{10})\) \(q+(0.527190 + 0.913120i) q^{2} +(1.63062 + 2.82432i) q^{3} +(0.444141 - 0.769275i) q^{4} +(-0.650102 - 1.12601i) q^{5} +(-1.71929 + 2.97791i) q^{6} -1.25919 q^{7} +3.04535 q^{8} +(-3.81785 + 6.61271i) q^{9} +(0.685455 - 1.18724i) q^{10} -1.00000 q^{11} +2.89690 q^{12} +(1.93899 - 3.35842i) q^{13} +(-0.663833 - 1.14979i) q^{14} +(2.12014 - 3.67219i) q^{15} +(0.717196 + 1.24222i) q^{16} +(-1.18292 - 2.04887i) q^{17} -8.05093 q^{18} +(-4.18891 - 1.20541i) q^{19} -1.15495 q^{20} +(-2.05326 - 3.55636i) q^{21} +(-0.527190 - 0.913120i) q^{22} +(-2.15904 + 3.73957i) q^{23} +(4.96581 + 8.60103i) q^{24} +(1.65473 - 2.86608i) q^{25} +4.08886 q^{26} -15.1181 q^{27} +(-0.559258 + 0.968664i) q^{28} +(1.65802 - 2.87177i) q^{29} +4.47087 q^{30} +8.36713 q^{31} +(2.28915 - 3.96492i) q^{32} +(-1.63062 - 2.82432i) q^{33} +(1.24724 - 2.16029i) q^{34} +(0.818603 + 1.41786i) q^{35} +(3.39132 + 5.87395i) q^{36} -5.09048 q^{37} +(-1.10767 - 4.46046i) q^{38} +12.6470 q^{39} +(-1.97979 - 3.42909i) q^{40} +(4.57108 + 7.91735i) q^{41} +(2.16492 - 3.74975i) q^{42} +(-0.197002 - 0.341218i) q^{43} +(-0.444141 + 0.769275i) q^{44} +9.92796 q^{45} -4.55291 q^{46} +(-3.96958 + 6.87551i) q^{47} +(-2.33895 + 4.05118i) q^{48} -5.41444 q^{49} +3.48944 q^{50} +(3.85778 - 6.68187i) q^{51} +(-1.72237 - 2.98323i) q^{52} +(1.53097 - 2.65172i) q^{53} +(-7.97012 - 13.8047i) q^{54} +(0.650102 + 1.12601i) q^{55} -3.83468 q^{56} +(-3.42607 - 13.7964i) q^{57} +3.49637 q^{58} +(2.47475 + 4.28639i) q^{59} +(-1.88328 - 3.26194i) q^{60} +(2.64087 - 4.57412i) q^{61} +(4.41107 + 7.64020i) q^{62} +(4.80740 - 8.32666i) q^{63} +7.69606 q^{64} -5.04216 q^{65} +(1.71929 - 2.97791i) q^{66} +(-5.76482 + 9.98495i) q^{67} -2.10153 q^{68} -14.0823 q^{69} +(-0.863119 + 1.49497i) q^{70} +(3.11473 + 5.39488i) q^{71} +(-11.6267 + 20.1380i) q^{72} +(-6.05792 - 10.4926i) q^{73} +(-2.68365 - 4.64822i) q^{74} +10.7930 q^{75} +(-2.78776 + 2.68705i) q^{76} +1.25919 q^{77} +(6.66738 + 11.5482i) q^{78} +(-4.08003 - 7.06681i) q^{79} +(0.932501 - 1.61514i) q^{80} +(-13.1984 - 22.8602i) q^{81} +(-4.81966 + 8.34790i) q^{82} +4.25236 q^{83} -3.64775 q^{84} +(-1.53803 + 2.66395i) q^{85} +(0.207716 - 0.359774i) q^{86} +10.8144 q^{87} -3.04535 q^{88} +(-6.84735 + 11.8600i) q^{89} +(5.23392 + 9.06542i) q^{90} +(-2.44156 + 4.22890i) q^{91} +(1.91784 + 3.32180i) q^{92} +(13.6436 + 23.6314i) q^{93} -8.37089 q^{94} +(1.36592 + 5.50039i) q^{95} +14.9309 q^{96} +(-7.48677 - 12.9675i) q^{97} +(-2.85444 - 4.94403i) q^{98} +(3.81785 - 6.61271i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9} + 21 q^{10} - 18 q^{11} + 16 q^{12} + 11 q^{13} + q^{14} + 7 q^{15} - 13 q^{16} + 6 q^{17} - 8 q^{18} + 4 q^{19} + 4 q^{20} + 24 q^{21} - q^{22} - q^{23} - 3 q^{24} - 7 q^{25} - 4 q^{26} + 6 q^{27} - 2 q^{28} + 13 q^{29} - 64 q^{30} - 32 q^{31} - 14 q^{32} + 8 q^{34} - 12 q^{35} + 10 q^{36} - 36 q^{37} - 20 q^{38} + 20 q^{39} + 32 q^{40} + 4 q^{41} + 11 q^{42} + q^{43} + 9 q^{44} + 22 q^{45} - 14 q^{46} - 14 q^{47} + 37 q^{48} - 12 q^{49} + 30 q^{50} - 16 q^{51} + 57 q^{52} - 4 q^{53} - 33 q^{54} - 34 q^{56} - 7 q^{57} + 8 q^{58} + 31 q^{59} + 9 q^{60} + 3 q^{61} + 5 q^{62} + 50 q^{63} + 64 q^{64} - 56 q^{65} + 3 q^{66} - 2 q^{67} - 96 q^{68} - 58 q^{70} - 12 q^{71} + 5 q^{72} - 26 q^{73} + 35 q^{74} + 50 q^{75} - 36 q^{76} + 6 q^{77} + 3 q^{78} + 31 q^{79} + 31 q^{80} - 21 q^{81} + 25 q^{82} + 36 q^{83} - 102 q^{84} - 11 q^{85} + 41 q^{86} - 124 q^{87} - 11 q^{89} + 51 q^{90} - 20 q^{91} - 33 q^{92} + 20 q^{93} - 86 q^{94} + 17 q^{95} + 60 q^{96} + 16 q^{97} + 4 q^{98} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.527190 + 0.913120i 0.372780 + 0.645674i 0.989992 0.141123i \(-0.0450713\pi\)
−0.617212 + 0.786797i \(0.711738\pi\)
\(3\) 1.63062 + 2.82432i 0.941439 + 1.63062i 0.762728 + 0.646719i \(0.223859\pi\)
0.178711 + 0.983902i \(0.442807\pi\)
\(4\) 0.444141 0.769275i 0.222070 0.384637i
\(5\) −0.650102 1.12601i −0.290734 0.503567i 0.683249 0.730185i \(-0.260566\pi\)
−0.973984 + 0.226618i \(0.927233\pi\)
\(6\) −1.71929 + 2.97791i −0.701899 + 1.21572i
\(7\) −1.25919 −0.475930 −0.237965 0.971274i \(-0.576480\pi\)
−0.237965 + 0.971274i \(0.576480\pi\)
\(8\) 3.04535 1.07669
\(9\) −3.81785 + 6.61271i −1.27262 + 2.20424i
\(10\) 0.685455 1.18724i 0.216760 0.375439i
\(11\) −1.00000 −0.301511
\(12\) 2.89690 0.836263
\(13\) 1.93899 3.35842i 0.537778 0.931459i −0.461245 0.887273i \(-0.652597\pi\)
0.999023 0.0441865i \(-0.0140696\pi\)
\(14\) −0.663833 1.14979i −0.177417 0.307295i
\(15\) 2.12014 3.67219i 0.547418 0.948155i
\(16\) 0.717196 + 1.24222i 0.179299 + 0.310555i
\(17\) −1.18292 2.04887i −0.286899 0.496924i 0.686169 0.727443i \(-0.259291\pi\)
−0.973068 + 0.230518i \(0.925958\pi\)
\(18\) −8.05093 −1.89762
\(19\) −4.18891 1.20541i −0.961002 0.276540i
\(20\) −1.15495 −0.258254
\(21\) −2.05326 3.55636i −0.448059 0.776061i
\(22\) −0.527190 0.913120i −0.112397 0.194678i
\(23\) −2.15904 + 3.73957i −0.450192 + 0.779755i −0.998398 0.0565883i \(-0.981978\pi\)
0.548206 + 0.836344i \(0.315311\pi\)
\(24\) 4.96581 + 8.60103i 1.01364 + 1.75568i
\(25\) 1.65473 2.86608i 0.330947 0.573217i
\(26\) 4.08886 0.801892
\(27\) −15.1181 −2.90948
\(28\) −0.559258 + 0.968664i −0.105690 + 0.183060i
\(29\) 1.65802 2.87177i 0.307887 0.533275i −0.670013 0.742349i \(-0.733712\pi\)
0.977900 + 0.209074i \(0.0670450\pi\)
\(30\) 4.47087 0.816265
\(31\) 8.36713 1.50278 0.751390 0.659858i \(-0.229384\pi\)
0.751390 + 0.659858i \(0.229384\pi\)
\(32\) 2.28915 3.96492i 0.404668 0.700906i
\(33\) −1.63062 2.82432i −0.283855 0.491651i
\(34\) 1.24724 2.16029i 0.213901 0.370487i
\(35\) 0.818603 + 1.41786i 0.138369 + 0.239662i
\(36\) 3.39132 + 5.87395i 0.565221 + 0.978991i
\(37\) −5.09048 −0.836869 −0.418435 0.908247i \(-0.637421\pi\)
−0.418435 + 0.908247i \(0.637421\pi\)
\(38\) −1.10767 4.46046i −0.179688 0.723582i
\(39\) 12.6470 2.02514
\(40\) −1.97979 3.42909i −0.313032 0.542187i
\(41\) 4.57108 + 7.91735i 0.713883 + 1.23648i 0.963389 + 0.268109i \(0.0863986\pi\)
−0.249506 + 0.968373i \(0.580268\pi\)
\(42\) 2.16492 3.74975i 0.334055 0.578599i
\(43\) −0.197002 0.341218i −0.0300426 0.0520353i 0.850613 0.525792i \(-0.176231\pi\)
−0.880656 + 0.473757i \(0.842898\pi\)
\(44\) −0.444141 + 0.769275i −0.0669568 + 0.115973i
\(45\) 9.92796 1.47997
\(46\) −4.55291 −0.671290
\(47\) −3.96958 + 6.87551i −0.579022 + 1.00290i 0.416570 + 0.909104i \(0.363232\pi\)
−0.995592 + 0.0937921i \(0.970101\pi\)
\(48\) −2.33895 + 4.05118i −0.337598 + 0.584737i
\(49\) −5.41444 −0.773491
\(50\) 3.48944 0.493481
\(51\) 3.85778 6.68187i 0.540197 0.935648i
\(52\) −1.72237 2.98323i −0.238849 0.413699i
\(53\) 1.53097 2.65172i 0.210295 0.364242i −0.741512 0.670940i \(-0.765891\pi\)
0.951807 + 0.306698i \(0.0992242\pi\)
\(54\) −7.97012 13.8047i −1.08460 1.87858i
\(55\) 0.650102 + 1.12601i 0.0876597 + 0.151831i
\(56\) −3.83468 −0.512430
\(57\) −3.42607 13.7964i −0.453794 1.82738i
\(58\) 3.49637 0.459095
\(59\) 2.47475 + 4.28639i 0.322185 + 0.558040i 0.980939 0.194318i \(-0.0622494\pi\)
−0.658754 + 0.752359i \(0.728916\pi\)
\(60\) −1.88328 3.26194i −0.243131 0.421114i
\(61\) 2.64087 4.57412i 0.338129 0.585656i −0.645952 0.763378i \(-0.723539\pi\)
0.984081 + 0.177722i \(0.0568727\pi\)
\(62\) 4.41107 + 7.64020i 0.560206 + 0.970306i
\(63\) 4.80740 8.32666i 0.605676 1.04906i
\(64\) 7.69606 0.962007
\(65\) −5.04216 −0.625403
\(66\) 1.71929 2.97791i 0.211631 0.366555i
\(67\) −5.76482 + 9.98495i −0.704284 + 1.21986i 0.262665 + 0.964887i \(0.415399\pi\)
−0.966949 + 0.254969i \(0.917935\pi\)
\(68\) −2.10153 −0.254848
\(69\) −14.0823 −1.69531
\(70\) −0.863119 + 1.49497i −0.103162 + 0.178683i
\(71\) 3.11473 + 5.39488i 0.369651 + 0.640254i 0.989511 0.144458i \(-0.0461440\pi\)
−0.619860 + 0.784712i \(0.712811\pi\)
\(72\) −11.6267 + 20.1380i −1.37022 + 2.37328i
\(73\) −6.05792 10.4926i −0.709026 1.22807i −0.965219 0.261443i \(-0.915802\pi\)
0.256193 0.966626i \(-0.417532\pi\)
\(74\) −2.68365 4.64822i −0.311968 0.540344i
\(75\) 10.7930 1.24627
\(76\) −2.78776 + 2.68705i −0.319778 + 0.308226i
\(77\) 1.25919 0.143498
\(78\) 6.66738 + 11.5482i 0.754932 + 1.30758i
\(79\) −4.08003 7.06681i −0.459039 0.795078i 0.539872 0.841747i \(-0.318473\pi\)
−0.998910 + 0.0466690i \(0.985139\pi\)
\(80\) 0.932501 1.61514i 0.104257 0.180578i
\(81\) −13.1984 22.8602i −1.46649 2.54003i
\(82\) −4.81966 + 8.34790i −0.532242 + 0.921871i
\(83\) 4.25236 0.466757 0.233378 0.972386i \(-0.425022\pi\)
0.233378 + 0.972386i \(0.425022\pi\)
\(84\) −3.64775 −0.398002
\(85\) −1.53803 + 2.66395i −0.166823 + 0.288946i
\(86\) 0.207716 0.359774i 0.0223985 0.0387954i
\(87\) 10.8144 1.15943
\(88\) −3.04535 −0.324635
\(89\) −6.84735 + 11.8600i −0.725818 + 1.25715i 0.232818 + 0.972520i \(0.425205\pi\)
−0.958636 + 0.284634i \(0.908128\pi\)
\(90\) 5.23392 + 9.06542i 0.551704 + 0.955579i
\(91\) −2.44156 + 4.22890i −0.255945 + 0.443309i
\(92\) 1.91784 + 3.32180i 0.199949 + 0.346321i
\(93\) 13.6436 + 23.6314i 1.41478 + 2.45047i
\(94\) −8.37089 −0.863391
\(95\) 1.36592 + 5.50039i 0.140140 + 0.564329i
\(96\) 14.9309 1.52388
\(97\) −7.48677 12.9675i −0.760167 1.31665i −0.942764 0.333460i \(-0.891784\pi\)
0.182598 0.983188i \(-0.441549\pi\)
\(98\) −2.85444 4.94403i −0.288342 0.499423i
\(99\) 3.81785 6.61271i 0.383708 0.664602i
\(100\) −1.46987 2.54589i −0.146987 0.254589i
\(101\) −0.509967 + 0.883289i −0.0507437 + 0.0878906i −0.890282 0.455411i \(-0.849492\pi\)
0.839538 + 0.543301i \(0.182826\pi\)
\(102\) 8.13513 0.805498
\(103\) 15.2045 1.49814 0.749070 0.662491i \(-0.230501\pi\)
0.749070 + 0.662491i \(0.230501\pi\)
\(104\) 5.90489 10.2276i 0.579022 1.00290i
\(105\) −2.66966 + 4.62399i −0.260532 + 0.451255i
\(106\) 3.22845 0.313575
\(107\) −9.63111 −0.931074 −0.465537 0.885028i \(-0.654139\pi\)
−0.465537 + 0.885028i \(0.654139\pi\)
\(108\) −6.71457 + 11.6300i −0.646110 + 1.11910i
\(109\) 3.20158 + 5.54530i 0.306656 + 0.531143i 0.977629 0.210339i \(-0.0674566\pi\)
−0.670973 + 0.741482i \(0.734123\pi\)
\(110\) −0.685455 + 1.18724i −0.0653556 + 0.113199i
\(111\) −8.30064 14.3771i −0.787862 1.36462i
\(112\) −0.903087 1.56419i −0.0853337 0.147802i
\(113\) 3.43257 0.322909 0.161454 0.986880i \(-0.448382\pi\)
0.161454 + 0.986880i \(0.448382\pi\)
\(114\) 10.7916 10.4017i 1.01072 0.974212i
\(115\) 5.61440 0.523545
\(116\) −1.47279 2.55094i −0.136745 0.236849i
\(117\) 14.8055 + 25.6439i 1.36877 + 2.37078i
\(118\) −2.60933 + 4.51949i −0.240208 + 0.416052i
\(119\) 1.48952 + 2.57992i 0.136544 + 0.236501i
\(120\) 6.45656 11.1831i 0.589401 1.02087i
\(121\) 1.00000 0.0909091
\(122\) 5.56897 0.504190
\(123\) −14.9074 + 25.8204i −1.34416 + 2.32815i
\(124\) 3.71618 6.43662i 0.333723 0.578025i
\(125\) −10.8040 −0.966340
\(126\) 10.1377 0.903134
\(127\) −9.22346 + 15.9755i −0.818450 + 1.41760i 0.0883748 + 0.996087i \(0.471833\pi\)
−0.906824 + 0.421509i \(0.861501\pi\)
\(128\) −0.521015 0.902425i −0.0460517 0.0797639i
\(129\) 0.642473 1.11280i 0.0565666 0.0979761i
\(130\) −2.65818 4.60410i −0.233137 0.403806i
\(131\) −6.80426 11.7853i −0.594491 1.02969i −0.993619 0.112793i \(-0.964020\pi\)
0.399128 0.916895i \(-0.369313\pi\)
\(132\) −2.89690 −0.252143
\(133\) 5.27464 + 1.51784i 0.457370 + 0.131613i
\(134\) −12.1566 −1.05017
\(135\) 9.82832 + 17.0231i 0.845887 + 1.46512i
\(136\) −3.60239 6.23953i −0.308903 0.535035i
\(137\) −5.69088 + 9.85689i −0.486205 + 0.842131i −0.999874 0.0158570i \(-0.994952\pi\)
0.513670 + 0.857988i \(0.328286\pi\)
\(138\) −7.42407 12.8589i −0.631979 1.09462i
\(139\) 3.35997 5.81963i 0.284989 0.493615i −0.687618 0.726073i \(-0.741343\pi\)
0.972606 + 0.232458i \(0.0746768\pi\)
\(140\) 1.45430 0.122911
\(141\) −25.8915 −2.18046
\(142\) −3.28411 + 5.68825i −0.275597 + 0.477347i
\(143\) −1.93899 + 3.35842i −0.162146 + 0.280846i
\(144\) −10.9526 −0.912715
\(145\) −4.31153 −0.358053
\(146\) 6.38735 11.0632i 0.528621 0.915599i
\(147\) −8.82889 15.2921i −0.728195 1.26127i
\(148\) −2.26089 + 3.91597i −0.185844 + 0.321891i
\(149\) 11.8328 + 20.4950i 0.969379 + 1.67901i 0.697359 + 0.716722i \(0.254358\pi\)
0.272020 + 0.962292i \(0.412308\pi\)
\(150\) 5.68995 + 9.85529i 0.464583 + 0.804681i
\(151\) −18.1209 −1.47466 −0.737329 0.675534i \(-0.763913\pi\)
−0.737329 + 0.675534i \(0.763913\pi\)
\(152\) −12.7567 3.67089i −1.03470 0.297748i
\(153\) 18.0648 1.46045
\(154\) 0.663833 + 1.14979i 0.0534932 + 0.0926530i
\(155\) −5.43949 9.42147i −0.436910 0.756751i
\(156\) 5.61705 9.72902i 0.449724 0.778945i
\(157\) 3.07311 + 5.32278i 0.245261 + 0.424804i 0.962205 0.272327i \(-0.0877931\pi\)
−0.716944 + 0.697131i \(0.754460\pi\)
\(158\) 4.30190 7.45111i 0.342241 0.592778i
\(159\) 9.98573 0.791920
\(160\) −5.95272 −0.470604
\(161\) 2.71865 4.70884i 0.214260 0.371109i
\(162\) 13.9161 24.1034i 1.09335 1.89374i
\(163\) −1.66474 −0.130392 −0.0651961 0.997872i \(-0.520767\pi\)
−0.0651961 + 0.997872i \(0.520767\pi\)
\(164\) 8.12082 0.634129
\(165\) −2.12014 + 3.67219i −0.165053 + 0.285880i
\(166\) 2.24180 + 3.88291i 0.173997 + 0.301372i
\(167\) 9.24297 16.0093i 0.715243 1.23884i −0.247623 0.968856i \(-0.579649\pi\)
0.962866 0.269980i \(-0.0870172\pi\)
\(168\) −6.25290 10.8303i −0.482422 0.835579i
\(169\) −1.01934 1.76555i −0.0784110 0.135812i
\(170\) −3.24334 −0.248753
\(171\) 23.9636 23.0980i 1.83255 1.76635i
\(172\) −0.349987 −0.0266863
\(173\) −2.56782 4.44759i −0.195227 0.338144i 0.751748 0.659451i \(-0.229211\pi\)
−0.946975 + 0.321307i \(0.895878\pi\)
\(174\) 5.70125 + 9.87485i 0.432211 + 0.748611i
\(175\) −2.08363 + 3.60895i −0.157507 + 0.272811i
\(176\) −0.717196 1.24222i −0.0540607 0.0936359i
\(177\) −8.07075 + 13.9790i −0.606635 + 1.05072i
\(178\) −14.4394 −1.08228
\(179\) 14.4948 1.08339 0.541696 0.840574i \(-0.317782\pi\)
0.541696 + 0.840574i \(0.317782\pi\)
\(180\) 4.40941 7.63733i 0.328658 0.569253i
\(181\) 3.30476 5.72401i 0.245641 0.425462i −0.716671 0.697411i \(-0.754335\pi\)
0.962312 + 0.271950i \(0.0876684\pi\)
\(182\) −5.14866 −0.381644
\(183\) 17.2250 1.27331
\(184\) −6.57504 + 11.3883i −0.484719 + 0.839557i
\(185\) 3.30933 + 5.73193i 0.243307 + 0.421420i
\(186\) −14.3856 + 24.9165i −1.05480 + 1.82697i
\(187\) 1.18292 + 2.04887i 0.0865034 + 0.149828i
\(188\) 3.52610 + 6.10739i 0.257167 + 0.445427i
\(189\) 19.0366 1.38471
\(190\) −4.30242 + 4.14700i −0.312131 + 0.300855i
\(191\) 4.93176 0.356850 0.178425 0.983954i \(-0.442900\pi\)
0.178425 + 0.983954i \(0.442900\pi\)
\(192\) 12.5493 + 21.7361i 0.905671 + 1.56867i
\(193\) −2.71484 4.70224i −0.195419 0.338475i 0.751619 0.659597i \(-0.229273\pi\)
−0.947038 + 0.321122i \(0.895940\pi\)
\(194\) 7.89391 13.6727i 0.566750 0.981639i
\(195\) −8.22185 14.2407i −0.588779 1.01979i
\(196\) −2.40477 + 4.16519i −0.171769 + 0.297513i
\(197\) 3.83112 0.272956 0.136478 0.990643i \(-0.456422\pi\)
0.136478 + 0.990643i \(0.456422\pi\)
\(198\) 8.05093 0.572154
\(199\) 8.96772 15.5325i 0.635705 1.10107i −0.350661 0.936503i \(-0.614043\pi\)
0.986365 0.164570i \(-0.0526237\pi\)
\(200\) 5.03924 8.72823i 0.356328 0.617179i
\(201\) −37.6009 −2.65216
\(202\) −1.07540 −0.0756648
\(203\) −2.08776 + 3.61611i −0.146532 + 0.253801i
\(204\) −3.42679 5.93538i −0.239923 0.415560i
\(205\) 5.94334 10.2942i 0.415101 0.718976i
\(206\) 8.01565 + 13.8835i 0.558477 + 0.967310i
\(207\) −16.4858 28.5542i −1.14584 1.98466i
\(208\) 5.56254 0.385692
\(209\) 4.18891 + 1.20541i 0.289753 + 0.0833799i
\(210\) −5.62968 −0.388485
\(211\) 1.46757 + 2.54190i 0.101031 + 0.174992i 0.912110 0.409946i \(-0.134452\pi\)
−0.811078 + 0.584937i \(0.801119\pi\)
\(212\) −1.35993 2.35547i −0.0934007 0.161775i
\(213\) −10.1579 + 17.5940i −0.696008 + 1.20552i
\(214\) −5.07743 8.79436i −0.347086 0.601170i
\(215\) −0.256143 + 0.443653i −0.0174688 + 0.0302569i
\(216\) −46.0399 −3.13262
\(217\) −10.5358 −0.715218
\(218\) −3.37568 + 5.84685i −0.228630 + 0.395999i
\(219\) 19.7563 34.2190i 1.33501 2.31230i
\(220\) 1.15495 0.0778665
\(221\) −9.17464 −0.617153
\(222\) 8.75203 15.1590i 0.587398 1.01740i
\(223\) 3.62730 + 6.28266i 0.242902 + 0.420718i 0.961540 0.274666i \(-0.0885674\pi\)
−0.718638 + 0.695385i \(0.755234\pi\)
\(224\) −2.88248 + 4.99260i −0.192594 + 0.333582i
\(225\) 12.6350 + 21.8845i 0.842337 + 1.45897i
\(226\) 1.80962 + 3.13435i 0.120374 + 0.208494i
\(227\) 15.3941 1.02175 0.510873 0.859656i \(-0.329322\pi\)
0.510873 + 0.859656i \(0.329322\pi\)
\(228\) −12.1349 3.49195i −0.803651 0.231260i
\(229\) 5.28204 0.349047 0.174524 0.984653i \(-0.444161\pi\)
0.174524 + 0.984653i \(0.444161\pi\)
\(230\) 2.95986 + 5.12662i 0.195167 + 0.338039i
\(231\) 2.05326 + 3.55636i 0.135095 + 0.233991i
\(232\) 5.04925 8.74555i 0.331499 0.574174i
\(233\) 10.3416 + 17.9123i 0.677504 + 1.17347i 0.975730 + 0.218976i \(0.0702717\pi\)
−0.298226 + 0.954495i \(0.596395\pi\)
\(234\) −15.6106 + 27.0384i −1.02050 + 1.76756i
\(235\) 10.3225 0.673367
\(236\) 4.39655 0.286191
\(237\) 13.3059 23.0466i 0.864314 1.49704i
\(238\) −1.57052 + 2.72022i −0.101802 + 0.176326i
\(239\) −17.7320 −1.14699 −0.573494 0.819210i \(-0.694412\pi\)
−0.573494 + 0.819210i \(0.694412\pi\)
\(240\) 6.08222 0.392606
\(241\) 6.99801 12.1209i 0.450782 0.780777i −0.547653 0.836705i \(-0.684479\pi\)
0.998435 + 0.0559289i \(0.0178120\pi\)
\(242\) 0.527190 + 0.913120i 0.0338891 + 0.0586976i
\(243\) 20.3659 35.2748i 1.30647 2.26288i
\(244\) −2.34584 4.06311i −0.150177 0.260114i
\(245\) 3.51994 + 6.09671i 0.224880 + 0.389504i
\(246\) −31.4362 −2.00430
\(247\) −12.1705 + 11.7309i −0.774392 + 0.746418i
\(248\) 25.4808 1.61803
\(249\) 6.93398 + 12.0100i 0.439423 + 0.761103i
\(250\) −5.69577 9.86536i −0.360232 0.623940i
\(251\) 5.87445 10.1748i 0.370792 0.642230i −0.618896 0.785473i \(-0.712420\pi\)
0.989688 + 0.143243i \(0.0457530\pi\)
\(252\) −4.27033 7.39642i −0.269005 0.465931i
\(253\) 2.15904 3.73957i 0.135738 0.235105i
\(254\) −19.4501 −1.22041
\(255\) −10.0318 −0.628215
\(256\) 8.24540 14.2815i 0.515338 0.892591i
\(257\) 11.7995 20.4373i 0.736033 1.27485i −0.218236 0.975896i \(-0.570030\pi\)
0.954269 0.298950i \(-0.0966365\pi\)
\(258\) 1.35482 0.0843475
\(259\) 6.40988 0.398291
\(260\) −2.23943 + 3.87880i −0.138883 + 0.240553i
\(261\) 12.6601 + 21.9280i 0.783642 + 1.35731i
\(262\) 7.17428 12.4262i 0.443228 0.767694i
\(263\) −0.130693 0.226367i −0.00805888 0.0139584i 0.861968 0.506963i \(-0.169232\pi\)
−0.870027 + 0.493005i \(0.835899\pi\)
\(264\) −4.96581 8.60103i −0.305624 0.529357i
\(265\) −3.98115 −0.244560
\(266\) 1.39477 + 5.61657i 0.0855188 + 0.344374i
\(267\) −44.6617 −2.73325
\(268\) 5.12078 + 8.86945i 0.312801 + 0.541788i
\(269\) −5.88167 10.1874i −0.358612 0.621134i 0.629117 0.777310i \(-0.283417\pi\)
−0.987729 + 0.156176i \(0.950083\pi\)
\(270\) −10.3628 + 17.9489i −0.630659 + 1.09233i
\(271\) 13.3047 + 23.0445i 0.808206 + 1.39985i 0.914106 + 0.405476i \(0.132894\pi\)
−0.105900 + 0.994377i \(0.533772\pi\)
\(272\) 1.69677 2.93889i 0.102882 0.178196i
\(273\) −15.9250 −0.963825
\(274\) −12.0007 −0.724989
\(275\) −1.65473 + 2.86608i −0.0997843 + 0.172831i
\(276\) −6.25454 + 10.8332i −0.376479 + 0.652081i
\(277\) 11.6928 0.702551 0.351275 0.936272i \(-0.385748\pi\)
0.351275 + 0.936272i \(0.385748\pi\)
\(278\) 7.08537 0.424952
\(279\) −31.9444 + 55.3294i −1.91246 + 3.31248i
\(280\) 2.49293 + 4.31788i 0.148981 + 0.258043i
\(281\) −10.6765 + 18.4923i −0.636908 + 1.10316i 0.349200 + 0.937048i \(0.386453\pi\)
−0.986108 + 0.166108i \(0.946880\pi\)
\(282\) −13.6497 23.6420i −0.812830 1.40786i
\(283\) 6.29592 + 10.9048i 0.374253 + 0.648226i 0.990215 0.139550i \(-0.0445657\pi\)
−0.615962 + 0.787776i \(0.711232\pi\)
\(284\) 5.53352 0.328354
\(285\) −13.3076 + 12.8268i −0.788272 + 0.759797i
\(286\) −4.08886 −0.241779
\(287\) −5.75587 9.96946i −0.339758 0.588478i
\(288\) 17.4793 + 30.2750i 1.02997 + 1.78397i
\(289\) 5.70142 9.87514i 0.335377 0.580891i
\(290\) −2.27300 3.93694i −0.133475 0.231185i
\(291\) 24.4162 42.2901i 1.43130 2.47909i
\(292\) −10.7623 −0.629815
\(293\) −13.2537 −0.774289 −0.387145 0.922019i \(-0.626539\pi\)
−0.387145 + 0.922019i \(0.626539\pi\)
\(294\) 9.30901 16.1237i 0.542913 0.940352i
\(295\) 3.21768 5.57318i 0.187340 0.324483i
\(296\) −15.5023 −0.901051
\(297\) 15.1181 0.877242
\(298\) −12.4763 + 21.6095i −0.722730 + 1.25180i
\(299\) 8.37272 + 14.5020i 0.484207 + 0.838671i
\(300\) 4.79360 8.30276i 0.276759 0.479360i
\(301\) 0.248064 + 0.429659i 0.0142982 + 0.0247651i
\(302\) −9.55316 16.5466i −0.549722 0.952147i
\(303\) −3.32625 −0.191088
\(304\) −1.50689 6.06807i −0.0864260 0.348027i
\(305\) −6.86734 −0.393223
\(306\) 9.52358 + 16.4953i 0.544427 + 0.942975i
\(307\) −0.616227 1.06734i −0.0351699 0.0609161i 0.847905 0.530149i \(-0.177864\pi\)
−0.883075 + 0.469233i \(0.844531\pi\)
\(308\) 0.559258 0.968664i 0.0318667 0.0551947i
\(309\) 24.7927 + 42.9422i 1.41041 + 2.44290i
\(310\) 5.73529 9.93381i 0.325743 0.564203i
\(311\) 17.4587 0.989994 0.494997 0.868895i \(-0.335169\pi\)
0.494997 + 0.868895i \(0.335169\pi\)
\(312\) 38.5145 2.18046
\(313\) −13.5568 + 23.4811i −0.766276 + 1.32723i 0.173293 + 0.984870i \(0.444559\pi\)
−0.939569 + 0.342359i \(0.888774\pi\)
\(314\) −3.24023 + 5.61224i −0.182857 + 0.316717i
\(315\) −12.5012 −0.704363
\(316\) −7.24842 −0.407756
\(317\) 6.18283 10.7090i 0.347262 0.601476i −0.638500 0.769622i \(-0.720445\pi\)
0.985762 + 0.168146i \(0.0537780\pi\)
\(318\) 5.26438 + 9.11818i 0.295212 + 0.511322i
\(319\) −1.65802 + 2.87177i −0.0928313 + 0.160788i
\(320\) −5.00322 8.66583i −0.279689 0.484435i
\(321\) −15.7047 27.2013i −0.876550 1.51823i
\(322\) 5.73298 0.319487
\(323\) 2.48541 + 10.0084i 0.138292 + 0.556885i
\(324\) −23.4477 −1.30265
\(325\) −6.41702 11.1146i −0.355952 0.616527i
\(326\) −0.877632 1.52010i −0.0486076 0.0841908i
\(327\) −10.4411 + 18.0846i −0.577395 + 1.00008i
\(328\) 13.9205 + 24.1111i 0.768633 + 1.33131i
\(329\) 4.99846 8.65758i 0.275574 0.477308i
\(330\) −4.47087 −0.246113
\(331\) 34.6565 1.90489 0.952446 0.304706i \(-0.0985583\pi\)
0.952446 + 0.304706i \(0.0985583\pi\)
\(332\) 1.88865 3.27123i 0.103653 0.179532i
\(333\) 19.4347 33.6618i 1.06501 1.84466i
\(334\) 19.4912 1.06651
\(335\) 14.9909 0.819039
\(336\) 2.94518 5.10121i 0.160673 0.278294i
\(337\) 5.64069 + 9.76996i 0.307268 + 0.532204i 0.977764 0.209710i \(-0.0672519\pi\)
−0.670496 + 0.741913i \(0.733919\pi\)
\(338\) 1.07477 1.86156i 0.0584600 0.101256i
\(339\) 5.59722 + 9.69466i 0.303999 + 0.526542i
\(340\) 1.36621 + 2.36634i 0.0740930 + 0.128333i
\(341\) −8.36713 −0.453105
\(342\) 33.7246 + 9.70466i 1.82362 + 0.524768i
\(343\) 15.6322 0.844057
\(344\) −0.599941 1.03913i −0.0323467 0.0560260i
\(345\) 9.15495 + 15.8568i 0.492886 + 0.853704i
\(346\) 2.70745 4.68945i 0.145554 0.252106i
\(347\) −3.63792 6.30105i −0.195294 0.338258i 0.751703 0.659502i \(-0.229233\pi\)
−0.946997 + 0.321243i \(0.895899\pi\)
\(348\) 4.80312 8.31925i 0.257474 0.445958i
\(349\) 24.2963 1.30055 0.650276 0.759698i \(-0.274653\pi\)
0.650276 + 0.759698i \(0.274653\pi\)
\(350\) −4.39387 −0.234862
\(351\) −29.3138 + 50.7730i −1.56466 + 2.71006i
\(352\) −2.28915 + 3.96492i −0.122012 + 0.211331i
\(353\) −28.9238 −1.53946 −0.769730 0.638369i \(-0.779609\pi\)
−0.769730 + 0.638369i \(0.779609\pi\)
\(354\) −17.0193 −0.904565
\(355\) 4.04979 7.01444i 0.214940 0.372288i
\(356\) 6.08238 + 10.5350i 0.322365 + 0.558353i
\(357\) −4.85768 + 8.41375i −0.257096 + 0.445303i
\(358\) 7.64152 + 13.2355i 0.403867 + 0.699518i
\(359\) −9.54571 16.5337i −0.503803 0.872613i −0.999990 0.00439720i \(-0.998600\pi\)
0.496187 0.868216i \(-0.334733\pi\)
\(360\) 30.2341 1.59348
\(361\) 16.0940 + 10.0987i 0.847052 + 0.531511i
\(362\) 6.96894 0.366279
\(363\) 1.63062 + 2.82432i 0.0855854 + 0.148238i
\(364\) 2.16879 + 3.75645i 0.113675 + 0.196892i
\(365\) −7.87653 + 13.6426i −0.412277 + 0.714084i
\(366\) 9.08087 + 15.7285i 0.474665 + 0.822143i
\(367\) 11.1118 19.2463i 0.580034 1.00465i −0.415441 0.909620i \(-0.636373\pi\)
0.995475 0.0950278i \(-0.0302940\pi\)
\(368\) −6.19383 −0.322876
\(369\) −69.8068 −3.63400
\(370\) −3.48929 + 6.04363i −0.181400 + 0.314193i
\(371\) −1.92779 + 3.33902i −0.100086 + 0.173353i
\(372\) 24.2387 1.25672
\(373\) −20.3431 −1.05333 −0.526664 0.850074i \(-0.676557\pi\)
−0.526664 + 0.850074i \(0.676557\pi\)
\(374\) −1.24724 + 2.16029i −0.0644935 + 0.111706i
\(375\) −17.6172 30.5139i −0.909750 1.57573i
\(376\) −12.0887 + 20.9383i −0.623429 + 1.07981i
\(377\) −6.42976 11.1367i −0.331149 0.573568i
\(378\) 10.0359 + 17.3827i 0.516192 + 0.894070i
\(379\) 17.4613 0.896924 0.448462 0.893802i \(-0.351972\pi\)
0.448462 + 0.893802i \(0.351972\pi\)
\(380\) 4.83797 + 1.39218i 0.248183 + 0.0714175i
\(381\) −60.1598 −3.08208
\(382\) 2.59998 + 4.50329i 0.133026 + 0.230408i
\(383\) 1.23348 + 2.13645i 0.0630280 + 0.109168i 0.895818 0.444422i \(-0.146591\pi\)
−0.832790 + 0.553590i \(0.813258\pi\)
\(384\) 1.69916 2.94303i 0.0867098 0.150186i
\(385\) −0.818603 1.41786i −0.0417199 0.0722609i
\(386\) 2.86248 4.95796i 0.145696 0.252353i
\(387\) 3.00850 0.152931
\(388\) −13.3007 −0.675242
\(389\) 6.65147 11.5207i 0.337243 0.584122i −0.646670 0.762770i \(-0.723839\pi\)
0.983913 + 0.178648i \(0.0571723\pi\)
\(390\) 8.66895 15.0151i 0.438970 0.760318i
\(391\) 10.2159 0.516639
\(392\) −16.4888 −0.832812
\(393\) 22.1903 38.4348i 1.11935 1.93878i
\(394\) 2.01973 + 3.49828i 0.101753 + 0.176241i
\(395\) −5.30486 + 9.18830i −0.266917 + 0.462313i
\(396\) −3.39132 5.87395i −0.170420 0.295177i
\(397\) 3.37900 + 5.85261i 0.169587 + 0.293734i 0.938275 0.345891i \(-0.112423\pi\)
−0.768688 + 0.639625i \(0.779090\pi\)
\(398\) 18.9108 0.947911
\(399\) 4.31408 + 17.3723i 0.215974 + 0.869702i
\(400\) 4.74708 0.237354
\(401\) −9.73894 16.8683i −0.486339 0.842365i 0.513537 0.858067i \(-0.328335\pi\)
−0.999877 + 0.0157026i \(0.995002\pi\)
\(402\) −19.8228 34.3342i −0.988673 1.71243i
\(403\) 16.2238 28.1004i 0.808163 1.39978i
\(404\) 0.452995 + 0.784610i 0.0225373 + 0.0390358i
\(405\) −17.1606 + 29.7230i −0.852716 + 1.47695i
\(406\) −4.40260 −0.218497
\(407\) 5.09048 0.252326
\(408\) 11.7483 20.3486i 0.581626 1.00741i
\(409\) −2.23866 + 3.87748i −0.110695 + 0.191729i −0.916051 0.401063i \(-0.868641\pi\)
0.805356 + 0.592792i \(0.201974\pi\)
\(410\) 12.5331 0.618965
\(411\) −37.1187 −1.83093
\(412\) 6.75292 11.6964i 0.332693 0.576241i
\(413\) −3.11618 5.39739i −0.153337 0.265588i
\(414\) 17.3823 30.1070i 0.854294 1.47968i
\(415\) −2.76447 4.78819i −0.135702 0.235043i
\(416\) −8.87727 15.3759i −0.435244 0.753864i
\(417\) 21.9153 1.07320
\(418\) 1.10767 + 4.46046i 0.0541779 + 0.218168i
\(419\) −27.2745 −1.33245 −0.666223 0.745753i \(-0.732090\pi\)
−0.666223 + 0.745753i \(0.732090\pi\)
\(420\) 2.37141 + 4.10740i 0.115713 + 0.200421i
\(421\) −13.0453 22.5952i −0.635791 1.10122i −0.986347 0.164681i \(-0.947341\pi\)
0.350555 0.936542i \(-0.385993\pi\)
\(422\) −1.54737 + 2.68013i −0.0753249 + 0.130467i
\(423\) −30.3105 52.4993i −1.47375 2.55260i
\(424\) 4.66234 8.07541i 0.226423 0.392177i
\(425\) −7.82965 −0.379794
\(426\) −21.4206 −1.03783
\(427\) −3.32536 + 5.75970i −0.160926 + 0.278731i
\(428\) −4.27757 + 7.40897i −0.206764 + 0.358126i
\(429\) −12.6470 −0.610603
\(430\) −0.540145 −0.0260481
\(431\) −16.8860 + 29.2474i −0.813369 + 1.40880i 0.0971243 + 0.995272i \(0.469036\pi\)
−0.910493 + 0.413524i \(0.864298\pi\)
\(432\) −10.8427 18.7800i −0.521667 0.903554i
\(433\) 3.30632 5.72671i 0.158892 0.275208i −0.775578 0.631252i \(-0.782541\pi\)
0.934469 + 0.356044i \(0.115875\pi\)
\(434\) −5.55438 9.62047i −0.266619 0.461797i
\(435\) −7.03047 12.1771i −0.337085 0.583848i
\(436\) 5.68781 0.272397
\(437\) 13.5518 13.0622i 0.648269 0.624851i
\(438\) 41.6614 1.99066
\(439\) 2.07719 + 3.59779i 0.0991387 + 0.171713i 0.911328 0.411680i \(-0.135058\pi\)
−0.812190 + 0.583393i \(0.801725\pi\)
\(440\) 1.97979 + 3.42909i 0.0943826 + 0.163476i
\(441\) 20.6715 35.8041i 0.984357 1.70496i
\(442\) −4.83678 8.37755i −0.230062 0.398480i
\(443\) −6.35220 + 11.0023i −0.301802 + 0.522737i −0.976544 0.215317i \(-0.930922\pi\)
0.674742 + 0.738054i \(0.264255\pi\)
\(444\) −14.7466 −0.699843
\(445\) 17.8059 0.844081
\(446\) −3.82455 + 6.62432i −0.181098 + 0.313670i
\(447\) −38.5895 + 66.8391i −1.82522 + 3.16138i
\(448\) −9.69081 −0.457848
\(449\) −16.3134 −0.769877 −0.384939 0.922942i \(-0.625777\pi\)
−0.384939 + 0.922942i \(0.625777\pi\)
\(450\) −13.3221 + 23.0746i −0.628012 + 1.08775i
\(451\) −4.57108 7.91735i −0.215244 0.372813i
\(452\) 1.52454 2.64059i 0.0717085 0.124203i
\(453\) −29.5483 51.1792i −1.38830 2.40461i
\(454\) 8.11565 + 14.0567i 0.380886 + 0.659714i
\(455\) 6.34904 0.297648
\(456\) −10.4336 42.0148i −0.488597 1.96752i
\(457\) 1.12550 0.0526487 0.0263244 0.999653i \(-0.491620\pi\)
0.0263244 + 0.999653i \(0.491620\pi\)
\(458\) 2.78464 + 4.82314i 0.130118 + 0.225371i
\(459\) 17.8835 + 30.9751i 0.834729 + 1.44579i
\(460\) 2.49358 4.31901i 0.116264 0.201375i
\(461\) 3.72459 + 6.45117i 0.173471 + 0.300461i 0.939631 0.342189i \(-0.111168\pi\)
−0.766160 + 0.642650i \(0.777835\pi\)
\(462\) −2.16492 + 3.74975i −0.100721 + 0.174454i
\(463\) 0.578694 0.0268942 0.0134471 0.999910i \(-0.495720\pi\)
0.0134471 + 0.999910i \(0.495720\pi\)
\(464\) 4.75650 0.220815
\(465\) 17.7395 30.7257i 0.822649 1.42487i
\(466\) −10.9040 + 18.8863i −0.505120 + 0.874893i
\(467\) −20.0171 −0.926280 −0.463140 0.886285i \(-0.653277\pi\)
−0.463140 + 0.886285i \(0.653277\pi\)
\(468\) 26.3029 1.21585
\(469\) 7.25901 12.5730i 0.335190 0.580566i
\(470\) 5.44193 + 9.42570i 0.251018 + 0.434775i
\(471\) −10.0221 + 17.3589i −0.461796 + 0.799854i
\(472\) 7.53647 + 13.0536i 0.346894 + 0.600838i
\(473\) 0.197002 + 0.341218i 0.00905818 + 0.0156892i
\(474\) 28.0591 1.28880
\(475\) −10.3863 + 10.0111i −0.476558 + 0.459343i
\(476\) 2.64622 0.121290
\(477\) 11.6900 + 20.2477i 0.535250 + 0.927080i
\(478\) −9.34814 16.1914i −0.427574 0.740580i
\(479\) 8.88502 15.3893i 0.405967 0.703155i −0.588466 0.808522i \(-0.700268\pi\)
0.994433 + 0.105366i \(0.0336014\pi\)
\(480\) −9.70664 16.8124i −0.443045 0.767377i
\(481\) −9.87037 + 17.0960i −0.450050 + 0.779510i
\(482\) 14.7571 0.672169
\(483\) 17.7323 0.806850
\(484\) 0.444141 0.769275i 0.0201882 0.0349670i
\(485\) −9.73433 + 16.8604i −0.442013 + 0.765589i
\(486\) 42.9468 1.94811
\(487\) 2.82029 0.127799 0.0638997 0.997956i \(-0.479646\pi\)
0.0638997 + 0.997956i \(0.479646\pi\)
\(488\) 8.04237 13.9298i 0.364061 0.630572i
\(489\) −2.71455 4.70174i −0.122756 0.212620i
\(490\) −3.71135 + 6.42825i −0.167662 + 0.290399i
\(491\) 0.0102158 + 0.0176943i 0.000461033 + 0.000798532i 0.866256 0.499601i \(-0.166520\pi\)
−0.865795 + 0.500399i \(0.833187\pi\)
\(492\) 13.2420 + 22.9358i 0.596994 + 1.03402i
\(493\) −7.84520 −0.353330
\(494\) −17.1279 4.92875i −0.770620 0.221755i
\(495\) −9.92796 −0.446229
\(496\) 6.00087 + 10.3938i 0.269447 + 0.466696i
\(497\) −3.92205 6.79318i −0.175928 0.304716i
\(498\) −7.31105 + 12.6631i −0.327616 + 0.567448i
\(499\) 4.59453 + 7.95797i 0.205680 + 0.356247i 0.950349 0.311186i \(-0.100726\pi\)
−0.744669 + 0.667433i \(0.767393\pi\)
\(500\) −4.79850 + 8.31125i −0.214595 + 0.371690i
\(501\) 60.2871 2.69343
\(502\) 12.3878 0.552895
\(503\) 3.61470 6.26085i 0.161172 0.279158i −0.774117 0.633042i \(-0.781806\pi\)
0.935289 + 0.353884i \(0.115139\pi\)
\(504\) 14.6402 25.3576i 0.652127 1.12952i
\(505\) 1.32612 0.0590117
\(506\) 4.55291 0.202401
\(507\) 3.32432 5.75789i 0.147638 0.255717i
\(508\) 8.19303 + 14.1907i 0.363507 + 0.629612i
\(509\) 18.4552 31.9653i 0.818012 1.41684i −0.0891335 0.996020i \(-0.528410\pi\)
0.907145 0.420818i \(-0.138257\pi\)
\(510\) −5.28866 9.16023i −0.234186 0.405622i
\(511\) 7.62808 + 13.2122i 0.337446 + 0.584474i
\(512\) 15.3035 0.676327
\(513\) 63.3285 + 18.2235i 2.79602 + 0.804588i
\(514\) 24.8823 1.09751
\(515\) −9.88445 17.1204i −0.435561 0.754414i
\(516\) −0.570697 0.988476i −0.0251235 0.0435152i
\(517\) 3.96958 6.87551i 0.174582 0.302385i
\(518\) 3.37923 + 5.85300i 0.148475 + 0.257166i
\(519\) 8.37427 14.5047i 0.367589 0.636684i
\(520\) −15.3551 −0.673367
\(521\) −4.73460 −0.207427 −0.103713 0.994607i \(-0.533072\pi\)
−0.103713 + 0.994607i \(0.533072\pi\)
\(522\) −13.3486 + 23.1204i −0.584252 + 1.01195i
\(523\) 9.02073 15.6244i 0.394449 0.683206i −0.598582 0.801062i \(-0.704269\pi\)
0.993031 + 0.117856i \(0.0376022\pi\)
\(524\) −12.0882 −0.528075
\(525\) −13.5904 −0.593135
\(526\) 0.137800 0.238677i 0.00600837 0.0104068i
\(527\) −9.89762 17.1432i −0.431147 0.746768i
\(528\) 2.33895 4.05118i 0.101790 0.176305i
\(529\) 2.17705 + 3.77077i 0.0946545 + 0.163946i
\(530\) −2.09882 3.63527i −0.0911671 0.157906i
\(531\) −37.7928 −1.64007
\(532\) 3.51032 3.38351i 0.152192 0.146694i
\(533\) 35.4531 1.53564
\(534\) −23.5452 40.7815i −1.01890 1.76479i
\(535\) 6.26120 + 10.8447i 0.270695 + 0.468858i
\(536\) −17.5559 + 30.4077i −0.758298 + 1.31341i
\(537\) 23.6355 + 40.9379i 1.01995 + 1.76660i
\(538\) 6.20152 10.7413i 0.267367 0.463092i
\(539\) 5.41444 0.233216
\(540\) 17.4606 0.751386
\(541\) 16.3726 28.3582i 0.703914 1.21922i −0.263168 0.964750i \(-0.584767\pi\)
0.967082 0.254465i \(-0.0818994\pi\)
\(542\) −14.0283 + 24.2977i −0.602565 + 1.04367i
\(543\) 21.5552 0.925023
\(544\) −10.8315 −0.464397
\(545\) 4.16271 7.21002i 0.178311 0.308843i
\(546\) −8.39551 14.5414i −0.359295 0.622316i
\(547\) −13.4885 + 23.3628i −0.576727 + 0.998920i 0.419125 + 0.907928i \(0.362337\pi\)
−0.995852 + 0.0909912i \(0.970996\pi\)
\(548\) 5.05510 + 8.75570i 0.215943 + 0.374025i
\(549\) 20.1649 + 34.9266i 0.860616 + 1.49063i
\(550\) −3.48944 −0.148790
\(551\) −10.4070 + 10.0310i −0.443351 + 0.427336i
\(552\) −42.8856 −1.82533
\(553\) 5.13753 + 8.89847i 0.218470 + 0.378401i
\(554\) 6.16432 + 10.6769i 0.261897 + 0.453618i
\(555\) −10.7925 + 18.6932i −0.458117 + 0.793482i
\(556\) −2.98460 5.16947i −0.126575 0.219235i
\(557\) −2.74121 + 4.74791i −0.116149 + 0.201175i −0.918238 0.396028i \(-0.870388\pi\)
0.802090 + 0.597204i \(0.203722\pi\)
\(558\) −67.3631 −2.85171
\(559\) −1.52794 −0.0646250
\(560\) −1.17420 + 2.03377i −0.0496189 + 0.0859425i
\(561\) −3.85778 + 6.68187i −0.162875 + 0.282109i
\(562\) −22.5142 −0.949705
\(563\) 21.3497 0.899784 0.449892 0.893083i \(-0.351463\pi\)
0.449892 + 0.893083i \(0.351463\pi\)
\(564\) −11.4995 + 19.9177i −0.484215 + 0.838685i
\(565\) −2.23152 3.86511i −0.0938807 0.162606i
\(566\) −6.63829 + 11.4979i −0.279028 + 0.483291i
\(567\) 16.6193 + 28.7854i 0.697944 + 1.20887i
\(568\) 9.48545 + 16.4293i 0.398000 + 0.689357i
\(569\) −46.7817 −1.96119 −0.980596 0.196040i \(-0.937192\pi\)
−0.980596 + 0.196040i \(0.937192\pi\)
\(570\) −18.7281 5.38922i −0.784433 0.225730i
\(571\) −11.2018 −0.468780 −0.234390 0.972143i \(-0.575309\pi\)
−0.234390 + 0.972143i \(0.575309\pi\)
\(572\) 1.72237 + 2.98323i 0.0720158 + 0.124735i
\(573\) 8.04183 + 13.9289i 0.335952 + 0.581887i
\(574\) 6.06888 10.5116i 0.253310 0.438746i
\(575\) 7.14529 + 12.3760i 0.297979 + 0.516115i
\(576\) −29.3824 + 50.8917i −1.22427 + 2.12049i
\(577\) −25.5689 −1.06445 −0.532224 0.846603i \(-0.678644\pi\)
−0.532224 + 0.846603i \(0.678644\pi\)
\(578\) 12.0229 0.500088
\(579\) 8.85376 15.3352i 0.367950 0.637307i
\(580\) −1.91493 + 3.31675i −0.0795130 + 0.137720i
\(581\) −5.35453 −0.222143
\(582\) 51.4879 2.13424
\(583\) −1.53097 + 2.65172i −0.0634064 + 0.109823i
\(584\) −18.4485 31.9537i −0.763403 1.32225i
\(585\) 19.2502 33.3423i 0.795897 1.37853i
\(586\) −6.98722 12.1022i −0.288639 0.499938i
\(587\) −12.7122 22.0182i −0.524690 0.908790i −0.999587 0.0287484i \(-0.990848\pi\)
0.474896 0.880042i \(-0.342486\pi\)
\(588\) −15.6851 −0.646842
\(589\) −35.0492 10.0858i −1.44418 0.415579i
\(590\) 6.78531 0.279347
\(591\) 6.24711 + 10.8203i 0.256972 + 0.445088i
\(592\) −3.65087 6.32349i −0.150050 0.259894i
\(593\) −10.0063 + 17.3314i −0.410909 + 0.711716i −0.994989 0.0999802i \(-0.968122\pi\)
0.584080 + 0.811696i \(0.301455\pi\)
\(594\) 7.97012 + 13.8047i 0.327018 + 0.566412i
\(595\) 1.93668 3.35442i 0.0793961 0.137518i
\(596\) 21.0217 0.861082
\(597\) 58.4918 2.39391
\(598\) −8.82803 + 15.2906i −0.361005 + 0.625279i
\(599\) −3.33024 + 5.76814i −0.136070 + 0.235680i −0.926006 0.377510i \(-0.876781\pi\)
0.789936 + 0.613190i \(0.210114\pi\)
\(600\) 32.8684 1.34185
\(601\) 9.58212 0.390863 0.195432 0.980717i \(-0.437389\pi\)
0.195432 + 0.980717i \(0.437389\pi\)
\(602\) −0.261554 + 0.453024i −0.0106601 + 0.0184639i
\(603\) −44.0184 76.2421i −1.79257 3.10482i
\(604\) −8.04823 + 13.9399i −0.327478 + 0.567208i
\(605\) −0.650102 1.12601i −0.0264304 0.0457788i
\(606\) −1.75357 3.03727i −0.0712338 0.123381i
\(607\) −44.2594 −1.79643 −0.898217 0.439552i \(-0.855137\pi\)
−0.898217 + 0.439552i \(0.855137\pi\)
\(608\) −14.3684 + 13.8494i −0.582716 + 0.561666i
\(609\) −13.6174 −0.551805
\(610\) −3.62040 6.27071i −0.146586 0.253894i
\(611\) 15.3939 + 26.6630i 0.622771 + 1.07867i
\(612\) 8.02331 13.8968i 0.324323 0.561744i
\(613\) −19.1831 33.2261i −0.774797 1.34199i −0.934909 0.354889i \(-0.884519\pi\)
0.160112 0.987099i \(-0.448815\pi\)
\(614\) 0.649738 1.12538i 0.0262213 0.0454166i
\(615\) 38.7653 1.56317
\(616\) 3.83468 0.154504
\(617\) −0.750993 + 1.30076i −0.0302338 + 0.0523666i −0.880746 0.473588i \(-0.842959\pi\)
0.850513 + 0.525955i \(0.176292\pi\)
\(618\) −26.1410 + 45.2775i −1.05154 + 1.82133i
\(619\) −6.81874 −0.274068 −0.137034 0.990566i \(-0.543757\pi\)
−0.137034 + 0.990566i \(0.543757\pi\)
\(620\) −9.66359 −0.388099
\(621\) 32.6407 56.5353i 1.30983 2.26868i
\(622\) 9.20408 + 15.9419i 0.369050 + 0.639213i
\(623\) 8.62213 14.9340i 0.345438 0.598317i
\(624\) 9.07039 + 15.7104i 0.363106 + 0.628918i
\(625\) −1.24997 2.16501i −0.0499988 0.0866004i
\(626\) −28.5881 −1.14261
\(627\) 3.42607 + 13.7964i 0.136824 + 0.550975i
\(628\) 5.45957 0.217861
\(629\) 6.02161 + 10.4297i 0.240097 + 0.415861i
\(630\) −6.59051 11.4151i −0.262572 0.454789i
\(631\) 3.98717 6.90598i 0.158727 0.274923i −0.775683 0.631123i \(-0.782594\pi\)
0.934410 + 0.356200i \(0.115928\pi\)
\(632\) −12.4251 21.5209i −0.494244 0.856055i
\(633\) −4.78609 + 8.28975i −0.190230 + 0.329488i
\(634\) 13.0381 0.517810
\(635\) 23.9848 0.951806
\(636\) 4.43507 7.68177i 0.175862 0.304602i
\(637\) −10.4985 + 18.1840i −0.415967 + 0.720475i
\(638\) −3.49637 −0.138422
\(639\) −47.5663 −1.88169
\(640\) −0.677426 + 1.17334i −0.0267776 + 0.0463802i
\(641\) 15.4787 + 26.8100i 0.611374 + 1.05893i 0.991009 + 0.133794i \(0.0427160\pi\)
−0.379636 + 0.925136i \(0.623951\pi\)
\(642\) 16.5587 28.6805i 0.653520 1.13193i
\(643\) 15.6354 + 27.0813i 0.616599 + 1.06798i 0.990102 + 0.140351i \(0.0448232\pi\)
−0.373503 + 0.927629i \(0.621843\pi\)
\(644\) −2.41493 4.18278i −0.0951615 0.164825i
\(645\) −1.67069 −0.0657834
\(646\) −7.82863 + 7.54583i −0.308013 + 0.296887i
\(647\) −1.49893 −0.0589289 −0.0294644 0.999566i \(-0.509380\pi\)
−0.0294644 + 0.999566i \(0.509380\pi\)
\(648\) −40.1936 69.6174i −1.57895 2.73483i
\(649\) −2.47475 4.28639i −0.0971424 0.168256i
\(650\) 6.76598 11.7190i 0.265384 0.459658i
\(651\) −17.1799 29.7565i −0.673334 1.16625i
\(652\) −0.739377 + 1.28064i −0.0289562 + 0.0501537i
\(653\) −2.66211 −0.104176 −0.0520881 0.998642i \(-0.516588\pi\)
−0.0520881 + 0.998642i \(0.516588\pi\)
\(654\) −22.0178 −0.860965
\(655\) −8.84692 + 15.3233i −0.345678 + 0.598732i
\(656\) −6.55672 + 11.3566i −0.255997 + 0.443400i
\(657\) 92.5129 3.60927
\(658\) 10.5406 0.410913
\(659\) 10.2629 17.7759i 0.399787 0.692451i −0.593912 0.804530i \(-0.702417\pi\)
0.993699 + 0.112078i \(0.0357508\pi\)
\(660\) 1.88328 + 3.26194i 0.0733066 + 0.126971i
\(661\) 18.1293 31.4009i 0.705148 1.22135i −0.261490 0.965206i \(-0.584214\pi\)
0.966638 0.256146i \(-0.0824528\pi\)
\(662\) 18.2706 + 31.6455i 0.710106 + 1.22994i
\(663\) −14.9604 25.9121i −0.581012 1.00634i
\(664\) 12.9499 0.502554
\(665\) −1.71995 6.92605i −0.0666969 0.268581i
\(666\) 40.9831 1.58806
\(667\) 7.15948 + 12.4006i 0.277216 + 0.480152i
\(668\) −8.21036 14.2208i −0.317669 0.550218i
\(669\) −11.8295 + 20.4893i −0.457354 + 0.792161i
\(670\) 7.90304 + 13.6885i 0.305321 + 0.528832i
\(671\) −2.64087 + 4.57412i −0.101950 + 0.176582i
\(672\) −18.8009 −0.725261
\(673\) −36.7230 −1.41557 −0.707783 0.706430i \(-0.750305\pi\)
−0.707783 + 0.706430i \(0.750305\pi\)
\(674\) −5.94743 + 10.3013i −0.229087 + 0.396790i
\(675\) −25.0165 + 43.3298i −0.962885 + 1.66776i
\(676\) −1.81093 −0.0696510
\(677\) −5.17724 −0.198977 −0.0994887 0.995039i \(-0.531721\pi\)
−0.0994887 + 0.995039i \(0.531721\pi\)
\(678\) −5.90160 + 10.2219i −0.226649 + 0.392568i
\(679\) 9.42728 + 16.3285i 0.361786 + 0.626631i
\(680\) −4.68385 + 8.11266i −0.179617 + 0.311106i
\(681\) 25.1020 + 43.4780i 0.961911 + 1.66608i
\(682\) −4.41107 7.64020i −0.168909 0.292558i
\(683\) −37.2094 −1.42378 −0.711889 0.702292i \(-0.752160\pi\)
−0.711889 + 0.702292i \(0.752160\pi\)
\(684\) −7.12545 28.6934i −0.272449 1.09712i
\(685\) 14.7986 0.565426
\(686\) 8.24112 + 14.2740i 0.314647 + 0.544985i
\(687\) 8.61301 + 14.9182i 0.328607 + 0.569164i
\(688\) 0.282579 0.489441i 0.0107732 0.0186598i
\(689\) −5.93707 10.2833i −0.226184 0.391763i
\(690\) −9.65280 + 16.7191i −0.367476 + 0.636487i
\(691\) −12.0273 −0.457539 −0.228769 0.973481i \(-0.573470\pi\)
−0.228769 + 0.973481i \(0.573470\pi\)
\(692\) −4.56189 −0.173417
\(693\) −4.80740 + 8.32666i −0.182618 + 0.316304i
\(694\) 3.83575 6.64371i 0.145603 0.252192i
\(695\) −8.73728 −0.331424
\(696\) 32.9336 1.24835
\(697\) 10.8144 18.7311i 0.409625 0.709492i
\(698\) 12.8088 + 22.1854i 0.484819 + 0.839732i
\(699\) −33.7266 + 58.4162i −1.27566 + 2.20950i
\(700\) 1.85085 + 3.20576i 0.0699555 + 0.121166i
\(701\) −12.7683 22.1154i −0.482252 0.835286i 0.517540 0.855659i \(-0.326848\pi\)
−0.999792 + 0.0203733i \(0.993515\pi\)
\(702\) −61.8159 −2.33309
\(703\) 21.3236 + 6.13611i 0.804233 + 0.231428i
\(704\) −7.69606 −0.290056
\(705\) 16.8321 + 29.1541i 0.633934 + 1.09801i
\(706\) −15.2484 26.4109i −0.573880 0.993989i
\(707\) 0.642147 1.11223i 0.0241504 0.0418297i
\(708\) 7.16910 + 12.4172i 0.269431 + 0.466669i
\(709\) −0.336850 + 0.583442i −0.0126507 + 0.0219116i −0.872281 0.489004i \(-0.837360\pi\)
0.859631 + 0.510916i \(0.170694\pi\)
\(710\) 8.54004 0.320502
\(711\) 62.3076 2.33672
\(712\) −20.8526 + 36.1177i −0.781483 + 1.35357i
\(713\) −18.0650 + 31.2895i −0.676540 + 1.17180i
\(714\) −10.2437 −0.383360
\(715\) 5.04216 0.188566
\(716\) 6.43773 11.1505i 0.240589 0.416713i
\(717\) −28.9142 50.0808i −1.07982 1.87030i
\(718\) 10.0648 17.4328i 0.375615 0.650585i
\(719\) −5.61360 9.72304i −0.209352 0.362608i 0.742159 0.670224i \(-0.233802\pi\)
−0.951511 + 0.307616i \(0.900469\pi\)
\(720\) 7.12029 + 12.3327i 0.265358 + 0.459613i
\(721\) −19.1453 −0.713009
\(722\) −0.736743 + 20.0197i −0.0274187 + 0.745055i
\(723\) 45.6444 1.69753
\(724\) −2.93555 5.08453i −0.109099 0.188965i
\(725\) −5.48717 9.50405i −0.203788 0.352972i
\(726\) −1.71929 + 2.97791i −0.0638090 + 0.110520i
\(727\) 7.48464 + 12.9638i 0.277590 + 0.480800i 0.970785 0.239950i \(-0.0771310\pi\)
−0.693195 + 0.720750i \(0.743798\pi\)
\(728\) −7.43539 + 12.8785i −0.275574 + 0.477308i
\(729\) 53.6460 1.98689
\(730\) −16.6097 −0.614753
\(731\) −0.466075 + 0.807266i −0.0172384 + 0.0298578i
\(732\) 7.65034 13.2508i 0.282765 0.489763i
\(733\) −13.8590 −0.511895 −0.255947 0.966691i \(-0.582387\pi\)
−0.255947 + 0.966691i \(0.582387\pi\)
\(734\) 23.4322 0.864900
\(735\) −11.4794 + 19.8828i −0.423423 + 0.733389i
\(736\) 9.88476 + 17.1209i 0.364357 + 0.631085i
\(737\) 5.76482 9.98495i 0.212350 0.367801i
\(738\) −36.8015 63.7420i −1.35468 2.34637i
\(739\) 22.8411 + 39.5620i 0.840224 + 1.45531i 0.889705 + 0.456536i \(0.150910\pi\)
−0.0494812 + 0.998775i \(0.515757\pi\)
\(740\) 5.87923 0.216125
\(741\) −52.9772 15.2448i −1.94617 0.560032i
\(742\) −4.06524 −0.149240
\(743\) −13.6125 23.5776i −0.499394 0.864977i 0.500605 0.865676i \(-0.333111\pi\)
−1.00000 0.000699114i \(0.999777\pi\)
\(744\) 41.5495 + 71.9659i 1.52328 + 2.63840i
\(745\) 15.3850 26.6476i 0.563664 0.976294i
\(746\) −10.7247 18.5757i −0.392659 0.680106i
\(747\) −16.2348 + 28.1196i −0.594002 + 1.02884i
\(748\) 2.10153 0.0768394
\(749\) 12.1274 0.443126
\(750\) 18.5753 32.1733i 0.678273 1.17480i
\(751\) 9.07155 15.7124i 0.331026 0.573353i −0.651688 0.758487i \(-0.725939\pi\)
0.982713 + 0.185134i \(0.0592720\pi\)
\(752\) −11.3879 −0.415272
\(753\) 38.3160 1.39631
\(754\) 6.77941 11.7423i 0.246892 0.427629i
\(755\) 11.7804 + 20.4043i 0.428734 + 0.742588i
\(756\) 8.45493 14.6444i 0.307503 0.532611i
\(757\) 8.78303 + 15.2127i 0.319225 + 0.552913i 0.980326 0.197383i \(-0.0632442\pi\)
−0.661102 + 0.750296i \(0.729911\pi\)
\(758\) 9.20540 + 15.9442i 0.334355 + 0.579120i
\(759\) 14.0823 0.511156
\(760\) 4.15970 + 16.7506i 0.150888 + 0.607609i
\(761\) 26.9682 0.977597 0.488798 0.872397i \(-0.337435\pi\)
0.488798 + 0.872397i \(0.337435\pi\)
\(762\) −31.7157 54.9332i −1.14894 1.99002i
\(763\) −4.03140 6.98259i −0.145947 0.252787i
\(764\) 2.19040 3.79388i 0.0792458 0.137258i
\(765\) −11.7440 20.3411i −0.424603 0.735435i
\(766\) −1.30056 + 2.25264i −0.0469911 + 0.0813910i
\(767\) 19.1940 0.693056
\(768\) 53.7805 1.94064
\(769\) 15.7719 27.3178i 0.568750 0.985105i −0.427939 0.903807i \(-0.640760\pi\)
0.996690 0.0812973i \(-0.0259063\pi\)
\(770\) 0.863119 1.49497i 0.0311046 0.0538748i
\(771\) 76.9621