Properties

Label 209.2.e.b.45.5
Level $209$
Weight $2$
Character 209.45
Analytic conductor $1.669$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(45,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 14 x^{16} - 11 x^{15} + 130 x^{14} - 92 x^{13} + 629 x^{12} - 276 x^{11} + 2060 x^{10} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 45.5
Root \(-0.0694302 - 0.120257i\) of defining polynomial
Character \(\chi\) \(=\) 209.45
Dual form 209.2.e.b.144.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0694302 - 0.120257i) q^{2} +(0.748393 + 1.29625i) q^{3} +(0.990359 - 1.71535i) q^{4} +(1.75825 + 3.04538i) q^{5} +(0.103922 - 0.179998i) q^{6} -1.46902 q^{7} -0.552764 q^{8} +(0.379817 - 0.657862i) q^{9} +O(q^{10})\) \(q+(-0.0694302 - 0.120257i) q^{2} +(0.748393 + 1.29625i) q^{3} +(0.990359 - 1.71535i) q^{4} +(1.75825 + 3.04538i) q^{5} +(0.103922 - 0.179998i) q^{6} -1.46902 q^{7} -0.552764 q^{8} +(0.379817 - 0.657862i) q^{9} +(0.244151 - 0.422882i) q^{10} -1.00000 q^{11} +2.96471 q^{12} +(-1.19628 + 2.07201i) q^{13} +(0.101994 + 0.176659i) q^{14} +(-2.63172 + 4.55828i) q^{15} +(-1.94234 - 3.36423i) q^{16} +(1.62021 + 2.80628i) q^{17} -0.105483 q^{18} +(-1.08996 - 4.22043i) q^{19} +6.96519 q^{20} +(-1.09940 - 1.90422i) q^{21} +(0.0694302 + 0.120257i) q^{22} +(3.69089 - 6.39280i) q^{23} +(-0.413685 - 0.716523i) q^{24} +(-3.68288 + 6.37894i) q^{25} +0.332231 q^{26} +5.62736 q^{27} +(-1.45486 + 2.51989i) q^{28} +(-3.20477 + 5.55082i) q^{29} +0.730884 q^{30} +0.866600 q^{31} +(-0.822478 + 1.42457i) q^{32} +(-0.748393 - 1.29625i) q^{33} +(0.224982 - 0.389681i) q^{34} +(-2.58290 - 4.47372i) q^{35} +(-0.752310 - 1.30304i) q^{36} -2.78244 q^{37} +(-0.431858 + 0.424100i) q^{38} -3.58113 q^{39} +(-0.971897 - 1.68338i) q^{40} +(-4.92679 - 8.53345i) q^{41} +(-0.152664 + 0.264421i) q^{42} +(-3.65252 - 6.32635i) q^{43} +(-0.990359 + 1.71535i) q^{44} +2.67125 q^{45} -1.02504 q^{46} +(-1.67951 + 2.90900i) q^{47} +(2.90726 - 5.03553i) q^{48} -4.84198 q^{49} +1.02281 q^{50} +(-2.42510 + 4.20040i) q^{51} +(2.36948 + 4.10407i) q^{52} +(1.89180 - 3.27669i) q^{53} +(-0.390709 - 0.676728i) q^{54} +(-1.75825 - 3.04538i) q^{55} +0.812022 q^{56} +(4.65503 - 4.57140i) q^{57} +0.890031 q^{58} +(-4.20103 - 7.27640i) q^{59} +(5.21270 + 9.02866i) q^{60} +(0.718836 - 1.24506i) q^{61} +(-0.0601682 - 0.104214i) q^{62} +(-0.557959 + 0.966413i) q^{63} -7.54094 q^{64} -8.41340 q^{65} +(-0.103922 + 0.179998i) q^{66} +(-3.24306 + 5.61714i) q^{67} +6.41834 q^{68} +11.0489 q^{69} +(-0.358663 + 0.621223i) q^{70} +(1.70784 + 2.95807i) q^{71} +(-0.209949 + 0.363643i) q^{72} +(-1.40544 - 2.43430i) q^{73} +(0.193185 + 0.334607i) q^{74} -11.0250 q^{75} +(-8.31897 - 2.31007i) q^{76} +1.46902 q^{77} +(0.248639 + 0.430655i) q^{78} +(8.85942 + 15.3450i) q^{79} +(6.83023 - 11.8303i) q^{80} +(3.07203 + 5.32091i) q^{81} +(-0.684136 + 1.18496i) q^{82} +17.7129 q^{83} -4.35522 q^{84} +(-5.69745 + 9.86827i) q^{85} +(-0.507190 + 0.878479i) q^{86} -9.59370 q^{87} +0.552764 q^{88} +(-6.43621 + 11.1478i) q^{89} +(-0.185466 - 0.321236i) q^{90} +(1.75735 - 3.04382i) q^{91} +(-7.31060 - 12.6623i) q^{92} +(0.648557 + 1.12333i) q^{93} +0.466435 q^{94} +(10.9364 - 10.7399i) q^{95} -2.46215 q^{96} +(7.86297 + 13.6191i) q^{97} +(0.336180 + 0.582280i) q^{98} +(-0.379817 + 0.657862i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9} + 21 q^{10} - 18 q^{11} + 16 q^{12} + 11 q^{13} + q^{14} + 7 q^{15} - 13 q^{16} + 6 q^{17} - 8 q^{18} + 4 q^{19} + 4 q^{20} + 24 q^{21} - q^{22} - q^{23} - 3 q^{24} - 7 q^{25} - 4 q^{26} + 6 q^{27} - 2 q^{28} + 13 q^{29} - 64 q^{30} - 32 q^{31} - 14 q^{32} + 8 q^{34} - 12 q^{35} + 10 q^{36} - 36 q^{37} - 20 q^{38} + 20 q^{39} + 32 q^{40} + 4 q^{41} + 11 q^{42} + q^{43} + 9 q^{44} + 22 q^{45} - 14 q^{46} - 14 q^{47} + 37 q^{48} - 12 q^{49} + 30 q^{50} - 16 q^{51} + 57 q^{52} - 4 q^{53} - 33 q^{54} - 34 q^{56} - 7 q^{57} + 8 q^{58} + 31 q^{59} + 9 q^{60} + 3 q^{61} + 5 q^{62} + 50 q^{63} + 64 q^{64} - 56 q^{65} + 3 q^{66} - 2 q^{67} - 96 q^{68} - 58 q^{70} - 12 q^{71} + 5 q^{72} - 26 q^{73} + 35 q^{74} + 50 q^{75} - 36 q^{76} + 6 q^{77} + 3 q^{78} + 31 q^{79} + 31 q^{80} - 21 q^{81} + 25 q^{82} + 36 q^{83} - 102 q^{84} - 11 q^{85} + 41 q^{86} - 124 q^{87} - 11 q^{89} + 51 q^{90} - 20 q^{91} - 33 q^{92} + 20 q^{93} - 86 q^{94} + 17 q^{95} + 60 q^{96} + 16 q^{97} + 4 q^{98} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0694302 0.120257i −0.0490946 0.0850343i 0.840434 0.541914i \(-0.182300\pi\)
−0.889528 + 0.456880i \(0.848967\pi\)
\(3\) 0.748393 + 1.29625i 0.432085 + 0.748393i 0.997053 0.0767202i \(-0.0244448\pi\)
−0.564968 + 0.825113i \(0.691111\pi\)
\(4\) 0.990359 1.71535i 0.495179 0.857676i
\(5\) 1.75825 + 3.04538i 0.786313 + 1.36193i 0.928212 + 0.372053i \(0.121346\pi\)
−0.141898 + 0.989881i \(0.545321\pi\)
\(6\) 0.103922 0.179998i 0.0424260 0.0734840i
\(7\) −1.46902 −0.555237 −0.277619 0.960691i \(-0.589545\pi\)
−0.277619 + 0.960691i \(0.589545\pi\)
\(8\) −0.552764 −0.195432
\(9\) 0.379817 0.657862i 0.126606 0.219287i
\(10\) 0.244151 0.422882i 0.0772074 0.133727i
\(11\) −1.00000 −0.301511
\(12\) 2.96471 0.855838
\(13\) −1.19628 + 2.07201i −0.331787 + 0.574672i −0.982862 0.184341i \(-0.940985\pi\)
0.651075 + 0.759013i \(0.274318\pi\)
\(14\) 0.101994 + 0.176659i 0.0272591 + 0.0472142i
\(15\) −2.63172 + 4.55828i −0.679508 + 1.17694i
\(16\) −1.94234 3.36423i −0.485585 0.841058i
\(17\) 1.62021 + 2.80628i 0.392957 + 0.680622i 0.992838 0.119467i \(-0.0381186\pi\)
−0.599881 + 0.800089i \(0.704785\pi\)
\(18\) −0.105483 −0.0248626
\(19\) −1.08996 4.22043i −0.250054 0.968232i
\(20\) 6.96519 1.55746
\(21\) −1.09940 1.90422i −0.239910 0.415536i
\(22\) 0.0694302 + 0.120257i 0.0148026 + 0.0256388i
\(23\) 3.69089 6.39280i 0.769603 1.33299i −0.168175 0.985757i \(-0.553787\pi\)
0.937778 0.347234i \(-0.112879\pi\)
\(24\) −0.413685 0.716523i −0.0844430 0.146260i
\(25\) −3.68288 + 6.37894i −0.736576 + 1.27579i
\(26\) 0.332231 0.0651558
\(27\) 5.62736 1.08299
\(28\) −1.45486 + 2.51989i −0.274942 + 0.476214i
\(29\) −3.20477 + 5.55082i −0.595111 + 1.03076i 0.398421 + 0.917203i \(0.369558\pi\)
−0.993531 + 0.113559i \(0.963775\pi\)
\(30\) 0.730884 0.133441
\(31\) 0.866600 0.155646 0.0778230 0.996967i \(-0.475203\pi\)
0.0778230 + 0.996967i \(0.475203\pi\)
\(32\) −0.822478 + 1.42457i −0.145395 + 0.251831i
\(33\) −0.748393 1.29625i −0.130278 0.225649i
\(34\) 0.224982 0.389681i 0.0385842 0.0668297i
\(35\) −2.58290 4.47372i −0.436590 0.756197i
\(36\) −0.752310 1.30304i −0.125385 0.217173i
\(37\) −2.78244 −0.457430 −0.228715 0.973493i \(-0.573452\pi\)
−0.228715 + 0.973493i \(0.573452\pi\)
\(38\) −0.431858 + 0.424100i −0.0700566 + 0.0687981i
\(39\) −3.58113 −0.573440
\(40\) −0.971897 1.68338i −0.153670 0.266165i
\(41\) −4.92679 8.53345i −0.769435 1.33270i −0.937870 0.346988i \(-0.887205\pi\)
0.168435 0.985713i \(-0.446129\pi\)
\(42\) −0.152664 + 0.264421i −0.0235565 + 0.0408011i
\(43\) −3.65252 6.32635i −0.557004 0.964759i −0.997745 0.0671246i \(-0.978618\pi\)
0.440741 0.897634i \(-0.354716\pi\)
\(44\) −0.990359 + 1.71535i −0.149302 + 0.258599i
\(45\) 2.67125 0.398207
\(46\) −1.02504 −0.151133
\(47\) −1.67951 + 2.90900i −0.244982 + 0.424321i −0.962126 0.272603i \(-0.912115\pi\)
0.717145 + 0.696924i \(0.245449\pi\)
\(48\) 2.90726 5.03553i 0.419628 0.726816i
\(49\) −4.84198 −0.691711
\(50\) 1.02281 0.144648
\(51\) −2.42510 + 4.20040i −0.339582 + 0.588173i
\(52\) 2.36948 + 4.10407i 0.328588 + 0.569132i
\(53\) 1.89180 3.27669i 0.259859 0.450089i −0.706345 0.707868i \(-0.749657\pi\)
0.966204 + 0.257779i \(0.0829906\pi\)
\(54\) −0.390709 0.676728i −0.0531688 0.0920910i
\(55\) −1.75825 3.04538i −0.237082 0.410639i
\(56\) 0.812022 0.108511
\(57\) 4.65503 4.57140i 0.616573 0.605497i
\(58\) 0.890031 0.116867
\(59\) −4.20103 7.27640i −0.546928 0.947307i −0.998483 0.0550636i \(-0.982464\pi\)
0.451555 0.892243i \(-0.350869\pi\)
\(60\) 5.21270 + 9.02866i 0.672956 + 1.16559i
\(61\) 0.718836 1.24506i 0.0920375 0.159414i −0.816331 0.577585i \(-0.803995\pi\)
0.908368 + 0.418171i \(0.137329\pi\)
\(62\) −0.0601682 0.104214i −0.00764137 0.0132352i
\(63\) −0.557959 + 0.966413i −0.0702962 + 0.121757i
\(64\) −7.54094 −0.942617
\(65\) −8.41340 −1.04355
\(66\) −0.103922 + 0.179998i −0.0127919 + 0.0221563i
\(67\) −3.24306 + 5.61714i −0.396203 + 0.686243i −0.993254 0.115960i \(-0.963006\pi\)
0.597051 + 0.802203i \(0.296339\pi\)
\(68\) 6.41834 0.778338
\(69\) 11.0489 1.33013
\(70\) −0.358663 + 0.621223i −0.0428684 + 0.0742503i
\(71\) 1.70784 + 2.95807i 0.202683 + 0.351058i 0.949392 0.314093i \(-0.101700\pi\)
−0.746709 + 0.665151i \(0.768367\pi\)
\(72\) −0.209949 + 0.363643i −0.0247428 + 0.0428557i
\(73\) −1.40544 2.43430i −0.164495 0.284913i 0.771981 0.635645i \(-0.219266\pi\)
−0.936476 + 0.350733i \(0.885933\pi\)
\(74\) 0.193185 + 0.334607i 0.0224573 + 0.0388972i
\(75\) −11.0250 −1.27305
\(76\) −8.31897 2.31007i −0.954251 0.264983i
\(77\) 1.46902 0.167410
\(78\) 0.248639 + 0.430655i 0.0281528 + 0.0487621i
\(79\) 8.85942 + 15.3450i 0.996763 + 1.72644i 0.568005 + 0.823025i \(0.307716\pi\)
0.428758 + 0.903419i \(0.358951\pi\)
\(80\) 6.83023 11.8303i 0.763643 1.32267i
\(81\) 3.07203 + 5.32091i 0.341336 + 0.591212i
\(82\) −0.684136 + 1.18496i −0.0755502 + 0.130857i
\(83\) 17.7129 1.94425 0.972124 0.234467i \(-0.0753345\pi\)
0.972124 + 0.234467i \(0.0753345\pi\)
\(84\) −4.35522 −0.475193
\(85\) −5.69745 + 9.86827i −0.617975 + 1.07036i
\(86\) −0.507190 + 0.878479i −0.0546917 + 0.0947289i
\(87\) −9.59370 −1.02855
\(88\) 0.552764 0.0589249
\(89\) −6.43621 + 11.1478i −0.682236 + 1.18167i 0.292060 + 0.956400i \(0.405659\pi\)
−0.974297 + 0.225268i \(0.927674\pi\)
\(90\) −0.185466 0.321236i −0.0195498 0.0338612i
\(91\) 1.75735 3.04382i 0.184221 0.319079i
\(92\) −7.31060 12.6623i −0.762183 1.32014i
\(93\) 0.648557 + 1.12333i 0.0672523 + 0.116484i
\(94\) 0.466435 0.0481091
\(95\) 10.9364 10.7399i 1.12205 1.10189i
\(96\) −2.46215 −0.251292
\(97\) 7.86297 + 13.6191i 0.798364 + 1.38281i 0.920681 + 0.390316i \(0.127634\pi\)
−0.122317 + 0.992491i \(0.539032\pi\)
\(98\) 0.336180 + 0.582280i 0.0339593 + 0.0588192i
\(99\) −0.379817 + 0.657862i −0.0381730 + 0.0661177i
\(100\) 7.29475 + 12.6349i 0.729475 + 1.26349i
\(101\) 3.91875 6.78748i 0.389931 0.675380i −0.602509 0.798112i \(-0.705832\pi\)
0.992440 + 0.122732i \(0.0391656\pi\)
\(102\) 0.673501 0.0666865
\(103\) −7.27715 −0.717039 −0.358519 0.933522i \(-0.616718\pi\)
−0.358519 + 0.933522i \(0.616718\pi\)
\(104\) 0.661258 1.14533i 0.0648417 0.112309i
\(105\) 3.86605 6.69620i 0.377288 0.653482i
\(106\) −0.525392 −0.0510306
\(107\) 6.23745 0.602997 0.301498 0.953467i \(-0.402513\pi\)
0.301498 + 0.953467i \(0.402513\pi\)
\(108\) 5.57311 9.65291i 0.536273 0.928852i
\(109\) −1.35921 2.35422i −0.130189 0.225493i 0.793561 0.608491i \(-0.208225\pi\)
−0.923749 + 0.382998i \(0.874892\pi\)
\(110\) −0.244151 + 0.422882i −0.0232789 + 0.0403203i
\(111\) −2.08236 3.60675i −0.197648 0.342337i
\(112\) 2.85334 + 4.94212i 0.269615 + 0.466987i
\(113\) 0.486637 0.0457789 0.0228895 0.999738i \(-0.492713\pi\)
0.0228895 + 0.999738i \(0.492713\pi\)
\(114\) −0.872941 0.242405i −0.0817584 0.0227033i
\(115\) 25.9580 2.42060
\(116\) 6.34774 + 10.9946i 0.589373 + 1.02082i
\(117\) 0.908731 + 1.57397i 0.0840123 + 0.145513i
\(118\) −0.583357 + 1.01040i −0.0537024 + 0.0930152i
\(119\) −2.38011 4.12248i −0.218185 0.377907i
\(120\) 1.45472 2.51965i 0.132797 0.230012i
\(121\) 1.00000 0.0909091
\(122\) −0.199636 −0.0180742
\(123\) 7.37434 12.7727i 0.664922 1.15168i
\(124\) 0.858245 1.48652i 0.0770727 0.133494i
\(125\) −8.31921 −0.744093
\(126\) 0.154957 0.0138046
\(127\) −1.84127 + 3.18918i −0.163386 + 0.282994i −0.936081 0.351784i \(-0.885575\pi\)
0.772695 + 0.634778i \(0.218908\pi\)
\(128\) 2.16853 + 3.75600i 0.191672 + 0.331986i
\(129\) 5.46704 9.46918i 0.481346 0.833715i
\(130\) 0.584144 + 1.01177i 0.0512328 + 0.0887379i
\(131\) −0.0270579 0.0468657i −0.00236406 0.00409467i 0.864841 0.502046i \(-0.167419\pi\)
−0.867205 + 0.497951i \(0.834086\pi\)
\(132\) −2.96471 −0.258045
\(133\) 1.60117 + 6.19989i 0.138839 + 0.537599i
\(134\) 0.900665 0.0778056
\(135\) 9.89431 + 17.1374i 0.851567 + 1.47496i
\(136\) −0.895591 1.55121i −0.0767963 0.133015i
\(137\) −8.48635 + 14.6988i −0.725038 + 1.25580i 0.233921 + 0.972256i \(0.424844\pi\)
−0.958958 + 0.283547i \(0.908489\pi\)
\(138\) −0.767129 1.32871i −0.0653024 0.113107i
\(139\) 9.01812 15.6198i 0.764907 1.32486i −0.175389 0.984499i \(-0.556118\pi\)
0.940296 0.340358i \(-0.110548\pi\)
\(140\) −10.2320 −0.864763
\(141\) −5.02773 −0.423412
\(142\) 0.237151 0.410758i 0.0199013 0.0344701i
\(143\) 1.19628 2.07201i 0.100038 0.173270i
\(144\) −2.95093 −0.245911
\(145\) −22.5391 −1.87177
\(146\) −0.195160 + 0.338027i −0.0161516 + 0.0279753i
\(147\) −3.62370 6.27644i −0.298878 0.517672i
\(148\) −2.75561 + 4.77286i −0.226510 + 0.392327i
\(149\) 2.65188 + 4.59319i 0.217250 + 0.376288i 0.953966 0.299914i \(-0.0969579\pi\)
−0.736716 + 0.676202i \(0.763625\pi\)
\(150\) 0.765466 + 1.32583i 0.0625000 + 0.108253i
\(151\) −10.8143 −0.880057 −0.440029 0.897984i \(-0.645032\pi\)
−0.440029 + 0.897984i \(0.645032\pi\)
\(152\) 0.602490 + 2.33290i 0.0488684 + 0.189223i
\(153\) 2.46153 0.199003
\(154\) −0.101994 0.176659i −0.00821894 0.0142356i
\(155\) 1.52370 + 2.63913i 0.122387 + 0.211980i
\(156\) −3.54661 + 6.14291i −0.283956 + 0.491826i
\(157\) −1.59764 2.76720i −0.127506 0.220846i 0.795204 0.606342i \(-0.207364\pi\)
−0.922710 + 0.385496i \(0.874030\pi\)
\(158\) 1.23022 2.13081i 0.0978713 0.169518i
\(159\) 5.66324 0.449124
\(160\) −5.78449 −0.457304
\(161\) −5.42199 + 9.39116i −0.427312 + 0.740127i
\(162\) 0.426583 0.738863i 0.0335155 0.0580506i
\(163\) −14.3438 −1.12349 −0.561747 0.827309i \(-0.689871\pi\)
−0.561747 + 0.827309i \(0.689871\pi\)
\(164\) −19.5172 −1.52403
\(165\) 2.63172 4.55828i 0.204879 0.354861i
\(166\) −1.22981 2.13010i −0.0954520 0.165328i
\(167\) −7.62833 + 13.2127i −0.590298 + 1.02243i 0.403894 + 0.914806i \(0.367656\pi\)
−0.994192 + 0.107620i \(0.965677\pi\)
\(168\) 0.607711 + 1.05259i 0.0468859 + 0.0812088i
\(169\) 3.63785 + 6.30094i 0.279835 + 0.484688i
\(170\) 1.58230 0.121357
\(171\) −3.19044 0.885946i −0.243979 0.0677500i
\(172\) −14.4692 −1.10327
\(173\) 10.8374 + 18.7710i 0.823954 + 1.42713i 0.902716 + 0.430237i \(0.141570\pi\)
−0.0787615 + 0.996893i \(0.525097\pi\)
\(174\) 0.666093 + 1.15371i 0.0504964 + 0.0874623i
\(175\) 5.41023 9.37079i 0.408975 0.708365i
\(176\) 1.94234 + 3.36423i 0.146409 + 0.253588i
\(177\) 6.28804 10.8912i 0.472638 0.818634i
\(178\) 1.78747 0.133976
\(179\) 4.19425 0.313493 0.156746 0.987639i \(-0.449899\pi\)
0.156746 + 0.987639i \(0.449899\pi\)
\(180\) 2.64550 4.58214i 0.197184 0.341532i
\(181\) 12.4639 21.5881i 0.926436 1.60463i 0.137200 0.990543i \(-0.456190\pi\)
0.789236 0.614090i \(-0.210477\pi\)
\(182\) −0.488053 −0.0361769
\(183\) 2.15189 0.159072
\(184\) −2.04019 + 3.53371i −0.150405 + 0.260509i
\(185\) −4.89222 8.47357i −0.359683 0.622989i
\(186\) 0.0900589 0.155987i 0.00660344 0.0114375i
\(187\) −1.62021 2.80628i −0.118481 0.205215i
\(188\) 3.32664 + 5.76190i 0.242620 + 0.420230i
\(189\) −8.26671 −0.601315
\(190\) −2.05086 0.569498i −0.148785 0.0413157i
\(191\) −7.74450 −0.560372 −0.280186 0.959946i \(-0.590396\pi\)
−0.280186 + 0.959946i \(0.590396\pi\)
\(192\) −5.64358 9.77497i −0.407290 0.705448i
\(193\) −6.95480 12.0461i −0.500617 0.867095i −1.00000 0.000712945i \(-0.999773\pi\)
0.499382 0.866382i \(-0.333560\pi\)
\(194\) 1.09186 1.89115i 0.0783907 0.135777i
\(195\) −6.29653 10.9059i −0.450904 0.780988i
\(196\) −4.79530 + 8.30570i −0.342521 + 0.593264i
\(197\) 20.3595 1.45056 0.725279 0.688455i \(-0.241711\pi\)
0.725279 + 0.688455i \(0.241711\pi\)
\(198\) 0.105483 0.00749636
\(199\) −1.51713 + 2.62774i −0.107546 + 0.186276i −0.914776 0.403962i \(-0.867633\pi\)
0.807229 + 0.590238i \(0.200966\pi\)
\(200\) 2.03577 3.52605i 0.143950 0.249329i
\(201\) −9.70833 −0.684773
\(202\) −1.08832 −0.0765739
\(203\) 4.70787 8.15427i 0.330428 0.572318i
\(204\) 4.80344 + 8.31980i 0.336308 + 0.582502i
\(205\) 17.3250 30.0079i 1.21003 2.09584i
\(206\) 0.505254 + 0.875125i 0.0352027 + 0.0609729i
\(207\) −2.80372 4.85619i −0.194872 0.337529i
\(208\) 9.29429 0.644443
\(209\) 1.08996 + 4.22043i 0.0753940 + 0.291933i
\(210\) −1.07368 −0.0740912
\(211\) −2.50879 4.34536i −0.172712 0.299147i 0.766655 0.642059i \(-0.221920\pi\)
−0.939367 + 0.342913i \(0.888586\pi\)
\(212\) −3.74712 6.49021i −0.257353 0.445749i
\(213\) −2.55627 + 4.42759i −0.175153 + 0.303373i
\(214\) −0.433067 0.750094i −0.0296039 0.0512754i
\(215\) 12.8441 22.2466i 0.875959 1.51721i
\(216\) −3.11061 −0.211650
\(217\) −1.27305 −0.0864205
\(218\) −0.188740 + 0.326908i −0.0127831 + 0.0221410i
\(219\) 2.10364 3.64362i 0.142151 0.246213i
\(220\) −6.96519 −0.469593
\(221\) −7.75285 −0.521513
\(222\) −0.289157 + 0.500834i −0.0194069 + 0.0336138i
\(223\) 5.93082 + 10.2725i 0.397157 + 0.687896i 0.993374 0.114927i \(-0.0366635\pi\)
−0.596217 + 0.802823i \(0.703330\pi\)
\(224\) 1.20824 2.09273i 0.0807287 0.139826i
\(225\) 2.79764 + 4.84566i 0.186510 + 0.323044i
\(226\) −0.0337873 0.0585213i −0.00224750 0.00389278i
\(227\) −1.40838 −0.0934777 −0.0467388 0.998907i \(-0.514883\pi\)
−0.0467388 + 0.998907i \(0.514883\pi\)
\(228\) −3.23141 12.5123i −0.214005 0.828650i
\(229\) 11.3642 0.750971 0.375485 0.926828i \(-0.377476\pi\)
0.375485 + 0.926828i \(0.377476\pi\)
\(230\) −1.80227 3.12162i −0.118838 0.205834i
\(231\) 1.09940 + 1.90422i 0.0723355 + 0.125289i
\(232\) 1.77148 3.06830i 0.116303 0.201443i
\(233\) 6.40005 + 11.0852i 0.419281 + 0.726217i 0.995867 0.0908199i \(-0.0289488\pi\)
−0.576586 + 0.817036i \(0.695615\pi\)
\(234\) 0.126187 0.218562i 0.00824909 0.0142878i
\(235\) −11.8120 −0.770530
\(236\) −16.6421 −1.08331
\(237\) −13.2607 + 22.9681i −0.861372 + 1.49194i
\(238\) −0.330504 + 0.572449i −0.0214234 + 0.0371064i
\(239\) −3.62977 −0.234790 −0.117395 0.993085i \(-0.537454\pi\)
−0.117395 + 0.993085i \(0.537454\pi\)
\(240\) 20.4468 1.31983
\(241\) −9.66079 + 16.7330i −0.622306 + 1.07787i 0.366749 + 0.930320i \(0.380471\pi\)
−0.989055 + 0.147546i \(0.952862\pi\)
\(242\) −0.0694302 0.120257i −0.00446314 0.00773039i
\(243\) 3.84288 6.65607i 0.246521 0.426987i
\(244\) −1.42381 2.46611i −0.0911502 0.157877i
\(245\) −8.51341 14.7457i −0.543902 0.942065i
\(246\) −2.04801 −0.130576
\(247\) 10.0487 + 2.79039i 0.639381 + 0.177548i
\(248\) −0.479026 −0.0304182
\(249\) 13.2562 + 22.9605i 0.840080 + 1.45506i
\(250\) 0.577604 + 1.00044i 0.0365309 + 0.0632734i
\(251\) −9.06491 + 15.7009i −0.572172 + 0.991031i 0.424170 + 0.905582i \(0.360566\pi\)
−0.996343 + 0.0854489i \(0.972768\pi\)
\(252\) 1.10516 + 1.91419i 0.0696185 + 0.120583i
\(253\) −3.69089 + 6.39280i −0.232044 + 0.401912i
\(254\) 0.511360 0.0320856
\(255\) −17.0557 −1.06807
\(256\) −7.23982 + 12.5397i −0.452488 + 0.783733i
\(257\) −0.779689 + 1.35046i −0.0486357 + 0.0842394i −0.889318 0.457289i \(-0.848821\pi\)
0.840683 + 0.541528i \(0.182154\pi\)
\(258\) −1.51831 −0.0945258
\(259\) 4.08746 0.253982
\(260\) −8.33229 + 14.4319i −0.516747 + 0.895031i
\(261\) 2.43445 + 4.21659i 0.150689 + 0.261001i
\(262\) −0.00375727 + 0.00650779i −0.000232125 + 0.000402053i
\(263\) −8.63606 14.9581i −0.532522 0.922355i −0.999279 0.0379695i \(-0.987911\pi\)
0.466757 0.884386i \(-0.345422\pi\)
\(264\) 0.413685 + 0.716523i 0.0254605 + 0.0440989i
\(265\) 13.3050 0.817321
\(266\) 0.634408 0.623011i 0.0388981 0.0381993i
\(267\) −19.2672 −1.17914
\(268\) 6.42359 + 11.1260i 0.392383 + 0.679627i
\(269\) 6.96546 + 12.0645i 0.424692 + 0.735588i 0.996392 0.0848751i \(-0.0270491\pi\)
−0.571700 + 0.820463i \(0.693716\pi\)
\(270\) 1.37393 2.37971i 0.0836146 0.144825i
\(271\) −3.07653 5.32870i −0.186886 0.323695i 0.757325 0.653039i \(-0.226506\pi\)
−0.944210 + 0.329343i \(0.893173\pi\)
\(272\) 6.29398 10.9015i 0.381628 0.661000i
\(273\) 5.26076 0.318396
\(274\) 2.35684 0.142382
\(275\) 3.68288 6.37894i 0.222086 0.384665i
\(276\) 10.9424 18.9528i 0.658655 1.14082i
\(277\) −18.4147 −1.10643 −0.553215 0.833039i \(-0.686599\pi\)
−0.553215 + 0.833039i \(0.686599\pi\)
\(278\) −2.50452 −0.150211
\(279\) 0.329150 0.570104i 0.0197057 0.0341312i
\(280\) 1.42774 + 2.47291i 0.0853236 + 0.147785i
\(281\) −12.4165 + 21.5060i −0.740706 + 1.28294i 0.211469 + 0.977385i \(0.432175\pi\)
−0.952174 + 0.305555i \(0.901158\pi\)
\(282\) 0.349077 + 0.604618i 0.0207872 + 0.0360045i
\(283\) −8.58804 14.8749i −0.510506 0.884222i −0.999926 0.0121742i \(-0.996125\pi\)
0.489420 0.872048i \(-0.337209\pi\)
\(284\) 6.76550 0.401458
\(285\) 22.1063 + 6.13865i 1.30947 + 0.363622i
\(286\) −0.332231 −0.0196452
\(287\) 7.23755 + 12.5358i 0.427219 + 0.739965i
\(288\) 0.624782 + 1.08215i 0.0368157 + 0.0637666i
\(289\) 3.24987 5.62894i 0.191169 0.331114i
\(290\) 1.56490 + 2.71048i 0.0918939 + 0.159165i
\(291\) −11.7692 + 20.3848i −0.689922 + 1.19498i
\(292\) −5.56757 −0.325817
\(293\) 23.1770 1.35402 0.677008 0.735976i \(-0.263276\pi\)
0.677008 + 0.735976i \(0.263276\pi\)
\(294\) −0.503189 + 0.871548i −0.0293466 + 0.0508297i
\(295\) 14.7729 25.5875i 0.860113 1.48976i
\(296\) 1.53803 0.0893963
\(297\) −5.62736 −0.326533
\(298\) 0.368241 0.637812i 0.0213316 0.0369474i
\(299\) 8.83063 + 15.2951i 0.510689 + 0.884539i
\(300\) −10.9187 + 18.9117i −0.630390 + 1.09187i
\(301\) 5.36562 + 9.29353i 0.309269 + 0.535670i
\(302\) 0.750841 + 1.30049i 0.0432060 + 0.0748351i
\(303\) 11.7311 0.673932
\(304\) −12.0814 + 11.8644i −0.692917 + 0.680468i
\(305\) 5.05557 0.289481
\(306\) −0.170904 0.296015i −0.00976995 0.0169220i
\(307\) −13.1575 22.7895i −0.750940 1.30067i −0.947367 0.320148i \(-0.896267\pi\)
0.196427 0.980518i \(-0.437066\pi\)
\(308\) 1.45486 2.51989i 0.0828982 0.143584i
\(309\) −5.44616 9.43303i −0.309821 0.536626i
\(310\) 0.211582 0.366470i 0.0120170 0.0208141i
\(311\) 25.2900 1.43407 0.717033 0.697039i \(-0.245500\pi\)
0.717033 + 0.697039i \(0.245500\pi\)
\(312\) 1.97952 0.112068
\(313\) 13.8440 23.9785i 0.782509 1.35534i −0.147967 0.988992i \(-0.547273\pi\)
0.930476 0.366353i \(-0.119394\pi\)
\(314\) −0.221849 + 0.384254i −0.0125197 + 0.0216847i
\(315\) −3.92412 −0.221099
\(316\) 35.0960 1.97431
\(317\) −5.06181 + 8.76730i −0.284299 + 0.492421i −0.972439 0.233157i \(-0.925094\pi\)
0.688140 + 0.725578i \(0.258428\pi\)
\(318\) −0.393200 0.681042i −0.0220496 0.0381909i
\(319\) 3.20477 5.55082i 0.179433 0.310786i
\(320\) −13.2588 22.9650i −0.741192 1.28378i
\(321\) 4.66806 + 8.08532i 0.260546 + 0.451278i
\(322\) 1.50580 0.0839149
\(323\) 10.0777 9.89668i 0.560740 0.550666i
\(324\) 12.1696 0.676091
\(325\) −8.81148 15.2619i −0.488773 0.846580i
\(326\) 0.995894 + 1.72494i 0.0551575 + 0.0955355i
\(327\) 2.03444 3.52376i 0.112505 0.194864i
\(328\) 2.72335 + 4.71698i 0.150372 + 0.260452i
\(329\) 2.46724 4.27338i 0.136023 0.235599i
\(330\) −0.730884 −0.0402338
\(331\) 8.45572 0.464769 0.232384 0.972624i \(-0.425347\pi\)
0.232384 + 0.972624i \(0.425347\pi\)
\(332\) 17.5422 30.3839i 0.962752 1.66753i
\(333\) −1.05682 + 1.83046i −0.0579132 + 0.100309i
\(334\) 2.11855 0.115922
\(335\) −22.8084 −1.24616
\(336\) −4.27083 + 7.39730i −0.232993 + 0.403556i
\(337\) −0.00868906 0.0150499i −0.000473323 0.000819820i 0.865789 0.500410i \(-0.166817\pi\)
−0.866262 + 0.499590i \(0.833484\pi\)
\(338\) 0.505153 0.874951i 0.0274767 0.0475911i
\(339\) 0.364195 + 0.630805i 0.0197804 + 0.0342606i
\(340\) 11.2850 + 19.5463i 0.612017 + 1.06004i
\(341\) −0.866600 −0.0469290
\(342\) 0.114972 + 0.445184i 0.00621699 + 0.0240728i
\(343\) 17.3961 0.939302
\(344\) 2.01898 + 3.49698i 0.108856 + 0.188544i
\(345\) 19.4268 + 33.6482i 1.04590 + 1.81156i
\(346\) 1.50489 2.60655i 0.0809034 0.140129i
\(347\) −4.31931 7.48127i −0.231873 0.401615i 0.726486 0.687181i \(-0.241152\pi\)
−0.958359 + 0.285565i \(0.907819\pi\)
\(348\) −9.50121 + 16.4566i −0.509318 + 0.882165i
\(349\) −3.41607 −0.182858 −0.0914289 0.995812i \(-0.529143\pi\)
−0.0914289 + 0.995812i \(0.529143\pi\)
\(350\) −1.50253 −0.0803138
\(351\) −6.73188 + 11.6600i −0.359321 + 0.622362i
\(352\) 0.822478 1.42457i 0.0438382 0.0759300i
\(353\) −10.9807 −0.584443 −0.292221 0.956351i \(-0.594394\pi\)
−0.292221 + 0.956351i \(0.594394\pi\)
\(354\) −1.74632 −0.0928159
\(355\) −6.00562 + 10.4020i −0.318745 + 0.552083i
\(356\) 12.7483 + 22.0807i 0.675659 + 1.17028i
\(357\) 3.56252 6.17047i 0.188549 0.326576i
\(358\) −0.291207 0.504386i −0.0153908 0.0266576i
\(359\) −3.78126 6.54933i −0.199567 0.345660i 0.748821 0.662772i \(-0.230620\pi\)
−0.948388 + 0.317112i \(0.897287\pi\)
\(360\) −1.47657 −0.0778222
\(361\) −16.6240 + 9.20018i −0.874946 + 0.484220i
\(362\) −3.46149 −0.181932
\(363\) 0.748393 + 1.29625i 0.0392804 + 0.0680357i
\(364\) −3.48082 6.02896i −0.182445 0.316003i
\(365\) 4.94223 8.56020i 0.258688 0.448061i
\(366\) −0.149406 0.258779i −0.00780957 0.0135266i
\(367\) −1.48731 + 2.57609i −0.0776369 + 0.134471i −0.902230 0.431255i \(-0.858071\pi\)
0.824593 + 0.565726i \(0.191404\pi\)
\(368\) −28.6758 −1.49483
\(369\) −7.48511 −0.389659
\(370\) −0.679335 + 1.17664i −0.0353170 + 0.0611708i
\(371\) −2.77909 + 4.81353i −0.144283 + 0.249906i
\(372\) 2.56922 0.133208
\(373\) 29.9852 1.55258 0.776288 0.630378i \(-0.217100\pi\)
0.776288 + 0.630378i \(0.217100\pi\)
\(374\) −0.224982 + 0.389681i −0.0116336 + 0.0201499i
\(375\) −6.22603 10.7838i −0.321511 0.556873i
\(376\) 0.928373 1.60799i 0.0478772 0.0829257i
\(377\) −7.66757 13.2806i −0.394900 0.683987i
\(378\) 0.573960 + 0.994127i 0.0295213 + 0.0511324i
\(379\) −30.6010 −1.57187 −0.785933 0.618312i \(-0.787817\pi\)
−0.785933 + 0.618312i \(0.787817\pi\)
\(380\) −7.59177 29.3961i −0.389450 1.50799i
\(381\) −5.51198 −0.282387
\(382\) 0.537702 + 0.931328i 0.0275112 + 0.0476509i
\(383\) 0.846790 + 1.46668i 0.0432690 + 0.0749440i 0.886849 0.462060i \(-0.152889\pi\)
−0.843580 + 0.537004i \(0.819556\pi\)
\(384\) −3.24582 + 5.62192i −0.165637 + 0.286892i
\(385\) 2.58290 + 4.47372i 0.131637 + 0.228002i
\(386\) −0.965746 + 1.67272i −0.0491552 + 0.0851393i
\(387\) −5.54915 −0.282079
\(388\) 31.1487 1.58133
\(389\) 11.5309 19.9721i 0.584638 1.01262i −0.410282 0.911959i \(-0.634570\pi\)
0.994920 0.100665i \(-0.0320970\pi\)
\(390\) −0.874338 + 1.51440i −0.0442739 + 0.0766846i
\(391\) 23.9200 1.20969
\(392\) 2.67647 0.135182
\(393\) 0.0404999 0.0701479i 0.00204295 0.00353849i
\(394\) −1.41357 2.44837i −0.0712145 0.123347i
\(395\) −31.1542 + 53.9606i −1.56754 + 2.71505i
\(396\) 0.752310 + 1.30304i 0.0378050 + 0.0654802i
\(397\) 9.51780 + 16.4853i 0.477685 + 0.827374i 0.999673 0.0255788i \(-0.00814286\pi\)
−0.521988 + 0.852953i \(0.674810\pi\)
\(398\) 0.421338 0.0211198
\(399\) −6.83833 + 6.71548i −0.342345 + 0.336194i
\(400\) 28.6136 1.43068
\(401\) −13.9508 24.1634i −0.696668 1.20666i −0.969615 0.244635i \(-0.921332\pi\)
0.272947 0.962029i \(-0.412002\pi\)
\(402\) 0.674051 + 1.16749i 0.0336186 + 0.0582292i
\(403\) −1.03669 + 1.79560i −0.0516413 + 0.0894454i
\(404\) −7.76195 13.4441i −0.386171 0.668868i
\(405\) −10.8028 + 18.7110i −0.536794 + 0.929755i
\(406\) −1.30747 −0.0648888
\(407\) 2.78244 0.137920
\(408\) 1.34051 2.32183i 0.0663650 0.114948i
\(409\) 3.66019 6.33964i 0.180985 0.313475i −0.761231 0.648480i \(-0.775405\pi\)
0.942216 + 0.335006i \(0.108738\pi\)
\(410\) −4.81153 −0.237624
\(411\) −25.4045 −1.25311
\(412\) −7.20699 + 12.4829i −0.355063 + 0.614987i
\(413\) 6.17140 + 10.6892i 0.303675 + 0.525980i
\(414\) −0.389326 + 0.674333i −0.0191343 + 0.0331416i
\(415\) 31.1438 + 53.9426i 1.52879 + 2.64794i
\(416\) −1.96782 3.40837i −0.0964803 0.167109i
\(417\) 26.9964 1.32202
\(418\) 0.431858 0.424100i 0.0211229 0.0207434i
\(419\) −37.5029 −1.83214 −0.916069 0.401021i \(-0.868655\pi\)
−0.916069 + 0.401021i \(0.868655\pi\)
\(420\) −7.65756 13.2633i −0.373651 0.647182i
\(421\) −18.4265 31.9156i −0.898050 1.55547i −0.829983 0.557788i \(-0.811650\pi\)
−0.0680671 0.997681i \(-0.521683\pi\)
\(422\) −0.348372 + 0.603398i −0.0169585 + 0.0293729i
\(423\) 1.27581 + 2.20977i 0.0620322 + 0.107443i
\(424\) −1.04572 + 1.81124i −0.0507846 + 0.0879616i
\(425\) −23.8681 −1.15777
\(426\) 0.709929 0.0343962
\(427\) −1.05598 + 1.82902i −0.0511027 + 0.0885125i
\(428\) 6.17731 10.6994i 0.298592 0.517176i
\(429\) 3.58113 0.172899
\(430\) −3.56707 −0.172019
\(431\) 12.8949 22.3346i 0.621124 1.07582i −0.368153 0.929765i \(-0.620010\pi\)
0.989277 0.146053i \(-0.0466569\pi\)
\(432\) −10.9303 18.9318i −0.525882 0.910854i
\(433\) 15.5014 26.8492i 0.744949 1.29029i −0.205270 0.978705i \(-0.565807\pi\)
0.950219 0.311584i \(-0.100860\pi\)
\(434\) 0.0883884 + 0.153093i 0.00424278 + 0.00734871i
\(435\) −16.8681 29.2164i −0.808765 1.40082i
\(436\) −5.38442 −0.257867
\(437\) −31.0033 8.60922i −1.48309 0.411835i
\(438\) −0.584226 −0.0279154
\(439\) −9.28895 16.0889i −0.443337 0.767883i 0.554597 0.832119i \(-0.312872\pi\)
−0.997935 + 0.0642361i \(0.979539\pi\)
\(440\) 0.971897 + 1.68338i 0.0463334 + 0.0802518i
\(441\) −1.83907 + 3.18536i −0.0875746 + 0.151684i
\(442\) 0.538282 + 0.932331i 0.0256035 + 0.0443465i
\(443\) 13.3064 23.0474i 0.632208 1.09502i −0.354891 0.934908i \(-0.615482\pi\)
0.987099 0.160109i \(-0.0511845\pi\)
\(444\) −8.24912 −0.391486
\(445\) −45.2658 −2.14581
\(446\) 0.823556 1.42644i 0.0389965 0.0675439i
\(447\) −3.96929 + 6.87501i −0.187741 + 0.325177i
\(448\) 11.0778 0.523376
\(449\) 7.83267 0.369647 0.184823 0.982772i \(-0.440829\pi\)
0.184823 + 0.982772i \(0.440829\pi\)
\(450\) 0.388482 0.672870i 0.0183132 0.0317194i
\(451\) 4.92679 + 8.53345i 0.231993 + 0.401824i
\(452\) 0.481945 0.834753i 0.0226688 0.0392635i
\(453\) −8.09336 14.0181i −0.380259 0.658628i
\(454\) 0.0977843 + 0.169367i 0.00458925 + 0.00794881i
\(455\) 12.3595 0.579420
\(456\) −2.57313 + 2.52691i −0.120498 + 0.118333i
\(457\) 2.02478 0.0947150 0.0473575 0.998878i \(-0.484920\pi\)
0.0473575 + 0.998878i \(0.484920\pi\)
\(458\) −0.789022 1.36663i −0.0368686 0.0638583i
\(459\) 9.11749 + 15.7919i 0.425568 + 0.737105i
\(460\) 25.7077 44.5271i 1.19863 2.07609i
\(461\) 19.0709 + 33.0317i 0.888219 + 1.53844i 0.841979 + 0.539510i \(0.181390\pi\)
0.0462393 + 0.998930i \(0.485276\pi\)
\(462\) 0.152664 0.264421i 0.00710256 0.0123020i
\(463\) −27.6957 −1.28713 −0.643564 0.765393i \(-0.722545\pi\)
−0.643564 + 0.765393i \(0.722545\pi\)
\(464\) 24.8990 1.15591
\(465\) −2.28065 + 3.95020i −0.105763 + 0.183186i
\(466\) 0.888714 1.53930i 0.0411689 0.0713066i
\(467\) −3.91063 −0.180962 −0.0904811 0.995898i \(-0.528840\pi\)
−0.0904811 + 0.995898i \(0.528840\pi\)
\(468\) 3.59988 0.166405
\(469\) 4.76412 8.25170i 0.219987 0.381028i
\(470\) 0.820109 + 1.42047i 0.0378288 + 0.0655214i
\(471\) 2.39133 4.14190i 0.110187 0.190849i
\(472\) 2.32218 + 4.02213i 0.106887 + 0.185134i
\(473\) 3.65252 + 6.32635i 0.167943 + 0.290886i
\(474\) 3.68276 0.169155
\(475\) 30.9360 + 8.59055i 1.41944 + 0.394161i
\(476\) −9.42867 −0.432162
\(477\) −1.43708 2.48909i −0.0657992 0.113968i
\(478\) 0.252016 + 0.436504i 0.0115269 + 0.0199652i
\(479\) −3.38753 + 5.86737i −0.154780 + 0.268087i −0.932979 0.359931i \(-0.882800\pi\)
0.778199 + 0.628018i \(0.216134\pi\)
\(480\) −4.32907 7.49816i −0.197594 0.342243i
\(481\) 3.32856 5.76524i 0.151769 0.262872i
\(482\) 2.68300 0.122207
\(483\) −16.2311 −0.738541
\(484\) 0.990359 1.71535i 0.0450163 0.0779705i
\(485\) −27.6501 + 47.8914i −1.25553 + 2.17464i
\(486\) −1.06725 −0.0484114
\(487\) 15.8303 0.717340 0.358670 0.933464i \(-0.383230\pi\)
0.358670 + 0.933464i \(0.383230\pi\)
\(488\) −0.397347 + 0.688225i −0.0179870 + 0.0311545i
\(489\) −10.7348 18.5932i −0.485445 0.840815i
\(490\) −1.18218 + 2.04759i −0.0534052 + 0.0925006i
\(491\) 1.33202 + 2.30713i 0.0601132 + 0.104119i 0.894516 0.447036i \(-0.147520\pi\)
−0.834403 + 0.551155i \(0.814187\pi\)
\(492\) −14.6065 25.2992i −0.658512 1.14058i
\(493\) −20.7695 −0.935413
\(494\) −0.362118 1.40215i −0.0162924 0.0630859i
\(495\) −2.67125 −0.120064
\(496\) −1.68323 2.91544i −0.0755793 0.130907i
\(497\) −2.50885 4.34546i −0.112537 0.194920i
\(498\) 1.84077 3.18830i 0.0824867 0.142871i
\(499\) −5.45825 9.45397i −0.244345 0.423218i 0.717602 0.696453i \(-0.245240\pi\)
−0.961947 + 0.273235i \(0.911906\pi\)
\(500\) −8.23900 + 14.2704i −0.368459 + 0.638190i
\(501\) −22.8359 −1.02023
\(502\) 2.51752 0.112362
\(503\) −15.3259 + 26.5453i −0.683350 + 1.18360i 0.290603 + 0.956844i \(0.406144\pi\)
−0.973952 + 0.226753i \(0.927189\pi\)
\(504\) 0.308420 0.534198i 0.0137381 0.0237951i
\(505\) 27.5606 1.22643
\(506\) 1.02504 0.0455684
\(507\) −5.44508 + 9.43116i −0.241825 + 0.418852i
\(508\) 3.64704 + 6.31686i 0.161811 + 0.280265i
\(509\) 3.34825 5.79933i 0.148408 0.257051i −0.782231 0.622989i \(-0.785918\pi\)
0.930639 + 0.365938i \(0.119252\pi\)
\(510\) 1.18418 + 2.05106i 0.0524365 + 0.0908226i
\(511\) 2.06462 + 3.57603i 0.0913335 + 0.158194i
\(512\) 10.6847 0.472204
\(513\) −6.13360 23.7499i −0.270805 1.04858i
\(514\) 0.216536 0.00955099
\(515\) −12.7950 22.1617i −0.563817 0.976559i
\(516\) −10.8287 18.7558i −0.476705 0.825677i
\(517\) 1.67951 2.90900i 0.0738648 0.127938i
\(518\) −0.283793 0.491544i −0.0124691 0.0215972i
\(519\) −16.2213 + 28.0961i −0.712036 + 1.23328i
\(520\) 4.65063 0.203943
\(521\) −23.4833 −1.02882 −0.514412 0.857543i \(-0.671990\pi\)
−0.514412 + 0.857543i \(0.671990\pi\)
\(522\) 0.338049 0.585518i 0.0147960 0.0256274i
\(523\) −17.5320 + 30.3664i −0.766622 + 1.32783i 0.172763 + 0.984963i \(0.444731\pi\)
−0.939385 + 0.342865i \(0.888603\pi\)
\(524\) −0.107188 −0.00468254
\(525\) 16.1959 0.706847
\(526\) −1.19921 + 2.07709i −0.0522879 + 0.0905653i
\(527\) 1.40407 + 2.43192i 0.0611623 + 0.105936i
\(528\) −2.90726 + 5.03553i −0.126522 + 0.219143i
\(529\) −15.7453 27.2716i −0.684578 1.18572i
\(530\) −0.923771 1.60002i −0.0401260 0.0695003i
\(531\) −6.38249 −0.276977
\(532\) 12.2207 + 3.39354i 0.529836 + 0.147129i
\(533\) 23.5752 1.02115
\(534\) 1.33773 + 2.31701i 0.0578892 + 0.100267i
\(535\) 10.9670 + 18.9954i 0.474144 + 0.821242i
\(536\) 1.79265 3.10496i 0.0774306 0.134114i
\(537\) 3.13894 + 5.43681i 0.135455 + 0.234616i
\(538\) 0.967227 1.67529i 0.0417001 0.0722267i
\(539\) 4.84198 0.208559
\(540\) 39.1957 1.68671
\(541\) −15.5351 + 26.9076i −0.667906 + 1.15685i 0.310582 + 0.950547i \(0.399476\pi\)
−0.978489 + 0.206301i \(0.933857\pi\)
\(542\) −0.427208 + 0.739946i −0.0183501 + 0.0317834i
\(543\) 37.3116 1.60119
\(544\) −5.33033 −0.228536
\(545\) 4.77966 8.27861i 0.204738 0.354616i
\(546\) −0.365256 0.632641i −0.0156315 0.0270745i
\(547\) 9.58969 16.6098i 0.410025 0.710185i −0.584867 0.811129i \(-0.698853\pi\)
0.994892 + 0.100945i \(0.0321865\pi\)
\(548\) 16.8091 + 29.1142i 0.718048 + 1.24369i
\(549\) −0.546052 0.945791i −0.0233049 0.0403654i
\(550\) −1.02281 −0.0436129
\(551\) 26.9199 + 7.47532i 1.14683 + 0.318459i
\(552\) −6.10745 −0.259950
\(553\) −13.0147 22.5421i −0.553440 0.958587i
\(554\) 1.27853 + 2.21449i 0.0543197 + 0.0940845i
\(555\) 7.32260 12.6831i 0.310827 0.538368i
\(556\) −17.8623 30.9385i −0.757532 1.31208i
\(557\) 4.84499 8.39177i 0.205289 0.355571i −0.744936 0.667136i \(-0.767520\pi\)
0.950225 + 0.311565i \(0.100853\pi\)
\(558\) −0.0914117 −0.00386977
\(559\) 17.4777 0.739227
\(560\) −10.0338 + 17.3790i −0.424003 + 0.734395i
\(561\) 2.42510 4.20040i 0.102388 0.177341i
\(562\) 3.44832 0.145458
\(563\) −24.4092 −1.02873 −0.514363 0.857573i \(-0.671972\pi\)
−0.514363 + 0.857573i \(0.671972\pi\)
\(564\) −4.97926 + 8.62433i −0.209665 + 0.363150i
\(565\) 0.855629 + 1.48199i 0.0359966 + 0.0623479i
\(566\) −1.19254 + 2.06554i −0.0501262 + 0.0868210i
\(567\) −4.51287 7.81652i −0.189523 0.328263i
\(568\) −0.944033 1.63511i −0.0396107 0.0686078i
\(569\) 34.3379 1.43952 0.719761 0.694222i \(-0.244251\pi\)
0.719761 + 0.694222i \(0.244251\pi\)
\(570\) −0.796634 3.08464i −0.0333673 0.129201i
\(571\) 43.4564 1.81859 0.909296 0.416149i \(-0.136621\pi\)
0.909296 + 0.416149i \(0.136621\pi\)
\(572\) −2.36948 4.10407i −0.0990731 0.171600i
\(573\) −5.79593 10.0388i −0.242128 0.419378i
\(574\) 1.00501 1.74073i 0.0419483 0.0726566i
\(575\) 27.1862 + 47.0879i 1.13374 + 1.96370i
\(576\) −2.86418 + 4.96090i −0.119341 + 0.206704i
\(577\) 18.1629 0.756131 0.378066 0.925779i \(-0.376589\pi\)
0.378066 + 0.925779i \(0.376589\pi\)
\(578\) −0.902557 −0.0375414
\(579\) 10.4098 18.0304i 0.432618 0.749317i
\(580\) −22.3218 + 38.6625i −0.926864 + 1.60537i
\(581\) −26.0207 −1.07952
\(582\) 3.26855 0.135486
\(583\) −1.89180 + 3.27669i −0.0783504 + 0.135707i
\(584\) 0.776878 + 1.34559i 0.0321474 + 0.0556810i
\(585\) −3.19555 + 5.53486i −0.132120 + 0.228838i
\(586\) −1.60919 2.78719i −0.0664748 0.115138i
\(587\) 5.77889 + 10.0093i 0.238520 + 0.413129i 0.960290 0.279004i \(-0.0900044\pi\)
−0.721770 + 0.692133i \(0.756671\pi\)
\(588\) −14.3551 −0.591993
\(589\) −0.944559 3.65742i −0.0389199 0.150701i
\(590\) −4.10275 −0.168908
\(591\) 15.2369 + 26.3911i 0.626764 + 1.08559i
\(592\) 5.40444 + 9.36076i 0.222121 + 0.384725i
\(593\) −15.4091 + 26.6893i −0.632776 + 1.09600i 0.354206 + 0.935167i \(0.384751\pi\)
−0.986982 + 0.160832i \(0.948582\pi\)
\(594\) 0.390709 + 0.676728i 0.0160310 + 0.0277665i
\(595\) 8.36967 14.4967i 0.343123 0.594306i
\(596\) 10.5052 0.430311
\(597\) −4.54163 −0.185877
\(598\) 1.22623 2.12388i 0.0501441 0.0868521i
\(599\) 11.4515 19.8345i 0.467894 0.810416i −0.531433 0.847100i \(-0.678346\pi\)
0.999327 + 0.0366844i \(0.0116796\pi\)
\(600\) 6.09421 0.248795
\(601\) −5.27555 −0.215194 −0.107597 0.994195i \(-0.534316\pi\)
−0.107597 + 0.994195i \(0.534316\pi\)
\(602\) 0.745073 1.29050i 0.0303669 0.0525970i
\(603\) 2.46354 + 4.26697i 0.100323 + 0.173765i
\(604\) −10.7101 + 18.5504i −0.435786 + 0.754804i
\(605\) 1.75825 + 3.04538i 0.0714830 + 0.123812i
\(606\) −0.814490 1.41074i −0.0330864 0.0573074i
\(607\) −22.3060 −0.905372 −0.452686 0.891670i \(-0.649534\pi\)
−0.452686 + 0.891670i \(0.649534\pi\)
\(608\) 6.90878 + 1.91848i 0.280188 + 0.0778047i
\(609\) 14.0933 0.571091
\(610\) −0.351010 0.607966i −0.0142120 0.0246158i
\(611\) −4.01831 6.95992i −0.162564 0.281568i
\(612\) 2.43779 4.22238i 0.0985420 0.170680i
\(613\) −18.8972 32.7309i −0.763249 1.32199i −0.941167 0.337941i \(-0.890269\pi\)
0.177918 0.984045i \(-0.443064\pi\)
\(614\) −1.82706 + 3.16456i −0.0737342 + 0.127711i
\(615\) 51.8637 2.09135
\(616\) −0.812022 −0.0327173
\(617\) −4.84658 + 8.39452i −0.195116 + 0.337951i −0.946939 0.321415i \(-0.895842\pi\)
0.751823 + 0.659366i \(0.229175\pi\)
\(618\) −0.756257 + 1.30987i −0.0304211 + 0.0526909i
\(619\) −18.4686 −0.742314 −0.371157 0.928570i \(-0.621039\pi\)
−0.371157 + 0.928570i \(0.621039\pi\)
\(620\) 6.03604 0.242413
\(621\) 20.7700 35.9746i 0.833470 1.44361i
\(622\) −1.75589 3.04129i −0.0704049 0.121945i
\(623\) 9.45492 16.3764i 0.378803 0.656106i
\(624\) 6.95578 + 12.0478i 0.278454 + 0.482296i
\(625\) 3.78717 + 6.55957i 0.151487 + 0.262383i
\(626\) −3.84476 −0.153668
\(627\) −4.65503 + 4.57140i −0.185904 + 0.182564i
\(628\) −6.32896 −0.252553
\(629\) −4.50812 7.80829i −0.179750 0.311337i
\(630\) 0.272453 + 0.471902i 0.0108548 + 0.0188010i
\(631\) −6.41709 + 11.1147i −0.255460 + 0.442470i −0.965020 0.262175i \(-0.915560\pi\)
0.709560 + 0.704645i \(0.248894\pi\)
\(632\) −4.89717 8.48215i −0.194799 0.337402i
\(633\) 3.75512 6.50406i 0.149253 0.258513i
\(634\) 1.40577 0.0558302
\(635\) −12.9497 −0.513892
\(636\) 5.60864 9.71445i 0.222397 0.385203i
\(637\) 5.79234 10.0326i 0.229501 0.397507i
\(638\) −0.890031 −0.0352367
\(639\) 2.59467 0.102643
\(640\) −7.62562 + 13.2080i −0.301429 + 0.522090i
\(641\) −20.6116 35.7004i −0.814110 1.41008i −0.909966 0.414684i \(-0.863892\pi\)
0.0958560 0.995395i \(-0.469441\pi\)
\(642\) 0.648209 1.12273i 0.0255828 0.0443106i
\(643\) 7.80162 + 13.5128i 0.307666 + 0.532893i 0.977851 0.209301i \(-0.0671188\pi\)
−0.670186 + 0.742194i \(0.733785\pi\)
\(644\) 10.7394 + 18.6012i 0.423193 + 0.732991i
\(645\) 38.4497 1.51395
\(646\) −1.88984 0.524785i −0.0743548 0.0206474i
\(647\) −12.7748 −0.502228 −0.251114 0.967958i \(-0.580797\pi\)
−0.251114 + 0.967958i \(0.580797\pi\)
\(648\) −1.69811 2.94121i −0.0667079 0.115542i
\(649\) 4.20103 + 7.27640i 0.164905 + 0.285624i
\(650\) −1.22357 + 2.11928i −0.0479922 + 0.0831250i
\(651\) −0.952744 1.65020i −0.0373410 0.0646765i
\(652\) −14.2055 + 24.6047i −0.556331 + 0.963594i
\(653\) −5.05990 −0.198009 −0.0990045 0.995087i \(-0.531566\pi\)
−0.0990045 + 0.995087i \(0.531566\pi\)
\(654\) −0.565007 −0.0220935
\(655\) 0.0951492 0.164803i 0.00371779 0.00643939i
\(656\) −19.1390 + 33.1497i −0.747252 + 1.29428i
\(657\) −2.13524 −0.0833037
\(658\) −0.685203 −0.0267120
\(659\) 14.6898 25.4435i 0.572233 0.991137i −0.424103 0.905614i \(-0.639410\pi\)
0.996336 0.0855232i \(-0.0272562\pi\)
\(660\) −5.21270 9.02866i −0.202904 0.351440i
\(661\) 16.2699 28.1804i 0.632827 1.09609i −0.354144 0.935191i \(-0.615228\pi\)
0.986971 0.160898i \(-0.0514389\pi\)
\(662\) −0.587083 1.01686i −0.0228176 0.0395213i
\(663\) −5.80217 10.0497i −0.225338 0.390296i
\(664\) −9.79108 −0.379968
\(665\) −16.0657 + 15.7771i −0.623003 + 0.611811i
\(666\) 0.293500 0.0113729
\(667\) 23.6569 + 40.9749i 0.915998 + 1.58656i
\(668\) 15.1096 + 26.1705i 0.584607 + 1.01257i
\(669\) −8.87716 + 15.3757i −0.343211 + 0.594459i
\(670\) 1.58359 + 2.74287i 0.0611796 + 0.105966i
\(671\) −0.718836 + 1.24506i −0.0277504 + 0.0480650i
\(672\) 3.61694 0.139527
\(673\) −37.8116 −1.45753 −0.728765 0.684764i \(-0.759905\pi\)
−0.728765 + 0.684764i \(0.759905\pi\)
\(674\) −0.00120657 + 0.00208983i −4.64752e−5 + 8.04974e-5i
\(675\) −20.7249 + 35.8966i −0.797703 + 1.38166i
\(676\) 14.4111 0.554273
\(677\) −1.66524 −0.0640004 −0.0320002 0.999488i \(-0.510188\pi\)
−0.0320002 + 0.999488i \(0.510188\pi\)
\(678\) 0.0505723 0.0875938i 0.00194222 0.00336402i
\(679\) −11.5509 20.0067i −0.443282 0.767786i
\(680\) 3.14935 5.45483i 0.120772 0.209183i
\(681\) −1.05402 1.82562i −0.0403903 0.0699580i
\(682\) 0.0601682 + 0.104214i 0.00230396 + 0.00399058i
\(683\) −22.3652 −0.855779 −0.427890 0.903831i \(-0.640743\pi\)
−0.427890 + 0.903831i \(0.640743\pi\)
\(684\) −4.67939 + 4.59533i −0.178921 + 0.175707i
\(685\) −59.6845 −2.28043
\(686\) −1.20782 2.09200i −0.0461146 0.0798728i
\(687\) 8.50492 + 14.7310i 0.324483 + 0.562021i
\(688\) −14.1889 + 24.5758i −0.540945 + 0.936945i
\(689\) 4.52623 + 7.83966i 0.172436 + 0.298667i
\(690\) 2.69761 4.67240i 0.102696 0.177875i
\(691\) 22.7083 0.863865 0.431932 0.901906i \(-0.357832\pi\)
0.431932 + 0.901906i \(0.357832\pi\)
\(692\) 42.9318 1.63202
\(693\) 0.557959 0.966413i 0.0211951 0.0367110i
\(694\) −0.599781 + 1.03885i −0.0227674 + 0.0394343i
\(695\) 63.4244 2.40582
\(696\) 5.30305 0.201012
\(697\) 15.9648 27.6519i 0.604710 1.04739i
\(698\) 0.237178 + 0.410805i 0.00897733 + 0.0155492i
\(699\) −9.57950 + 16.5922i −0.362330 + 0.627574i
\(700\) −10.7161 18.5609i −0.405032 0.701536i
\(701\) 13.5245 + 23.4252i 0.510814 + 0.884756i 0.999921 + 0.0125325i \(0.00398932\pi\)
−0.489107 + 0.872224i \(0.662677\pi\)
\(702\) 1.86958 0.0705629
\(703\) 3.03274 + 11.7431i 0.114382 + 0.442898i
\(704\) 7.54094 0.284210
\(705\) −8.84001 15.3113i −0.332934 0.576659i
\(706\) 0.762391 + 1.32050i 0.0286930 + 0.0496977i
\(707\) −5.75673 + 9.97095i −0.216504 + 0.374996i
\(708\) −12.4548 21.5724i −0.468082 0.810741i
\(709\) 15.6386 27.0868i 0.587320 1.01727i −0.407262 0.913311i \(-0.633517\pi\)
0.994582 0.103956i \(-0.0331501\pi\)
\(710\) 1.66788 0.0625946
\(711\) 13.4598 0.504783
\(712\) 3.55770 6.16212i 0.133331 0.230935i
\(713\) 3.19852 5.54001i 0.119786 0.207475i
\(714\) −0.989386 −0.0370268
\(715\) 8.41340 0.314643
\(716\) 4.15381 7.19461i 0.155235 0.268875i
\(717\) −2.71649 4.70511i −0.101449 0.175715i
\(718\) −0.525067 + 0.909442i −0.0195953 + 0.0339401i
\(719\) 5.24510 + 9.08478i 0.195609 + 0.338805i 0.947100 0.320938i \(-0.103998\pi\)
−0.751491 + 0.659744i \(0.770665\pi\)
\(720\) −5.18848 8.98671i −0.193363 0.334915i
\(721\) 10.6903 0.398127
\(722\) 2.26059 + 1.36037i 0.0841304 + 0.0506279i
\(723\) −28.9203 −1.07556
\(724\) −24.6875 42.7600i −0.917504 1.58916i
\(725\) −23.6056 40.8861i −0.876689 1.51847i
\(726\) 0.103922 0.179998i 0.00385691 0.00668037i
\(727\) 21.7091 + 37.6012i 0.805145 + 1.39455i 0.916193 + 0.400737i \(0.131246\pi\)
−0.111048 + 0.993815i \(0.535421\pi\)
\(728\) −0.971402 + 1.68252i −0.0360025 + 0.0623582i
\(729\) 29.9361 1.10874
\(730\) −1.37256 −0.0508008
\(731\) 11.8357 20.5000i 0.437758 0.758219i
\(732\) 2.13114 3.69124i 0.0787692 0.136432i
\(733\) 37.7254 1.39342 0.696710 0.717353i \(-0.254646\pi\)
0.696710 + 0.717353i \(0.254646\pi\)
\(734\) 0.413057 0.0152462
\(735\) 12.7427 22.0711i 0.470023 0.814104i
\(736\) 6.07135 + 10.5159i 0.223793 + 0.387621i
\(737\) 3.24306 5.61714i 0.119460 0.206910i
\(738\) 0.519693 + 0.900134i 0.0191302 + 0.0331344i
\(739\) −5.29522 9.17158i −0.194788 0.337382i 0.752043 0.659114i \(-0.229068\pi\)
−0.946831 + 0.321732i \(0.895735\pi\)
\(740\) −19.3802 −0.712431
\(741\) 3.90329 + 15.1139i 0.143391 + 0.555223i
\(742\) 0.771812 0.0283341
\(743\) 1.16281 + 2.01404i 0.0426593 + 0.0738881i 0.886567 0.462601i \(-0.153084\pi\)
−0.843907 + 0.536489i \(0.819750\pi\)
\(744\) −0.358499 0.620939i −0.0131432 0.0227647i
\(745\) −9.32532 + 16.1519i −0.341653 + 0.591761i
\(746\) −2.08188 3.60592i −0.0762231 0.132022i
\(747\) 6.72768 11.6527i 0.246153 0.426349i
\(748\) −6.41834 −0.234678
\(749\) −9.16294 −0.334806
\(750\) −0.864550 + 1.49744i −0.0315689 + 0.0546789i
\(751\) 3.68732 6.38662i 0.134552 0.233051i −0.790874 0.611979i \(-0.790374\pi\)
0.925426 + 0.378928i \(0.123707\pi\)
\(752\) 13.0487 0.475838
\(753\) −27.1365 −0.988907
\(754\) −1.06472 + 1.84415i −0.0387749 + 0.0671601i
\(755\) −19.0143 32.9337i −0.692001 1.19858i
\(756\) −8.18701 + 14.1803i −0.297759 + 0.515733i
\(757\) 18.1150 + 31.3761i 0.658401 + 1.14038i 0.981029 + 0.193859i \(0.0621003\pi\)
−0.322628 + 0.946526i \(0.604566\pi\)
\(758\) 2.12463 + 3.67997i 0.0771701 + 0.133662i
\(759\) −11.0489 −0.401051
\(760\) −6.04523 + 5.93663i −0.219284 + 0.215344i
\(761\) 8.48528 0.307591 0.153796 0.988103i \(-0.450850\pi\)
0.153796 + 0.988103i \(0.450850\pi\)
\(762\) 0.382698 + 0.662852i 0.0138637 + 0.0240126i
\(763\) 1.99670 + 3.45839i 0.0722856 + 0.125202i
\(764\) −7.66983 + 13.2845i −0.277485 + 0.480618i
\(765\) 4.32798 + 7.49628i 0.156478 + 0.271028i
\(766\) 0.117586 0.203664i 0.00424854 0.00735869i
\(767\) 20.1024 0.725854
\(768\) −21.6729 −0.782053
\(769\) 4.09326 7.08973i 0.147607 0.255662i −0.782736 0.622354i \(-0.786176\pi\)
0.930342 + 0.366692i \(0.119510\pi\)
\(770\) 0.358663 0.621223i 0.0129253 0.0223873i