Properties

Label 209.2.e.b.144.9
Level $209$
Weight $2$
Character 209.144
Analytic conductor $1.669$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(45,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 14 x^{16} - 11 x^{15} + 130 x^{14} - 92 x^{13} + 629 x^{12} - 276 x^{11} + 2060 x^{10} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 144.9
Root \(1.31818 - 2.28316i\) of defining polynomial
Character \(\chi\) \(=\) 209.144
Dual form 209.2.e.b.45.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.31818 - 2.28316i) q^{2} +(0.631607 - 1.09397i) q^{3} +(-2.47522 - 4.28721i) q^{4} +(-0.759439 + 1.31539i) q^{5} +(-1.66515 - 2.88412i) q^{6} +1.94612 q^{7} -7.77846 q^{8} +(0.702146 + 1.21615i) q^{9} +O(q^{10})\) \(q+(1.31818 - 2.28316i) q^{2} +(0.631607 - 1.09397i) q^{3} +(-2.47522 - 4.28721i) q^{4} +(-0.759439 + 1.31539i) q^{5} +(-1.66515 - 2.88412i) q^{6} +1.94612 q^{7} -7.77846 q^{8} +(0.702146 + 1.21615i) q^{9} +(2.00216 + 3.46785i) q^{10} -1.00000 q^{11} -6.25347 q^{12} +(1.57502 + 2.72802i) q^{13} +(2.56535 - 4.44331i) q^{14} +(0.959333 + 1.66161i) q^{15} +(-5.30301 + 9.18508i) q^{16} +(0.682242 - 1.18168i) q^{17} +3.70223 q^{18} +(-3.37174 - 2.76249i) q^{19} +7.51912 q^{20} +(1.22918 - 2.12901i) q^{21} +(-1.31818 + 2.28316i) q^{22} +(-0.194995 - 0.337741i) q^{23} +(-4.91293 + 8.50944i) q^{24} +(1.34651 + 2.33222i) q^{25} +8.30468 q^{26} +5.56356 q^{27} +(-4.81709 - 8.34344i) q^{28} +(-0.909673 - 1.57560i) q^{29} +5.05831 q^{30} -7.22870 q^{31} +(6.20223 + 10.7426i) q^{32} +(-0.631607 + 1.09397i) q^{33} +(-1.79864 - 3.11534i) q^{34} +(-1.47796 + 2.55990i) q^{35} +(3.47594 - 6.02050i) q^{36} +10.8549 q^{37} +(-10.7518 + 4.05676i) q^{38} +3.97918 q^{39} +(5.90727 - 10.2317i) q^{40} +(-5.02001 + 8.69492i) q^{41} +(-3.24058 - 5.61285i) q^{42} +(0.249376 - 0.431931i) q^{43} +(2.47522 + 4.28721i) q^{44} -2.13295 q^{45} -1.02816 q^{46} +(-5.73507 - 9.93343i) q^{47} +(6.69883 + 11.6027i) q^{48} -3.21261 q^{49} +7.09977 q^{50} +(-0.861817 - 1.49271i) q^{51} +(7.79706 - 13.5049i) q^{52} +(-0.490633 - 0.849801i) q^{53} +(7.33380 - 12.7025i) q^{54} +(0.759439 - 1.31539i) q^{55} -15.1378 q^{56} +(-5.15171 + 1.94379i) q^{57} -4.79647 q^{58} +(-2.98509 + 5.17032i) q^{59} +(4.74913 - 8.22573i) q^{60} +(2.22817 + 3.85930i) q^{61} +(-9.52876 + 16.5043i) q^{62} +(1.36646 + 2.36678i) q^{63} +11.4907 q^{64} -4.78453 q^{65} +(1.66515 + 2.88412i) q^{66} +(6.90453 + 11.9590i) q^{67} -6.75480 q^{68} -0.492639 q^{69} +(3.89645 + 6.74885i) q^{70} +(-3.53176 + 6.11720i) q^{71} +(-5.46162 - 9.45980i) q^{72} +(4.27226 - 7.39977i) q^{73} +(14.3088 - 24.7836i) q^{74} +3.40185 q^{75} +(-3.49758 + 21.2931i) q^{76} -1.94612 q^{77} +(5.24529 - 9.08511i) q^{78} +(7.58446 - 13.1367i) q^{79} +(-8.05462 - 13.9510i) q^{80} +(1.40754 - 2.43793i) q^{81} +(13.2346 + 22.9230i) q^{82} +7.70997 q^{83} -12.1700 q^{84} +(1.03624 + 1.79482i) q^{85} +(-0.657447 - 1.13873i) q^{86} -2.29822 q^{87} +7.77846 q^{88} +(-0.833231 - 1.44320i) q^{89} +(-2.81162 + 4.86987i) q^{90} +(3.06519 + 5.30906i) q^{91} +(-0.965310 + 1.67197i) q^{92} +(-4.56569 + 7.90801i) q^{93} -30.2395 q^{94} +(6.19438 - 2.33720i) q^{95} +15.6695 q^{96} +(-8.72755 + 15.1166i) q^{97} +(-4.23481 + 7.33491i) q^{98} +(-0.702146 - 1.21615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9} + 21 q^{10} - 18 q^{11} + 16 q^{12} + 11 q^{13} + q^{14} + 7 q^{15} - 13 q^{16} + 6 q^{17} - 8 q^{18} + 4 q^{19} + 4 q^{20} + 24 q^{21} - q^{22} - q^{23} - 3 q^{24} - 7 q^{25} - 4 q^{26} + 6 q^{27} - 2 q^{28} + 13 q^{29} - 64 q^{30} - 32 q^{31} - 14 q^{32} + 8 q^{34} - 12 q^{35} + 10 q^{36} - 36 q^{37} - 20 q^{38} + 20 q^{39} + 32 q^{40} + 4 q^{41} + 11 q^{42} + q^{43} + 9 q^{44} + 22 q^{45} - 14 q^{46} - 14 q^{47} + 37 q^{48} - 12 q^{49} + 30 q^{50} - 16 q^{51} + 57 q^{52} - 4 q^{53} - 33 q^{54} - 34 q^{56} - 7 q^{57} + 8 q^{58} + 31 q^{59} + 9 q^{60} + 3 q^{61} + 5 q^{62} + 50 q^{63} + 64 q^{64} - 56 q^{65} + 3 q^{66} - 2 q^{67} - 96 q^{68} - 58 q^{70} - 12 q^{71} + 5 q^{72} - 26 q^{73} + 35 q^{74} + 50 q^{75} - 36 q^{76} + 6 q^{77} + 3 q^{78} + 31 q^{79} + 31 q^{80} - 21 q^{81} + 25 q^{82} + 36 q^{83} - 102 q^{84} - 11 q^{85} + 41 q^{86} - 124 q^{87} - 11 q^{89} + 51 q^{90} - 20 q^{91} - 33 q^{92} + 20 q^{93} - 86 q^{94} + 17 q^{95} + 60 q^{96} + 16 q^{97} + 4 q^{98} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.31818 2.28316i 0.932097 1.61444i 0.152368 0.988324i \(-0.451310\pi\)
0.779730 0.626116i \(-0.215356\pi\)
\(3\) 0.631607 1.09397i 0.364658 0.631607i −0.624063 0.781374i \(-0.714519\pi\)
0.988721 + 0.149767i \(0.0478525\pi\)
\(4\) −2.47522 4.28721i −1.23761 2.14361i
\(5\) −0.759439 + 1.31539i −0.339631 + 0.588259i −0.984363 0.176150i \(-0.943636\pi\)
0.644732 + 0.764409i \(0.276969\pi\)
\(6\) −1.66515 2.88412i −0.679794 1.17744i
\(7\) 1.94612 0.735565 0.367783 0.929912i \(-0.380117\pi\)
0.367783 + 0.929912i \(0.380117\pi\)
\(8\) −7.77846 −2.75010
\(9\) 0.702146 + 1.21615i 0.234049 + 0.405384i
\(10\) 2.00216 + 3.46785i 0.633139 + 1.09663i
\(11\) −1.00000 −0.301511
\(12\) −6.25347 −1.80522
\(13\) 1.57502 + 2.72802i 0.436832 + 0.756616i 0.997443 0.0714634i \(-0.0227669\pi\)
−0.560611 + 0.828079i \(0.689434\pi\)
\(14\) 2.56535 4.44331i 0.685618 1.18753i
\(15\) 0.959333 + 1.66161i 0.247699 + 0.429027i
\(16\) −5.30301 + 9.18508i −1.32575 + 2.29627i
\(17\) 0.682242 1.18168i 0.165468 0.286599i −0.771353 0.636407i \(-0.780420\pi\)
0.936821 + 0.349808i \(0.113753\pi\)
\(18\) 3.70223 0.872625
\(19\) −3.37174 2.76249i −0.773530 0.633759i
\(20\) 7.51912 1.68133
\(21\) 1.22918 2.12901i 0.268230 0.464588i
\(22\) −1.31818 + 2.28316i −0.281038 + 0.486772i
\(23\) −0.194995 0.337741i −0.0406592 0.0704238i 0.844980 0.534798i \(-0.179612\pi\)
−0.885639 + 0.464375i \(0.846279\pi\)
\(24\) −4.91293 + 8.50944i −1.00285 + 1.73698i
\(25\) 1.34651 + 2.33222i 0.269301 + 0.466443i
\(26\) 8.30468 1.62868
\(27\) 5.56356 1.07071
\(28\) −4.81709 8.34344i −0.910344 1.57676i
\(29\) −0.909673 1.57560i −0.168922 0.292582i 0.769119 0.639106i \(-0.220695\pi\)
−0.938041 + 0.346524i \(0.887362\pi\)
\(30\) 5.05831 0.923517
\(31\) −7.22870 −1.29831 −0.649156 0.760655i \(-0.724878\pi\)
−0.649156 + 0.760655i \(0.724878\pi\)
\(32\) 6.20223 + 10.7426i 1.09641 + 1.89904i
\(33\) −0.631607 + 1.09397i −0.109949 + 0.190437i
\(34\) −1.79864 3.11534i −0.308465 0.534276i
\(35\) −1.47796 + 2.55990i −0.249821 + 0.432703i
\(36\) 3.47594 6.02050i 0.579323 1.00342i
\(37\) 10.8549 1.78454 0.892271 0.451499i \(-0.149111\pi\)
0.892271 + 0.451499i \(0.149111\pi\)
\(38\) −10.7518 + 4.05676i −1.74417 + 0.658093i
\(39\) 3.97918 0.637178
\(40\) 5.90727 10.2317i 0.934021 1.61777i
\(41\) −5.02001 + 8.69492i −0.783994 + 1.35792i 0.145604 + 0.989343i \(0.453487\pi\)
−0.929598 + 0.368575i \(0.879846\pi\)
\(42\) −3.24058 5.61285i −0.500033 0.866082i
\(43\) 0.249376 0.431931i 0.0380294 0.0658689i −0.846384 0.532573i \(-0.821225\pi\)
0.884414 + 0.466704i \(0.154559\pi\)
\(44\) 2.47522 + 4.28721i 0.373154 + 0.646321i
\(45\) −2.13295 −0.317961
\(46\) −1.02816 −0.151593
\(47\) −5.73507 9.93343i −0.836546 1.44894i −0.892765 0.450522i \(-0.851238\pi\)
0.0562195 0.998418i \(-0.482095\pi\)
\(48\) 6.69883 + 11.6027i 0.966893 + 1.67471i
\(49\) −3.21261 −0.458944
\(50\) 7.09977 1.00406
\(51\) −0.861817 1.49271i −0.120679 0.209021i
\(52\) 7.79706 13.5049i 1.08126 1.87279i
\(53\) −0.490633 0.849801i −0.0673936 0.116729i 0.830360 0.557228i \(-0.188135\pi\)
−0.897753 + 0.440499i \(0.854802\pi\)
\(54\) 7.33380 12.7025i 0.998004 1.72859i
\(55\) 0.759439 1.31539i 0.102403 0.177367i
\(56\) −15.1378 −2.02288
\(57\) −5.15171 + 1.94379i −0.682361 + 0.257461i
\(58\) −4.79647 −0.629807
\(59\) −2.98509 + 5.17032i −0.388625 + 0.673118i −0.992265 0.124139i \(-0.960383\pi\)
0.603640 + 0.797257i \(0.293716\pi\)
\(60\) 4.74913 8.22573i 0.613109 1.06194i
\(61\) 2.22817 + 3.85930i 0.285288 + 0.494133i 0.972679 0.232154i \(-0.0745775\pi\)
−0.687391 + 0.726287i \(0.741244\pi\)
\(62\) −9.52876 + 16.5043i −1.21015 + 2.09605i
\(63\) 1.36646 + 2.36678i 0.172158 + 0.298187i
\(64\) 11.4907 1.43634
\(65\) −4.78453 −0.593448
\(66\) 1.66515 + 2.88412i 0.204966 + 0.355011i
\(67\) 6.90453 + 11.9590i 0.843523 + 1.46102i 0.886898 + 0.461966i \(0.152856\pi\)
−0.0433749 + 0.999059i \(0.513811\pi\)
\(68\) −6.75480 −0.819140
\(69\) −0.492639 −0.0593068
\(70\) 3.89645 + 6.74885i 0.465715 + 0.806642i
\(71\) −3.53176 + 6.11720i −0.419143 + 0.725978i −0.995854 0.0909712i \(-0.971003\pi\)
0.576710 + 0.816949i \(0.304336\pi\)
\(72\) −5.46162 9.45980i −0.643658 1.11485i
\(73\) 4.27226 7.39977i 0.500030 0.866077i −0.499970 0.866043i \(-0.666656\pi\)
1.00000 3.46937e-5i \(-1.10433e-5\pi\)
\(74\) 14.3088 24.7836i 1.66337 2.88104i
\(75\) 3.40185 0.392811
\(76\) −3.49758 + 21.2931i −0.401200 + 2.44249i
\(77\) −1.94612 −0.221781
\(78\) 5.24529 9.08511i 0.593912 1.02869i
\(79\) 7.58446 13.1367i 0.853318 1.47799i −0.0248787 0.999690i \(-0.507920\pi\)
0.878197 0.478300i \(-0.158747\pi\)
\(80\) −8.05462 13.9510i −0.900534 1.55977i
\(81\) 1.40754 2.43793i 0.156394 0.270882i
\(82\) 13.2346 + 22.9230i 1.46152 + 2.53142i
\(83\) 7.70997 0.846279 0.423140 0.906064i \(-0.360928\pi\)
0.423140 + 0.906064i \(0.360928\pi\)
\(84\) −12.1700 −1.32786
\(85\) 1.03624 + 1.79482i 0.112396 + 0.194676i
\(86\) −0.657447 1.13873i −0.0708943 0.122793i
\(87\) −2.29822 −0.246395
\(88\) 7.77846 0.829187
\(89\) −0.833231 1.44320i −0.0883224 0.152979i 0.818480 0.574535i \(-0.194817\pi\)
−0.906802 + 0.421557i \(0.861484\pi\)
\(90\) −2.81162 + 4.86987i −0.296371 + 0.513329i
\(91\) 3.06519 + 5.30906i 0.321319 + 0.556540i
\(92\) −0.965310 + 1.67197i −0.100641 + 0.174315i
\(93\) −4.56569 + 7.90801i −0.473440 + 0.820023i
\(94\) −30.2395 −3.11897
\(95\) 6.19438 2.33720i 0.635530 0.239791i
\(96\) 15.6695 1.59926
\(97\) −8.72755 + 15.1166i −0.886149 + 1.53485i −0.0417576 + 0.999128i \(0.513296\pi\)
−0.844391 + 0.535727i \(0.820038\pi\)
\(98\) −4.23481 + 7.33491i −0.427780 + 0.740938i
\(99\) −0.702146 1.21615i −0.0705684 0.122228i
\(100\) 6.66580 11.5455i 0.666580 1.15455i
\(101\) 0.959776 + 1.66238i 0.0955013 + 0.165413i 0.909818 0.415008i \(-0.136221\pi\)
−0.814316 + 0.580421i \(0.802888\pi\)
\(102\) −4.54414 −0.449937
\(103\) −9.07557 −0.894243 −0.447121 0.894473i \(-0.647551\pi\)
−0.447121 + 0.894473i \(0.647551\pi\)
\(104\) −12.2513 21.2198i −1.20133 2.08077i
\(105\) 1.86698 + 3.23370i 0.182199 + 0.315577i
\(106\) −2.58698 −0.251270
\(107\) −14.5422 −1.40584 −0.702922 0.711267i \(-0.748122\pi\)
−0.702922 + 0.711267i \(0.748122\pi\)
\(108\) −13.7710 23.8522i −1.32512 2.29517i
\(109\) 3.00131 5.19841i 0.287473 0.497918i −0.685733 0.727853i \(-0.740518\pi\)
0.973206 + 0.229935i \(0.0738515\pi\)
\(110\) −2.00216 3.46785i −0.190899 0.330646i
\(111\) 6.85606 11.8750i 0.650748 1.12713i
\(112\) −10.3203 + 17.8753i −0.975177 + 1.68906i
\(113\) −18.4997 −1.74030 −0.870151 0.492785i \(-0.835979\pi\)
−0.870151 + 0.492785i \(0.835979\pi\)
\(114\) −2.35292 + 14.3245i −0.220371 + 1.34161i
\(115\) 0.592346 0.0552365
\(116\) −4.50329 + 7.79992i −0.418120 + 0.724205i
\(117\) −2.21179 + 3.83094i −0.204480 + 0.354170i
\(118\) 7.86979 + 13.6309i 0.724473 + 1.25482i
\(119\) 1.32773 2.29969i 0.121712 0.210812i
\(120\) −7.46214 12.9248i −0.681197 1.17987i
\(121\) 1.00000 0.0909091
\(122\) 11.7486 1.06366
\(123\) 6.34134 + 10.9835i 0.571780 + 0.990352i
\(124\) 17.8926 + 30.9910i 1.60681 + 2.78307i
\(125\) −11.6847 −1.04512
\(126\) 7.20500 0.641873
\(127\) −4.12262 7.14059i −0.365824 0.633625i 0.623084 0.782155i \(-0.285879\pi\)
−0.988908 + 0.148529i \(0.952546\pi\)
\(128\) 2.74240 4.74998i 0.242396 0.419842i
\(129\) −0.315015 0.545621i −0.0277355 0.0480393i
\(130\) −6.30690 + 10.9239i −0.553151 + 0.958086i
\(131\) 9.28093 16.0750i 0.810878 1.40448i −0.101372 0.994849i \(-0.532323\pi\)
0.912250 0.409634i \(-0.134343\pi\)
\(132\) 6.25347 0.544294
\(133\) −6.56182 5.37615i −0.568982 0.466171i
\(134\) 36.4058 3.14498
\(135\) −4.22518 + 7.31823i −0.363646 + 0.629853i
\(136\) −5.30679 + 9.19164i −0.455054 + 0.788176i
\(137\) −7.39677 12.8116i −0.631949 1.09457i −0.987153 0.159779i \(-0.948922\pi\)
0.355204 0.934789i \(-0.384411\pi\)
\(138\) −0.649390 + 1.12478i −0.0552797 + 0.0957473i
\(139\) 0.150171 + 0.260104i 0.0127374 + 0.0220618i 0.872324 0.488929i \(-0.162612\pi\)
−0.859586 + 0.510990i \(0.829279\pi\)
\(140\) 14.6331 1.23673
\(141\) −14.4892 −1.22021
\(142\) 9.31104 + 16.1272i 0.781365 + 1.35336i
\(143\) −1.57502 2.72802i −0.131710 0.228128i
\(144\) −14.8940 −1.24116
\(145\) 2.76336 0.229485
\(146\) −11.2633 19.5085i −0.932153 1.61454i
\(147\) −2.02910 + 3.51451i −0.167358 + 0.289872i
\(148\) −26.8684 46.5375i −2.20857 3.82536i
\(149\) 3.35821 5.81659i 0.275115 0.476513i −0.695049 0.718962i \(-0.744617\pi\)
0.970164 + 0.242449i \(0.0779507\pi\)
\(150\) 4.48426 7.76697i 0.366139 0.634171i
\(151\) 11.8291 0.962635 0.481318 0.876546i \(-0.340158\pi\)
0.481318 + 0.876546i \(0.340158\pi\)
\(152\) 26.2270 + 21.4880i 2.12729 + 1.74290i
\(153\) 1.91613 0.154910
\(154\) −2.56535 + 4.44331i −0.206722 + 0.358053i
\(155\) 5.48975 9.50853i 0.440948 0.763744i
\(156\) −9.84935 17.0596i −0.788579 1.36586i
\(157\) −0.597509 + 1.03492i −0.0476864 + 0.0825953i −0.888883 0.458134i \(-0.848518\pi\)
0.841197 + 0.540729i \(0.181851\pi\)
\(158\) −19.9954 34.6331i −1.59075 2.75526i
\(159\) −1.23955 −0.0983025
\(160\) −18.8408 −1.48950
\(161\) −0.379483 0.657284i −0.0299075 0.0518013i
\(162\) −3.71080 6.42730i −0.291548 0.504976i
\(163\) 20.9191 1.63851 0.819255 0.573430i \(-0.194387\pi\)
0.819255 + 0.573430i \(0.194387\pi\)
\(164\) 49.7026 3.88112
\(165\) −0.959333 1.66161i −0.0746840 0.129356i
\(166\) 10.1632 17.6031i 0.788815 1.36627i
\(167\) 2.29240 + 3.97055i 0.177391 + 0.307251i 0.940986 0.338445i \(-0.109901\pi\)
−0.763595 + 0.645696i \(0.776568\pi\)
\(168\) −9.56116 + 16.5604i −0.737660 + 1.27766i
\(169\) 1.53861 2.66496i 0.118355 0.204997i
\(170\) 5.46383 0.419057
\(171\) 0.992160 6.04023i 0.0758724 0.461908i
\(172\) −2.46904 −0.188263
\(173\) −3.95436 + 6.84915i −0.300644 + 0.520731i −0.976282 0.216503i \(-0.930535\pi\)
0.675638 + 0.737234i \(0.263868\pi\)
\(174\) −3.02948 + 5.24722i −0.229664 + 0.397790i
\(175\) 2.62046 + 4.53878i 0.198089 + 0.343099i
\(176\) 5.30301 9.18508i 0.399729 0.692351i
\(177\) 3.77080 + 6.53121i 0.283431 + 0.490916i
\(178\) −4.39341 −0.329300
\(179\) 0.863418 0.0645349 0.0322674 0.999479i \(-0.489727\pi\)
0.0322674 + 0.999479i \(0.489727\pi\)
\(180\) 5.27952 + 9.14440i 0.393512 + 0.681583i
\(181\) −4.13351 7.15944i −0.307241 0.532157i 0.670517 0.741894i \(-0.266072\pi\)
−0.977758 + 0.209737i \(0.932739\pi\)
\(182\) 16.1619 1.19800
\(183\) 5.62930 0.416130
\(184\) 1.51676 + 2.62710i 0.111817 + 0.193673i
\(185\) −8.24367 + 14.2785i −0.606087 + 1.04977i
\(186\) 12.0369 + 20.8484i 0.882585 + 1.52868i
\(187\) −0.682242 + 1.18168i −0.0498905 + 0.0864128i
\(188\) −28.3911 + 49.1749i −2.07064 + 3.58645i
\(189\) 10.8274 0.787575
\(190\) 2.82913 17.2236i 0.205247 1.24953i
\(191\) −0.995039 −0.0719985 −0.0359992 0.999352i \(-0.511461\pi\)
−0.0359992 + 0.999352i \(0.511461\pi\)
\(192\) 7.25759 12.5705i 0.523772 0.907199i
\(193\) 8.65056 14.9832i 0.622681 1.07852i −0.366303 0.930496i \(-0.619377\pi\)
0.988984 0.148020i \(-0.0472900\pi\)
\(194\) 23.0091 + 39.8529i 1.65195 + 2.86127i
\(195\) −3.02194 + 5.23415i −0.216406 + 0.374826i
\(196\) 7.95192 + 13.7731i 0.567994 + 0.983795i
\(197\) 10.3579 0.737970 0.368985 0.929435i \(-0.379705\pi\)
0.368985 + 0.929435i \(0.379705\pi\)
\(198\) −3.70223 −0.263106
\(199\) −3.37004 5.83708i −0.238896 0.413779i 0.721502 0.692412i \(-0.243452\pi\)
−0.960398 + 0.278633i \(0.910119\pi\)
\(200\) −10.4737 18.1411i −0.740606 1.28277i
\(201\) 17.4438 1.23039
\(202\) 5.06065 0.356066
\(203\) −1.77034 3.06631i −0.124253 0.215213i
\(204\) −4.26638 + 7.38958i −0.298706 + 0.517374i
\(205\) −7.62478 13.2065i −0.532538 0.922383i
\(206\) −11.9633 + 20.7210i −0.833521 + 1.44370i
\(207\) 0.273830 0.474287i 0.0190325 0.0329652i
\(208\) −33.4094 −2.31653
\(209\) 3.37174 + 2.76249i 0.233228 + 0.191086i
\(210\) 9.84410 0.679307
\(211\) 7.70026 13.3372i 0.530108 0.918174i −0.469275 0.883052i \(-0.655485\pi\)
0.999383 0.0351217i \(-0.0111819\pi\)
\(212\) −2.42885 + 4.20689i −0.166814 + 0.288931i
\(213\) 4.46137 + 7.72732i 0.305688 + 0.529467i
\(214\) −19.1693 + 33.2021i −1.31038 + 2.26965i
\(215\) 0.378771 + 0.656051i 0.0258320 + 0.0447423i
\(216\) −43.2760 −2.94456
\(217\) −14.0679 −0.954993
\(218\) −7.91255 13.7049i −0.535906 0.928216i
\(219\) −5.39677 9.34748i −0.364680 0.631644i
\(220\) −7.51912 −0.506939
\(221\) 4.29818 0.289127
\(222\) −18.0751 31.3070i −1.21312 2.10119i
\(223\) −0.786741 + 1.36268i −0.0526841 + 0.0912515i −0.891165 0.453680i \(-0.850111\pi\)
0.838481 + 0.544931i \(0.183444\pi\)
\(224\) 12.0703 + 20.9064i 0.806480 + 1.39686i
\(225\) −1.89089 + 3.27511i −0.126059 + 0.218341i
\(226\) −24.3860 + 42.2378i −1.62213 + 2.80961i
\(227\) 8.65140 0.574214 0.287107 0.957899i \(-0.407307\pi\)
0.287107 + 0.957899i \(0.407307\pi\)
\(228\) 21.0851 + 17.2752i 1.39639 + 1.14408i
\(229\) −20.4306 −1.35009 −0.675045 0.737777i \(-0.735876\pi\)
−0.675045 + 0.737777i \(0.735876\pi\)
\(230\) 0.780821 1.35242i 0.0514858 0.0891761i
\(231\) −1.22918 + 2.12901i −0.0808743 + 0.140078i
\(232\) 7.07586 + 12.2557i 0.464553 + 0.804629i
\(233\) 4.57802 7.92936i 0.299916 0.519470i −0.676200 0.736718i \(-0.736375\pi\)
0.976116 + 0.217248i \(0.0697080\pi\)
\(234\) 5.83110 + 10.0998i 0.381191 + 0.660242i
\(235\) 17.4217 1.13647
\(236\) 29.5550 1.92387
\(237\) −9.58078 16.5944i −0.622339 1.07792i
\(238\) −3.50038 6.06283i −0.226896 0.392995i
\(239\) −18.0613 −1.16829 −0.584143 0.811651i \(-0.698569\pi\)
−0.584143 + 0.811651i \(0.698569\pi\)
\(240\) −20.3494 −1.31355
\(241\) 11.2550 + 19.4942i 0.724997 + 1.25573i 0.958975 + 0.283490i \(0.0914923\pi\)
−0.233978 + 0.972242i \(0.575174\pi\)
\(242\) 1.31818 2.28316i 0.0847361 0.146767i
\(243\) 6.56732 + 11.3749i 0.421293 + 0.729702i
\(244\) 11.0304 19.1053i 0.706151 1.22309i
\(245\) 2.43978 4.22582i 0.155872 0.269978i
\(246\) 33.4363 2.13182
\(247\) 2.22557 13.5492i 0.141609 0.862112i
\(248\) 56.2282 3.57049
\(249\) 4.86967 8.43451i 0.308603 0.534516i
\(250\) −15.4026 + 26.6782i −0.974149 + 1.68728i
\(251\) 6.17190 + 10.6901i 0.389567 + 0.674750i 0.992391 0.123124i \(-0.0392913\pi\)
−0.602824 + 0.797874i \(0.705958\pi\)
\(252\) 6.76460 11.7166i 0.426130 0.738078i
\(253\) 0.194995 + 0.337741i 0.0122592 + 0.0212336i
\(254\) −21.7375 −1.36393
\(255\) 2.61799 0.163945
\(256\) 4.26071 + 7.37977i 0.266294 + 0.461235i
\(257\) −4.84678 8.39487i −0.302334 0.523658i 0.674330 0.738430i \(-0.264432\pi\)
−0.976664 + 0.214772i \(0.931099\pi\)
\(258\) −1.66099 −0.103409
\(259\) 21.1251 1.31265
\(260\) 11.8428 + 20.5123i 0.734458 + 1.27212i
\(261\) 1.27745 2.21260i 0.0790720 0.136957i
\(262\) −24.4679 42.3797i −1.51163 2.61823i
\(263\) 13.8969 24.0701i 0.856918 1.48422i −0.0179369 0.999839i \(-0.505710\pi\)
0.874855 0.484386i \(-0.160957\pi\)
\(264\) 4.91293 8.50944i 0.302370 0.523720i
\(265\) 1.49042 0.0915559
\(266\) −20.9243 + 7.89494i −1.28295 + 0.484070i
\(267\) −2.10510 −0.128830
\(268\) 34.1805 59.2024i 2.08791 3.61636i
\(269\) 15.9074 27.5524i 0.969892 1.67990i 0.274038 0.961719i \(-0.411640\pi\)
0.695854 0.718184i \(-0.255026\pi\)
\(270\) 11.1391 + 19.2936i 0.677907 + 1.17417i
\(271\) 1.44483 2.50251i 0.0877670 0.152017i −0.818800 0.574079i \(-0.805360\pi\)
0.906567 + 0.422062i \(0.138694\pi\)
\(272\) 7.23587 + 12.5329i 0.438739 + 0.759918i
\(273\) 7.74396 0.468686
\(274\) −39.0013 −2.35615
\(275\) −1.34651 2.33222i −0.0811973 0.140638i
\(276\) 1.21939 + 2.11205i 0.0733988 + 0.127130i
\(277\) −8.78095 −0.527596 −0.263798 0.964578i \(-0.584975\pi\)
−0.263798 + 0.964578i \(0.584975\pi\)
\(278\) 0.791814 0.0474899
\(279\) −5.07560 8.79120i −0.303868 0.526316i
\(280\) 11.4963 19.9121i 0.687033 1.18998i
\(281\) 10.3350 + 17.9008i 0.616536 + 1.06787i 0.990113 + 0.140273i \(0.0447981\pi\)
−0.373576 + 0.927599i \(0.621869\pi\)
\(282\) −19.0995 + 33.0813i −1.13736 + 1.96996i
\(283\) −6.92308 + 11.9911i −0.411534 + 0.712798i −0.995058 0.0992980i \(-0.968340\pi\)
0.583523 + 0.812096i \(0.301674\pi\)
\(284\) 34.9676 2.07495
\(285\) 1.35557 8.25268i 0.0802973 0.488847i
\(286\) −8.30468 −0.491066
\(287\) −9.76956 + 16.9214i −0.576679 + 0.998837i
\(288\) −8.70974 + 15.0857i −0.513226 + 0.888934i
\(289\) 7.56909 + 13.1101i 0.445241 + 0.771179i
\(290\) 3.64262 6.30921i 0.213902 0.370490i
\(291\) 11.0248 + 19.0954i 0.646283 + 1.11939i
\(292\) −42.2992 −2.47537
\(293\) −22.2198 −1.29810 −0.649049 0.760747i \(-0.724833\pi\)
−0.649049 + 0.760747i \(0.724833\pi\)
\(294\) 5.34947 + 9.26555i 0.311987 + 0.540378i
\(295\) −4.53398 7.85308i −0.263978 0.457224i
\(296\) −84.4348 −4.90768
\(297\) −5.56356 −0.322831
\(298\) −8.85348 15.3347i −0.512868 0.888314i
\(299\) 0.614242 1.06390i 0.0355225 0.0615268i
\(300\) −8.42033 14.5844i −0.486148 0.842033i
\(301\) 0.485316 0.840591i 0.0279731 0.0484509i
\(302\) 15.5929 27.0077i 0.897270 1.55412i
\(303\) 2.42480 0.139301
\(304\) 43.2541 16.3202i 2.48079 0.936026i
\(305\) −6.76863 −0.387571
\(306\) 2.52582 4.37485i 0.144392 0.250093i
\(307\) 2.21573 3.83775i 0.126458 0.219032i −0.795844 0.605502i \(-0.792972\pi\)
0.922302 + 0.386470i \(0.126306\pi\)
\(308\) 4.81709 + 8.34344i 0.274479 + 0.475411i
\(309\) −5.73219 + 9.92845i −0.326093 + 0.564810i
\(310\) −14.4730 25.0680i −0.822012 1.42377i
\(311\) 3.17169 0.179850 0.0899252 0.995949i \(-0.471337\pi\)
0.0899252 + 0.995949i \(0.471337\pi\)
\(312\) −30.9519 −1.75231
\(313\) −2.36985 4.10469i −0.133952 0.232011i 0.791245 0.611499i \(-0.209433\pi\)
−0.925196 + 0.379488i \(0.876100\pi\)
\(314\) 1.57525 + 2.72842i 0.0888968 + 0.153974i
\(315\) −4.15098 −0.233881
\(316\) −75.0929 −4.22430
\(317\) −6.57441 11.3872i −0.369256 0.639569i 0.620194 0.784449i \(-0.287054\pi\)
−0.989449 + 0.144879i \(0.953721\pi\)
\(318\) −1.63395 + 2.83009i −0.0916275 + 0.158704i
\(319\) 0.909673 + 1.57560i 0.0509319 + 0.0882167i
\(320\) −8.72647 + 15.1147i −0.487825 + 0.844937i
\(321\) −9.18492 + 15.9088i −0.512652 + 0.887940i
\(322\) −2.00092 −0.111507
\(323\) −5.56472 + 2.09962i −0.309629 + 0.116826i
\(324\) −13.9359 −0.774218
\(325\) −4.24155 + 7.34658i −0.235279 + 0.407515i
\(326\) 27.5752 47.7617i 1.52725 2.64528i
\(327\) −3.79129 6.56670i −0.209659 0.363140i
\(328\) 39.0480 67.6331i 2.15606 3.73441i
\(329\) −11.1611 19.3317i −0.615334 1.06579i
\(330\) −5.05831 −0.278451
\(331\) 21.3690 1.17455 0.587273 0.809389i \(-0.300202\pi\)
0.587273 + 0.809389i \(0.300202\pi\)
\(332\) −19.0839 33.0543i −1.04736 1.81409i
\(333\) 7.62176 + 13.2013i 0.417670 + 0.723426i
\(334\) 12.0872 0.661384
\(335\) −20.9743 −1.14595
\(336\) 13.0367 + 22.5803i 0.711213 + 1.23186i
\(337\) −2.34281 + 4.05786i −0.127621 + 0.221046i −0.922754 0.385389i \(-0.874067\pi\)
0.795134 + 0.606434i \(0.207401\pi\)
\(338\) −4.05635 7.02581i −0.220636 0.382154i
\(339\) −11.6845 + 20.2382i −0.634615 + 1.09919i
\(340\) 5.12986 8.88518i 0.278206 0.481866i
\(341\) 7.22870 0.391456
\(342\) −12.4830 10.2274i −0.675002 0.553034i
\(343\) −19.8750 −1.07315
\(344\) −1.93976 + 3.35976i −0.104585 + 0.181146i
\(345\) 0.374130 0.648011i 0.0201425 0.0348878i
\(346\) 10.4252 + 18.0569i 0.560460 + 0.970745i
\(347\) −3.36803 + 5.83360i −0.180805 + 0.313164i −0.942155 0.335177i \(-0.891204\pi\)
0.761350 + 0.648342i \(0.224537\pi\)
\(348\) 5.68861 + 9.85296i 0.304942 + 0.528174i
\(349\) 21.5879 1.15557 0.577787 0.816188i \(-0.303916\pi\)
0.577787 + 0.816188i \(0.303916\pi\)
\(350\) 13.8170 0.738551
\(351\) 8.76273 + 15.1775i 0.467720 + 0.810115i
\(352\) −6.20223 10.7426i −0.330580 0.572581i
\(353\) 5.88791 0.313382 0.156691 0.987648i \(-0.449917\pi\)
0.156691 + 0.987648i \(0.449917\pi\)
\(354\) 19.8824 1.05674
\(355\) −5.36432 9.29127i −0.284708 0.493130i
\(356\) −4.12487 + 7.14448i −0.218617 + 0.378657i
\(357\) −1.67720 2.90500i −0.0887669 0.153749i
\(358\) 1.13814 1.97132i 0.0601528 0.104188i
\(359\) 3.94098 6.82598i 0.207997 0.360261i −0.743087 0.669195i \(-0.766639\pi\)
0.951083 + 0.308934i \(0.0999723\pi\)
\(360\) 16.5911 0.874426
\(361\) 3.73726 + 18.6288i 0.196698 + 0.980464i
\(362\) −21.7949 −1.14551
\(363\) 0.631607 1.09397i 0.0331507 0.0574188i
\(364\) 15.1740 26.2822i 0.795335 1.37756i
\(365\) 6.48904 + 11.2393i 0.339652 + 0.588294i
\(366\) 7.42046 12.8526i 0.387874 0.671817i
\(367\) −0.854525 1.48008i −0.0446058 0.0772596i 0.842861 0.538132i \(-0.180870\pi\)
−0.887466 + 0.460873i \(0.847537\pi\)
\(368\) 4.13623 0.215616
\(369\) −14.0991 −0.733972
\(370\) 21.7334 + 37.6433i 1.12986 + 1.95698i
\(371\) −0.954832 1.65382i −0.0495724 0.0858619i
\(372\) 45.2044 2.34374
\(373\) 6.90319 0.357434 0.178717 0.983901i \(-0.442805\pi\)
0.178717 + 0.983901i \(0.442805\pi\)
\(374\) 1.79864 + 3.11534i 0.0930056 + 0.161090i
\(375\) −7.38016 + 12.7828i −0.381110 + 0.660102i
\(376\) 44.6100 + 77.2668i 2.30059 + 3.98473i
\(377\) 2.86551 4.96321i 0.147581 0.255618i
\(378\) 14.2725 24.7206i 0.734097 1.27149i
\(379\) −27.8405 −1.43007 −0.715036 0.699087i \(-0.753590\pi\)
−0.715036 + 0.699087i \(0.753590\pi\)
\(380\) −25.3525 20.7715i −1.30056 1.06556i
\(381\) −10.4155 −0.533602
\(382\) −1.31164 + 2.27184i −0.0671096 + 0.116237i
\(383\) −15.3913 + 26.6585i −0.786458 + 1.36218i 0.141667 + 0.989914i \(0.454754\pi\)
−0.928124 + 0.372270i \(0.878579\pi\)
\(384\) −3.46423 6.00023i −0.176783 0.306198i
\(385\) 1.47796 2.55990i 0.0753239 0.130465i
\(386\) −22.8061 39.5013i −1.16080 2.01056i
\(387\) 0.700393 0.0356030
\(388\) 86.4106 4.38683
\(389\) 7.75729 + 13.4360i 0.393310 + 0.681233i 0.992884 0.119086i \(-0.0379965\pi\)
−0.599574 + 0.800320i \(0.704663\pi\)
\(390\) 7.96695 + 13.7992i 0.403422 + 0.698748i
\(391\) −0.532134 −0.0269112
\(392\) 24.9892 1.26214
\(393\) −11.7238 20.3062i −0.591387 1.02431i
\(394\) 13.6536 23.6488i 0.687860 1.19141i
\(395\) 11.5199 + 19.9530i 0.579627 + 1.00394i
\(396\) −3.47594 + 6.02050i −0.174672 + 0.302541i
\(397\) −5.09314 + 8.82157i −0.255617 + 0.442742i −0.965063 0.262018i \(-0.915612\pi\)
0.709446 + 0.704760i \(0.248945\pi\)
\(398\) −17.7693 −0.890696
\(399\) −10.0259 + 3.78285i −0.501921 + 0.189379i
\(400\) −28.5621 −1.42811
\(401\) −8.76329 + 15.1785i −0.437618 + 0.757976i −0.997505 0.0705925i \(-0.977511\pi\)
0.559888 + 0.828569i \(0.310844\pi\)
\(402\) 22.9941 39.8270i 1.14684 1.98639i
\(403\) −11.3854 19.7200i −0.567145 0.982324i
\(404\) 4.75132 8.22953i 0.236387 0.409434i
\(405\) 2.13788 + 3.70292i 0.106232 + 0.184000i
\(406\) −9.33452 −0.463264
\(407\) −10.8549 −0.538060
\(408\) 6.70361 + 11.6110i 0.331878 + 0.574830i
\(409\) 9.79585 + 16.9669i 0.484374 + 0.838960i 0.999839 0.0179509i \(-0.00571424\pi\)
−0.515465 + 0.856910i \(0.672381\pi\)
\(410\) −40.2035 −1.98551
\(411\) −18.6874 −0.921781
\(412\) 22.4641 + 38.9089i 1.10672 + 1.91690i
\(413\) −5.80934 + 10.0621i −0.285859 + 0.495122i
\(414\) −0.721916 1.25039i −0.0354802 0.0614536i
\(415\) −5.85525 + 10.1416i −0.287423 + 0.497831i
\(416\) −19.5373 + 33.8396i −0.957894 + 1.65912i
\(417\) 0.379397 0.0185791
\(418\) 10.7518 4.05676i 0.525888 0.198422i
\(419\) −6.12240 −0.299099 −0.149549 0.988754i \(-0.547782\pi\)
−0.149549 + 0.988754i \(0.547782\pi\)
\(420\) 9.24238 16.0083i 0.450982 0.781124i
\(421\) 5.04761 8.74271i 0.246005 0.426094i −0.716408 0.697681i \(-0.754215\pi\)
0.962414 + 0.271587i \(0.0875486\pi\)
\(422\) −20.3007 35.1619i −0.988224 1.71165i
\(423\) 8.05372 13.9494i 0.391585 0.678245i
\(424\) 3.81637 + 6.61015i 0.185339 + 0.321017i
\(425\) 3.67457 0.178243
\(426\) 23.5236 1.13972
\(427\) 4.33629 + 7.51067i 0.209848 + 0.363467i
\(428\) 35.9951 + 62.3453i 1.73989 + 3.01357i
\(429\) −3.97918 −0.192116
\(430\) 1.99716 0.0963117
\(431\) −4.56170 7.90110i −0.219729 0.380583i 0.734996 0.678072i \(-0.237184\pi\)
−0.954725 + 0.297489i \(0.903851\pi\)
\(432\) −29.5036 + 51.1017i −1.41949 + 2.45863i
\(433\) 17.7484 + 30.7412i 0.852935 + 1.47733i 0.878548 + 0.477655i \(0.158513\pi\)
−0.0256125 + 0.999672i \(0.508154\pi\)
\(434\) −18.5441 + 32.1194i −0.890147 + 1.54178i
\(435\) 1.74536 3.02305i 0.0836836 0.144944i
\(436\) −29.7156 −1.42312
\(437\) −0.275535 + 1.67744i −0.0131806 + 0.0802431i
\(438\) −28.4558 −1.35967
\(439\) 6.72370 11.6458i 0.320905 0.555823i −0.659770 0.751467i \(-0.729346\pi\)
0.980675 + 0.195644i \(0.0626798\pi\)
\(440\) −5.90727 + 10.2317i −0.281618 + 0.487777i
\(441\) −2.25572 3.90702i −0.107415 0.186049i
\(442\) 5.66580 9.81346i 0.269495 0.466778i
\(443\) 18.2585 + 31.6246i 0.867486 + 1.50253i 0.864557 + 0.502534i \(0.167599\pi\)
0.00292890 + 0.999996i \(0.499068\pi\)
\(444\) −67.8811 −3.22149
\(445\) 2.53115 0.119988
\(446\) 2.07414 + 3.59252i 0.0982134 + 0.170111i
\(447\) −4.24213 7.34759i −0.200646 0.347529i
\(448\) 22.3623 1.05652
\(449\) −23.5707 −1.11237 −0.556186 0.831058i \(-0.687736\pi\)
−0.556186 + 0.831058i \(0.687736\pi\)
\(450\) 4.98508 + 8.63441i 0.234999 + 0.407030i
\(451\) 5.02001 8.69492i 0.236383 0.409428i
\(452\) 45.7908 + 79.3120i 2.15382 + 3.73052i
\(453\) 7.47131 12.9407i 0.351033 0.608007i
\(454\) 11.4041 19.7526i 0.535223 0.927034i
\(455\) −9.31128 −0.436520
\(456\) 40.0724 15.1197i 1.87656 0.708045i
\(457\) −26.7896 −1.25316 −0.626581 0.779356i \(-0.715546\pi\)
−0.626581 + 0.779356i \(0.715546\pi\)
\(458\) −26.9312 + 46.6463i −1.25841 + 2.17964i
\(459\) 3.79569 6.57434i 0.177168 0.306864i
\(460\) −1.46619 2.53951i −0.0683614 0.118405i
\(461\) −3.93570 + 6.81684i −0.183304 + 0.317492i −0.943004 0.332782i \(-0.892013\pi\)
0.759700 + 0.650274i \(0.225346\pi\)
\(462\) 3.24058 + 5.61285i 0.150766 + 0.261134i
\(463\) 28.5684 1.32769 0.663843 0.747872i \(-0.268924\pi\)
0.663843 + 0.747872i \(0.268924\pi\)
\(464\) 19.2960 0.895795
\(465\) −6.93473 12.0113i −0.321590 0.557011i
\(466\) −12.0694 20.9047i −0.559102 0.968393i
\(467\) 19.7852 0.915548 0.457774 0.889069i \(-0.348647\pi\)
0.457774 + 0.889069i \(0.348647\pi\)
\(468\) 21.8987 1.01227
\(469\) 13.4371 + 23.2737i 0.620466 + 1.07468i
\(470\) 22.9651 39.7767i 1.05930 1.83476i
\(471\) 0.754781 + 1.30732i 0.0347785 + 0.0602381i
\(472\) 23.2194 40.2171i 1.06876 1.85114i
\(473\) −0.249376 + 0.431931i −0.0114663 + 0.0198602i
\(474\) −50.5170 −2.32032
\(475\) 1.90266 11.5833i 0.0873002 0.531480i
\(476\) −13.1457 −0.602531
\(477\) 0.688992 1.19337i 0.0315468 0.0546406i
\(478\) −23.8081 + 41.2368i −1.08896 + 1.88613i
\(479\) −11.9806 20.7510i −0.547407 0.948137i −0.998451 0.0556352i \(-0.982282\pi\)
0.451044 0.892502i \(-0.351052\pi\)
\(480\) −11.9000 + 20.6114i −0.543158 + 0.940778i
\(481\) 17.0968 + 29.6125i 0.779546 + 1.35021i
\(482\) 59.3446 2.70307
\(483\) −0.958737 −0.0436240
\(484\) −2.47522 4.28721i −0.112510 0.194873i
\(485\) −13.2561 22.9602i −0.601928 1.04257i
\(486\) 34.6277 1.57075
\(487\) −25.1424 −1.13931 −0.569655 0.821884i \(-0.692923\pi\)
−0.569655 + 0.821884i \(0.692923\pi\)
\(488\) −17.3317 30.0194i −0.784571 1.35892i
\(489\) 13.2126 22.8850i 0.597496 1.03489i
\(490\) −6.43216 11.1408i −0.290575 0.503291i
\(491\) −0.486402 + 0.842474i −0.0219510 + 0.0380203i −0.876792 0.480869i \(-0.840321\pi\)
0.854841 + 0.518890i \(0.173654\pi\)
\(492\) 31.3925 54.3734i 1.41528 2.45134i
\(493\) −2.48247 −0.111805
\(494\) −28.0012 22.9416i −1.25983 1.03219i
\(495\) 2.13295 0.0958689
\(496\) 38.3338 66.3962i 1.72124 2.98128i
\(497\) −6.87325 + 11.9048i −0.308307 + 0.534004i
\(498\) −12.8382 22.2365i −0.575296 0.996441i
\(499\) −16.9544 + 29.3659i −0.758983 + 1.31460i 0.184386 + 0.982854i \(0.440970\pi\)
−0.943370 + 0.331744i \(0.892363\pi\)
\(500\) 28.9223 + 50.0950i 1.29345 + 2.24031i
\(501\) 5.79158 0.258749
\(502\) 32.5428 1.45246
\(503\) 10.8953 + 18.8712i 0.485797 + 0.841426i 0.999867 0.0163228i \(-0.00519595\pi\)
−0.514069 + 0.857749i \(0.671863\pi\)
\(504\) −10.6290 18.4099i −0.473452 0.820044i
\(505\) −2.91557 −0.129741
\(506\) 1.02816 0.0457071
\(507\) −1.94360 3.36641i −0.0863181 0.149507i
\(508\) −20.4088 + 35.3491i −0.905495 + 1.56836i
\(509\) 1.28979 + 2.23398i 0.0571688 + 0.0990192i 0.893193 0.449673i \(-0.148459\pi\)
−0.836025 + 0.548692i \(0.815126\pi\)
\(510\) 3.45099 5.97730i 0.152813 0.264679i
\(511\) 8.31434 14.4009i 0.367805 0.637056i
\(512\) 33.4352 1.47764
\(513\) −18.7589 15.3693i −0.828225 0.678571i
\(514\) −25.5558 −1.12722
\(515\) 6.89234 11.9379i 0.303713 0.526046i
\(516\) −1.55946 + 2.70107i −0.0686515 + 0.118908i
\(517\) 5.73507 + 9.93343i 0.252228 + 0.436872i
\(518\) 27.8467 48.2320i 1.22352 2.11919i
\(519\) 4.99520 + 8.65194i 0.219265 + 0.379778i
\(520\) 37.2163 1.63204
\(521\) 14.4202 0.631762 0.315881 0.948799i \(-0.397700\pi\)
0.315881 + 0.948799i \(0.397700\pi\)
\(522\) −3.36782 5.83324i −0.147406 0.255314i
\(523\) 9.28479 + 16.0817i 0.405996 + 0.703205i 0.994437 0.105335i \(-0.0335915\pi\)
−0.588441 + 0.808540i \(0.700258\pi\)
\(524\) −91.8894 −4.01421
\(525\) 6.62041 0.288938
\(526\) −36.6373 63.4576i −1.59746 2.76688i
\(527\) −4.93172 + 8.54199i −0.214829 + 0.372095i
\(528\) −6.69883 11.6027i −0.291529 0.504943i
\(529\) 11.4240 19.7869i 0.496694 0.860299i
\(530\) 1.96465 3.40288i 0.0853391 0.147812i
\(531\) −8.38387 −0.363829
\(532\) −6.80673 + 41.4391i −0.295109 + 1.79661i
\(533\) −31.6265 −1.36990
\(534\) −2.77491 + 4.80628i −0.120082 + 0.207988i
\(535\) 11.0439 19.1286i 0.477469 0.827000i
\(536\) −53.7067 93.0227i −2.31977 4.01797i
\(537\) 0.545340 0.944557i 0.0235332 0.0407606i
\(538\) −41.9378 72.6384i −1.80807 3.13167i
\(539\) 3.21261 0.138377
\(540\) 41.8331 1.80021
\(541\) 3.23581 + 5.60458i 0.139118 + 0.240960i 0.927163 0.374658i \(-0.122240\pi\)
−0.788045 + 0.615618i \(0.788907\pi\)
\(542\) −3.80910 6.59755i −0.163615 0.283389i
\(543\) −10.4430 −0.448152
\(544\) 16.9257 0.725682
\(545\) 4.55862 + 7.89575i 0.195270 + 0.338217i
\(546\) 10.2080 17.6807i 0.436861 0.756666i
\(547\) −19.2013 33.2576i −0.820987 1.42199i −0.904948 0.425522i \(-0.860090\pi\)
0.0839609 0.996469i \(-0.473243\pi\)
\(548\) −36.6173 + 63.4230i −1.56421 + 2.70930i
\(549\) −3.12900 + 5.41959i −0.133543 + 0.231302i
\(550\) −7.09977 −0.302735
\(551\) −1.28540 + 7.82548i −0.0547600 + 0.333377i
\(552\) 3.83198 0.163100
\(553\) 14.7603 25.5656i 0.627671 1.08716i
\(554\) −11.5749 + 20.0483i −0.491771 + 0.851772i
\(555\) 10.4135 + 18.0367i 0.442029 + 0.765617i
\(556\) 0.743415 1.28763i 0.0315278 0.0546078i
\(557\) 1.70938 + 2.96074i 0.0724289 + 0.125451i 0.899965 0.435961i \(-0.143592\pi\)
−0.827536 + 0.561412i \(0.810258\pi\)
\(558\) −26.7623 −1.13294
\(559\) 1.57109 0.0664500
\(560\) −15.6753 27.1504i −0.662401 1.14731i
\(561\) 0.861817 + 1.49271i 0.0363859 + 0.0630223i
\(562\) 54.4939 2.29869
\(563\) 9.99944 0.421426 0.210713 0.977548i \(-0.432421\pi\)
0.210713 + 0.977548i \(0.432421\pi\)
\(564\) 35.8641 + 62.1184i 1.51015 + 2.61566i
\(565\) 14.0494 24.3342i 0.591061 1.02375i
\(566\) 18.2518 + 31.6130i 0.767180 + 1.32879i
\(567\) 2.73925 4.74452i 0.115038 0.199251i
\(568\) 27.4717 47.5824i 1.15269 1.99651i
\(569\) 35.1243 1.47249 0.736244 0.676716i \(-0.236598\pi\)
0.736244 + 0.676716i \(0.236598\pi\)
\(570\) −17.0553 13.9736i −0.714369 0.585288i
\(571\) 3.64459 0.152521 0.0762607 0.997088i \(-0.475702\pi\)
0.0762607 + 0.997088i \(0.475702\pi\)
\(572\) −7.79706 + 13.5049i −0.326011 + 0.564668i
\(573\) −0.628473 + 1.08855i −0.0262548 + 0.0454747i
\(574\) 25.7562 + 44.6110i 1.07504 + 1.86203i
\(575\) 0.525123 0.909539i 0.0218991 0.0379304i
\(576\) 8.06815 + 13.9744i 0.336173 + 0.582268i
\(577\) 9.34461 0.389021 0.194511 0.980900i \(-0.437688\pi\)
0.194511 + 0.980900i \(0.437688\pi\)
\(578\) 39.9098 1.66003
\(579\) −10.9275 18.9270i −0.454132 0.786579i
\(580\) −6.83994 11.8471i −0.284013 0.491925i
\(581\) 15.0046 0.622494
\(582\) 58.1307 2.40959
\(583\) 0.490633 + 0.849801i 0.0203199 + 0.0351952i
\(584\) −33.2316 + 57.5588i −1.37513 + 2.38180i
\(585\) −3.35944 5.81872i −0.138896 0.240575i
\(586\) −29.2899 + 50.7315i −1.20995 + 2.09570i
\(587\) −11.5043 + 19.9260i −0.474831 + 0.822432i −0.999585 0.0288223i \(-0.990824\pi\)
0.524753 + 0.851254i \(0.324158\pi\)
\(588\) 20.0899 0.828495
\(589\) 24.3733 + 19.9692i 1.00428 + 0.822818i
\(590\) −23.9065 −0.984215
\(591\) 6.54212 11.3313i 0.269107 0.466107i
\(592\) −57.5639 + 99.7036i −2.36586 + 4.09779i
\(593\) 3.24908 + 5.62758i 0.133424 + 0.231097i 0.924994 0.379981i \(-0.124069\pi\)
−0.791570 + 0.611078i \(0.790736\pi\)
\(594\) −7.33380 + 12.7025i −0.300909 + 0.521191i
\(595\) 2.01665 + 3.49295i 0.0826747 + 0.143197i
\(596\) −33.2493 −1.36194
\(597\) −8.51415 −0.348461
\(598\) −1.61937 2.80483i −0.0662209 0.114698i
\(599\) 2.29285 + 3.97132i 0.0936831 + 0.162264i 0.909058 0.416669i \(-0.136803\pi\)
−0.815375 + 0.578933i \(0.803469\pi\)
\(600\) −26.4611 −1.08027
\(601\) 12.9027 0.526314 0.263157 0.964753i \(-0.415236\pi\)
0.263157 + 0.964753i \(0.415236\pi\)
\(602\) −1.27947 2.21611i −0.0521474 0.0903219i
\(603\) −9.69598 + 16.7939i −0.394851 + 0.683902i
\(604\) −29.2796 50.7137i −1.19137 2.06351i
\(605\) −0.759439 + 1.31539i −0.0308756 + 0.0534781i
\(606\) 3.19634 5.53622i 0.129842 0.224894i
\(607\) −45.6759 −1.85393 −0.926963 0.375153i \(-0.877590\pi\)
−0.926963 + 0.375153i \(0.877590\pi\)
\(608\) 8.76398 53.3548i 0.355426 2.16382i
\(609\) −4.47262 −0.181240
\(610\) −8.92231 + 15.4539i −0.361254 + 0.625710i
\(611\) 18.0657 31.2907i 0.730861 1.26589i
\(612\) −4.74286 8.21488i −0.191719 0.332067i
\(613\) 21.0345 36.4329i 0.849576 1.47151i −0.0320107 0.999488i \(-0.510191\pi\)
0.881587 0.472022i \(-0.156476\pi\)
\(614\) −5.84148 10.1177i −0.235743 0.408319i
\(615\) −19.2635 −0.776777
\(616\) 15.1378 0.609921
\(617\) 11.3633 + 19.6819i 0.457471 + 0.792363i 0.998827 0.0484306i \(-0.0154220\pi\)
−0.541355 + 0.840794i \(0.682089\pi\)
\(618\) 15.1122 + 26.1751i 0.607901 + 1.05292i
\(619\) −40.6982 −1.63580 −0.817900 0.575361i \(-0.804862\pi\)
−0.817900 + 0.575361i \(0.804862\pi\)
\(620\) −54.3534 −2.18289
\(621\) −1.08486 1.87904i −0.0435341 0.0754033i
\(622\) 4.18088 7.24150i 0.167638 0.290358i
\(623\) −1.62157 2.80864i −0.0649668 0.112526i
\(624\) −21.1016 + 36.5491i −0.844740 + 1.46313i
\(625\) 2.14132 3.70887i 0.0856527 0.148355i
\(626\) −12.4956 −0.499424
\(627\) 5.15171 1.94379i 0.205739 0.0776275i
\(628\) 5.91587 0.236069
\(629\) 7.40570 12.8271i 0.295285 0.511448i
\(630\) −5.47176 + 9.47736i −0.218000 + 0.377587i
\(631\) 9.22777 + 15.9830i 0.367352 + 0.636272i 0.989151 0.146905i \(-0.0469312\pi\)
−0.621799 + 0.783177i \(0.713598\pi\)
\(632\) −58.9954 + 102.183i −2.34671 + 4.06462i
\(633\) −9.72707 16.8478i −0.386616 0.669639i
\(634\) −34.6651 −1.37673
\(635\) 12.5235 0.496981
\(636\) 3.06816 + 5.31420i 0.121660 + 0.210722i
\(637\) −5.05993 8.76405i −0.200482 0.347244i
\(638\) 4.79647 0.189894
\(639\) −9.91926 −0.392400
\(640\) 4.16537 + 7.21463i 0.164651 + 0.285183i
\(641\) 14.9442 25.8840i 0.590259 1.02236i −0.403939 0.914786i \(-0.632359\pi\)
0.994197 0.107572i \(-0.0343076\pi\)
\(642\) 24.2148 + 41.9414i 0.955684 + 1.65529i
\(643\) 7.05455 12.2188i 0.278204 0.481864i −0.692734 0.721193i \(-0.743594\pi\)
0.970939 + 0.239329i \(0.0769274\pi\)
\(644\) −1.87861 + 3.25385i −0.0740277 + 0.128220i
\(645\) 0.956937 0.0376794
\(646\) −2.54155 + 15.4729i −0.0999960 + 0.608771i
\(647\) 14.8277 0.582936 0.291468 0.956581i \(-0.405856\pi\)
0.291468 + 0.956581i \(0.405856\pi\)
\(648\) −10.9485 + 18.9634i −0.430098 + 0.744952i
\(649\) 2.98509 5.17032i 0.117175 0.202953i
\(650\) 11.1823 + 19.3683i 0.438606 + 0.759687i
\(651\) −8.88540 + 15.3900i −0.348246 + 0.603180i
\(652\) −51.7794 89.6845i −2.02784 3.51232i
\(653\) 45.2237 1.76974 0.884870 0.465838i \(-0.154247\pi\)
0.884870 + 0.465838i \(0.154247\pi\)
\(654\) −19.9905 −0.781690
\(655\) 14.0966 + 24.4160i 0.550799 + 0.954012i
\(656\) −53.2423 92.2184i −2.07876 3.60052i
\(657\) 11.9990 0.468126
\(658\) −58.8498 −2.29421
\(659\) 10.3377 + 17.9055i 0.402701 + 0.697499i 0.994051 0.108916i \(-0.0347381\pi\)
−0.591350 + 0.806415i \(0.701405\pi\)
\(660\) −4.74913 + 8.22573i −0.184859 + 0.320186i
\(661\) −3.57633 6.19438i −0.139103 0.240934i 0.788054 0.615606i \(-0.211089\pi\)
−0.927157 + 0.374672i \(0.877755\pi\)
\(662\) 28.1683 48.7889i 1.09479 1.89623i
\(663\) 2.71476 4.70210i 0.105433 0.182615i
\(664\) −59.9717 −2.32736
\(665\) 12.0550 4.54847i 0.467473 0.176382i
\(666\) 40.1876 1.55724
\(667\) −0.354763 + 0.614467i −0.0137365 + 0.0237923i
\(668\) 11.3484 19.6560i 0.439083 0.760514i
\(669\) 0.993822 + 1.72135i 0.0384234 + 0.0665512i
\(670\) −27.6480 + 47.8877i −1.06813 + 1.85006i
\(671\) −2.22817 3.85930i −0.0860175 0.148987i
\(672\) 30.4947 1.17636
\(673\) −13.5419 −0.522003 −0.261002 0.965338i \(-0.584053\pi\)
−0.261002 + 0.965338i \(0.584053\pi\)
\(674\) 6.17650 + 10.6980i 0.237910 + 0.412072i
\(675\) 7.49136 + 12.9754i 0.288343 + 0.499424i
\(676\) −15.2336 −0.585909
\(677\) −30.9201 −1.18836 −0.594179 0.804333i \(-0.702523\pi\)
−0.594179 + 0.804333i \(0.702523\pi\)
\(678\) 30.8047 + 53.3553i 1.18305 + 2.04910i
\(679\) −16.9849 + 29.4187i −0.651820 + 1.12899i
\(680\) −8.06037 13.9610i −0.309101 0.535379i
\(681\) 5.46428 9.46441i 0.209392 0.362677i
\(682\) 9.52876 16.5043i 0.364875 0.631982i
\(683\) 10.5045 0.401943 0.200972 0.979597i \(-0.435590\pi\)
0.200972 + 0.979597i \(0.435590\pi\)
\(684\) −28.3515 + 10.6973i −1.08405 + 0.409022i
\(685\) 22.4696 0.858519
\(686\) −26.1989 + 45.3778i −1.00028 + 1.73253i
\(687\) −12.9041 + 22.3505i −0.492321 + 0.852725i
\(688\) 2.64488 + 4.58107i 0.100835 + 0.174652i
\(689\) 1.54552 2.67691i 0.0588794 0.101982i
\(690\) −0.986344 1.70840i −0.0375495 0.0650376i
\(691\) 9.99026 0.380048 0.190024 0.981779i \(-0.439143\pi\)
0.190024 + 0.981779i \(0.439143\pi\)
\(692\) 39.1517 1.48832
\(693\) −1.36646 2.36678i −0.0519076 0.0899067i
\(694\) 8.87938 + 15.3795i 0.337057 + 0.583799i
\(695\) −0.456184 −0.0173040
\(696\) 17.8766 0.677612
\(697\) 6.84973 + 11.8641i 0.259452 + 0.449384i
\(698\) 28.4569 49.2887i 1.07711 1.86561i
\(699\) −5.78301 10.0165i −0.218734 0.378858i
\(700\) 12.9725 22.4690i 0.490313 0.849247i
\(701\) −4.86603 + 8.42820i −0.183787 + 0.318329i −0.943167 0.332319i \(-0.892169\pi\)
0.759380 + 0.650647i \(0.225502\pi\)
\(702\) 46.2036 1.74384
\(703\) −36.6001 29.9867i −1.38040 1.13097i
\(704\) −11.4907 −0.433072
\(705\) 11.0037 19.0589i 0.414423 0.717801i
\(706\) 7.76135 13.4431i 0.292102 0.505936i
\(707\) 1.86784 + 3.23520i 0.0702474 + 0.121672i
\(708\) 18.6671 32.3324i 0.701554 1.21513i
\(709\) 9.11964 + 15.7957i 0.342495 + 0.593219i 0.984895 0.173150i \(-0.0553946\pi\)
−0.642400 + 0.766369i \(0.722061\pi\)
\(710\) −28.2847 −1.06150
\(711\) 21.3016 0.798872
\(712\) 6.48126 + 11.2259i 0.242896 + 0.420707i
\(713\) 1.40956 + 2.44142i 0.0527883 + 0.0914321i
\(714\) −8.84345 −0.330958
\(715\) 4.78453 0.178931
\(716\) −2.13715 3.70165i −0.0798691 0.138337i
\(717\) −11.4076 + 19.7586i −0.426025 + 0.737897i
\(718\) −10.3899 17.9958i −0.387747 0.671597i
\(719\) 14.4268 24.9879i 0.538028 0.931892i −0.460982 0.887409i \(-0.652503\pi\)
0.999010 0.0444823i \(-0.0141638\pi\)
\(720\) 11.3110 19.5913i 0.421538 0.730125i
\(721\) −17.6622 −0.657774
\(722\) 47.4590 + 16.0234i 1.76624 + 0.596331i
\(723\) 28.4349 1.05750
\(724\) −20.4627 + 35.4424i −0.760490 + 1.31721i
\(725\) 2.44976 4.24311i 0.0909818 0.157585i
\(726\) −1.66515 2.88412i −0.0617995 0.107040i
\(727\) −5.51369 + 9.55000i −0.204492 + 0.354190i −0.949971 0.312339i \(-0.898887\pi\)
0.745479 + 0.666529i \(0.232221\pi\)
\(728\) −23.8424 41.2963i −0.883659 1.53054i
\(729\) 25.0371 0.927300
\(730\) 34.2150 1.26635
\(731\) −0.340269 0.589363i −0.0125853 0.0217984i
\(732\) −13.9338 24.1340i −0.515007 0.892019i
\(733\) 6.59161 0.243467 0.121733 0.992563i \(-0.461155\pi\)
0.121733 + 0.992563i \(0.461155\pi\)
\(734\) −4.50569 −0.166308
\(735\) −3.08196 5.33811i −0.113680 0.196899i
\(736\) 2.41880 4.18949i 0.0891582 0.154427i
\(737\) −6.90453 11.9590i −0.254332 0.440515i
\(738\) −18.5853 + 32.1906i −0.684133 + 1.18495i
\(739\) 6.37097 11.0348i 0.234360 0.405923i −0.724727 0.689036i \(-0.758034\pi\)
0.959086 + 0.283113i \(0.0913673\pi\)
\(740\) 81.6197 3.00040
\(741\) −13.4167 10.9924i −0.492877 0.403818i
\(742\) −5.03458 −0.184825
\(743\) −0.790159 + 1.36860i −0.0289881 + 0.0502089i −0.880156 0.474685i \(-0.842562\pi\)
0.851167 + 0.524894i \(0.175895\pi\)
\(744\) 35.5141 61.5122i 1.30201 2.25515i
\(745\) 5.10071 + 8.83468i 0.186875 + 0.323678i
\(746\) 9.09969 15.7611i 0.333163 0.577055i
\(747\) 5.41353 + 9.37651i 0.198071 + 0.343068i
\(748\) 6.75480 0.246980
\(749\) −28.3008 −1.03409
\(750\) 19.4568 + 33.7002i 0.710463 + 1.23056i
\(751\) −18.6386 32.2830i −0.680131 1.17802i −0.974940 0.222466i \(-0.928589\pi\)
0.294809 0.955556i \(-0.404744\pi\)
\(752\) 121.652 4.43621
\(753\) 15.5929 0.568235
\(754\) −7.55454 13.0849i −0.275120 0.476522i
\(755\) −8.98345 + 15.5598i −0.326941 + 0.566279i
\(756\) −26.8001 46.4192i −0.974712 1.68825i
\(757\) 6.61745 11.4618i 0.240515 0.416585i −0.720346 0.693615i \(-0.756017\pi\)
0.960861 + 0.277030i \(0.0893503\pi\)
\(758\) −36.6990 + 63.5645i −1.33297 + 2.30877i
\(759\) 0.492639 0.0178817
\(760\) −48.1827 + 18.1798i −1.74777 + 0.659451i
\(761\) 41.3446 1.49874 0.749370 0.662152i \(-0.230357\pi\)
0.749370 + 0.662152i \(0.230357\pi\)
\(762\) −13.7296 + 23.7803i −0.497369 + 0.861469i
\(763\) 5.84091 10.1168i 0.211455 0.366251i
\(764\) 2.46294 + 4.26594i 0.0891061 + 0.154336i
\(765\) −1.45519 + 2.52046i −0.0526124 + 0.0911274i
\(766\) 40.5771 + 70.2816i 1.46611 + 2.53938i
\(767\) −18.8063 −0.679056
\(768\) 10.7644 0.388426
\(769\) −6.24777 10.8214i −0.225300 0.390231i 0.731109 0.682260i \(-0.239003\pi\)
−0.956409 + 0.292029i \(0.905670\pi\)
\(770\) −3.89645 6.74885i −0.140418 0.243212i
\(771\) −12.2450