Properties

Label 209.2.e.b.144.8
Level $209$
Weight $2$
Character 209.144
Analytic conductor $1.669$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(45,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 14 x^{16} - 11 x^{15} + 130 x^{14} - 92 x^{13} + 629 x^{12} - 276 x^{11} + 2060 x^{10} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 144.8
Root \(1.00688 - 1.74398i\) of defining polynomial
Character \(\chi\) \(=\) 209.144
Dual form 209.2.e.b.45.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00688 - 1.74398i) q^{2} +(-1.29029 + 2.23484i) q^{3} +(-1.02763 - 1.77991i) q^{4} +(-1.77613 + 3.07635i) q^{5} +(2.59834 + 4.50045i) q^{6} -4.09817 q^{7} -0.111292 q^{8} +(-1.82967 - 3.16909i) q^{9} +O(q^{10})\) \(q+(1.00688 - 1.74398i) q^{2} +(-1.29029 + 2.23484i) q^{3} +(-1.02763 - 1.77991i) q^{4} +(-1.77613 + 3.07635i) q^{5} +(2.59834 + 4.50045i) q^{6} -4.09817 q^{7} -0.111292 q^{8} +(-1.82967 - 3.16909i) q^{9} +(3.57672 + 6.19505i) q^{10} -1.00000 q^{11} +5.30376 q^{12} +(2.55568 + 4.42656i) q^{13} +(-4.12638 + 7.14710i) q^{14} +(-4.58343 - 7.93873i) q^{15} +(1.94321 - 3.36573i) q^{16} +(0.559554 - 0.969175i) q^{17} -7.36908 q^{18} +(4.34935 - 0.288300i) q^{19} +7.30084 q^{20} +(5.28780 - 9.15875i) q^{21} +(-1.00688 + 1.74398i) q^{22} +(0.629766 + 1.09079i) q^{23} +(0.143598 - 0.248719i) q^{24} +(-3.80928 - 6.59786i) q^{25} +10.2931 q^{26} +1.70149 q^{27} +(4.21141 + 7.29438i) q^{28} +(3.20960 + 5.55920i) q^{29} -18.4599 q^{30} -0.563149 q^{31} +(-4.02446 - 6.97057i) q^{32} +(1.29029 - 2.23484i) q^{33} +(-1.12681 - 1.95170i) q^{34} +(7.27888 - 12.6074i) q^{35} +(-3.76046 + 6.51331i) q^{36} -1.00067 q^{37} +(3.87651 - 7.87545i) q^{38} -13.1902 q^{39} +(0.197669 - 0.342372i) q^{40} +(-2.90088 + 5.02447i) q^{41} +(-10.6484 - 18.4436i) q^{42} +(-3.45596 + 5.98589i) q^{43} +(1.02763 + 1.77991i) q^{44} +12.9989 q^{45} +2.53641 q^{46} +(1.17648 + 2.03773i) q^{47} +(5.01458 + 8.68551i) q^{48} +9.79497 q^{49} -15.3420 q^{50} +(1.44397 + 2.50103i) q^{51} +(5.25259 - 9.09776i) q^{52} +(6.48991 + 11.2408i) q^{53} +(1.71320 - 2.96735i) q^{54} +(1.77613 - 3.07635i) q^{55} +0.456093 q^{56} +(-4.96760 + 10.0921i) q^{57} +12.9268 q^{58} +(3.10390 - 5.37611i) q^{59} +(-9.42016 + 16.3162i) q^{60} +(-2.68195 - 4.64528i) q^{61} +(-0.567026 + 0.982118i) q^{62} +(7.49830 + 12.9874i) q^{63} -8.43585 q^{64} -18.1569 q^{65} +(-2.59834 - 4.50045i) q^{66} +(-5.01943 - 8.69391i) q^{67} -2.30006 q^{68} -3.25031 q^{69} +(-14.6580 - 25.3884i) q^{70} +(-0.778159 + 1.34781i) q^{71} +(0.203628 + 0.352693i) q^{72} +(-3.65200 + 6.32545i) q^{73} +(-1.00756 + 1.74515i) q^{74} +19.6602 q^{75} +(-4.98269 - 7.44520i) q^{76} +4.09817 q^{77} +(-13.2810 + 23.0034i) q^{78} +(7.30677 - 12.6557i) q^{79} +(6.90278 + 11.9560i) q^{80} +(3.29361 - 5.70471i) q^{81} +(5.84170 + 10.1181i) q^{82} +3.84888 q^{83} -21.7357 q^{84} +(1.98768 + 3.44276i) q^{85} +(6.95950 + 12.0542i) q^{86} -16.5652 q^{87} +0.111292 q^{88} +(0.742284 + 1.28567i) q^{89} +(13.0884 - 22.6698i) q^{90} +(-10.4736 - 18.1408i) q^{91} +(1.29434 - 2.24186i) q^{92} +(0.726623 - 1.25855i) q^{93} +4.73833 q^{94} +(-6.83811 + 13.8922i) q^{95} +20.7708 q^{96} +(8.33449 - 14.4358i) q^{97} +(9.86240 - 17.0822i) q^{98} +(1.82967 + 3.16909i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9} + 21 q^{10} - 18 q^{11} + 16 q^{12} + 11 q^{13} + q^{14} + 7 q^{15} - 13 q^{16} + 6 q^{17} - 8 q^{18} + 4 q^{19} + 4 q^{20} + 24 q^{21} - q^{22} - q^{23} - 3 q^{24} - 7 q^{25} - 4 q^{26} + 6 q^{27} - 2 q^{28} + 13 q^{29} - 64 q^{30} - 32 q^{31} - 14 q^{32} + 8 q^{34} - 12 q^{35} + 10 q^{36} - 36 q^{37} - 20 q^{38} + 20 q^{39} + 32 q^{40} + 4 q^{41} + 11 q^{42} + q^{43} + 9 q^{44} + 22 q^{45} - 14 q^{46} - 14 q^{47} + 37 q^{48} - 12 q^{49} + 30 q^{50} - 16 q^{51} + 57 q^{52} - 4 q^{53} - 33 q^{54} - 34 q^{56} - 7 q^{57} + 8 q^{58} + 31 q^{59} + 9 q^{60} + 3 q^{61} + 5 q^{62} + 50 q^{63} + 64 q^{64} - 56 q^{65} + 3 q^{66} - 2 q^{67} - 96 q^{68} - 58 q^{70} - 12 q^{71} + 5 q^{72} - 26 q^{73} + 35 q^{74} + 50 q^{75} - 36 q^{76} + 6 q^{77} + 3 q^{78} + 31 q^{79} + 31 q^{80} - 21 q^{81} + 25 q^{82} + 36 q^{83} - 102 q^{84} - 11 q^{85} + 41 q^{86} - 124 q^{87} - 11 q^{89} + 51 q^{90} - 20 q^{91} - 33 q^{92} + 20 q^{93} - 86 q^{94} + 17 q^{95} + 60 q^{96} + 16 q^{97} + 4 q^{98} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00688 1.74398i 0.711975 1.23318i −0.252140 0.967691i \(-0.581134\pi\)
0.964115 0.265486i \(-0.0855323\pi\)
\(3\) −1.29029 + 2.23484i −0.744947 + 1.29029i 0.205273 + 0.978705i \(0.434192\pi\)
−0.950220 + 0.311581i \(0.899142\pi\)
\(4\) −1.02763 1.77991i −0.513816 0.889956i
\(5\) −1.77613 + 3.07635i −0.794310 + 1.37578i 0.128967 + 0.991649i \(0.458834\pi\)
−0.923277 + 0.384136i \(0.874499\pi\)
\(6\) 2.59834 + 4.50045i 1.06077 + 1.83730i
\(7\) −4.09817 −1.54896 −0.774481 0.632598i \(-0.781989\pi\)
−0.774481 + 0.632598i \(0.781989\pi\)
\(8\) −0.111292 −0.0393476
\(9\) −1.82967 3.16909i −0.609891 1.05636i
\(10\) 3.57672 + 6.19505i 1.13106 + 1.95905i
\(11\) −1.00000 −0.301511
\(12\) 5.30376 1.53106
\(13\) 2.55568 + 4.42656i 0.708817 + 1.22771i 0.965296 + 0.261157i \(0.0841042\pi\)
−0.256479 + 0.966550i \(0.582562\pi\)
\(14\) −4.12638 + 7.14710i −1.10282 + 1.91014i
\(15\) −4.58343 7.93873i −1.18344 2.04977i
\(16\) 1.94321 3.36573i 0.485802 0.841433i
\(17\) 0.559554 0.969175i 0.135712 0.235060i −0.790157 0.612904i \(-0.790001\pi\)
0.925869 + 0.377844i \(0.123335\pi\)
\(18\) −7.36908 −1.73691
\(19\) 4.34935 0.288300i 0.997810 0.0661406i
\(20\) 7.30084 1.63252
\(21\) 5.28780 9.15875i 1.15389 1.99860i
\(22\) −1.00688 + 1.74398i −0.214668 + 0.371817i
\(23\) 0.629766 + 1.09079i 0.131315 + 0.227445i 0.924184 0.381948i \(-0.124747\pi\)
−0.792869 + 0.609393i \(0.791413\pi\)
\(24\) 0.143598 0.248719i 0.0293119 0.0507696i
\(25\) −3.80928 6.59786i −0.761855 1.31957i
\(26\) 10.2931 2.01864
\(27\) 1.70149 0.327451
\(28\) 4.21141 + 7.29438i 0.795882 + 1.37851i
\(29\) 3.20960 + 5.55920i 0.596008 + 1.03232i 0.993404 + 0.114669i \(0.0365808\pi\)
−0.397395 + 0.917647i \(0.630086\pi\)
\(30\) −18.4599 −3.37031
\(31\) −0.563149 −0.101145 −0.0505723 0.998720i \(-0.516105\pi\)
−0.0505723 + 0.998720i \(0.516105\pi\)
\(32\) −4.02446 6.97057i −0.711431 1.23223i
\(33\) 1.29029 2.23484i 0.224610 0.389036i
\(34\) −1.12681 1.95170i −0.193247 0.334713i
\(35\) 7.27888 12.6074i 1.23035 2.13104i
\(36\) −3.76046 + 6.51331i −0.626744 + 1.08555i
\(37\) −1.00067 −0.164509 −0.0822547 0.996611i \(-0.526212\pi\)
−0.0822547 + 0.996611i \(0.526212\pi\)
\(38\) 3.87651 7.87545i 0.628853 1.27757i
\(39\) −13.1902 −2.11212
\(40\) 0.197669 0.342372i 0.0312542 0.0541338i
\(41\) −2.90088 + 5.02447i −0.453041 + 0.784690i −0.998573 0.0533997i \(-0.982994\pi\)
0.545532 + 0.838090i \(0.316328\pi\)
\(42\) −10.6484 18.4436i −1.64309 2.84591i
\(43\) −3.45596 + 5.98589i −0.527028 + 0.912840i 0.472476 + 0.881344i \(0.343360\pi\)
−0.999504 + 0.0314961i \(0.989973\pi\)
\(44\) 1.02763 + 1.77991i 0.154921 + 0.268332i
\(45\) 12.9989 1.93777
\(46\) 2.53641 0.373973
\(47\) 1.17648 + 2.03773i 0.171608 + 0.297233i 0.938982 0.343966i \(-0.111771\pi\)
−0.767375 + 0.641199i \(0.778437\pi\)
\(48\) 5.01458 + 8.68551i 0.723793 + 1.25365i
\(49\) 9.79497 1.39928
\(50\) −15.3420 −2.16969
\(51\) 1.44397 + 2.50103i 0.202196 + 0.350214i
\(52\) 5.25259 9.09776i 0.728404 1.26163i
\(53\) 6.48991 + 11.2408i 0.891457 + 1.54405i 0.838129 + 0.545472i \(0.183650\pi\)
0.0533285 + 0.998577i \(0.483017\pi\)
\(54\) 1.71320 2.96735i 0.233137 0.403805i
\(55\) 1.77613 3.07635i 0.239493 0.414815i
\(56\) 0.456093 0.0609479
\(57\) −4.96760 + 10.0921i −0.657975 + 1.33673i
\(58\) 12.9268 1.69737
\(59\) 3.10390 5.37611i 0.404093 0.699910i −0.590122 0.807314i \(-0.700921\pi\)
0.994215 + 0.107404i \(0.0342539\pi\)
\(60\) −9.42016 + 16.3162i −1.21614 + 2.10641i
\(61\) −2.68195 4.64528i −0.343389 0.594767i 0.641671 0.766980i \(-0.278241\pi\)
−0.985060 + 0.172213i \(0.944908\pi\)
\(62\) −0.567026 + 0.982118i −0.0720124 + 0.124729i
\(63\) 7.49830 + 12.9874i 0.944697 + 1.63626i
\(64\) −8.43585 −1.05448
\(65\) −18.1569 −2.25208
\(66\) −2.59834 4.50045i −0.319833 0.553967i
\(67\) −5.01943 8.69391i −0.613221 1.06213i −0.990694 0.136110i \(-0.956540\pi\)
0.377472 0.926021i \(-0.376793\pi\)
\(68\) −2.30006 −0.278924
\(69\) −3.25031 −0.391291
\(70\) −14.6580 25.3884i −1.75196 3.03449i
\(71\) −0.778159 + 1.34781i −0.0923504 + 0.159956i −0.908500 0.417885i \(-0.862771\pi\)
0.816149 + 0.577841i \(0.196105\pi\)
\(72\) 0.203628 + 0.352693i 0.0239977 + 0.0415653i
\(73\) −3.65200 + 6.32545i −0.427434 + 0.740338i −0.996644 0.0818545i \(-0.973916\pi\)
0.569210 + 0.822192i \(0.307249\pi\)
\(74\) −1.00756 + 1.74515i −0.117127 + 0.202869i
\(75\) 19.6602 2.27017
\(76\) −4.98269 7.44520i −0.571553 0.854023i
\(77\) 4.09817 0.467029
\(78\) −13.2810 + 23.0034i −1.50378 + 2.60462i
\(79\) 7.30677 12.6557i 0.822076 1.42388i −0.0820570 0.996628i \(-0.526149\pi\)
0.904133 0.427250i \(-0.140518\pi\)
\(80\) 6.90278 + 11.9560i 0.771754 + 1.33672i
\(81\) 3.29361 5.70471i 0.365957 0.633856i
\(82\) 5.84170 + 10.1181i 0.645108 + 1.11736i
\(83\) 3.84888 0.422469 0.211235 0.977435i \(-0.432252\pi\)
0.211235 + 0.977435i \(0.432252\pi\)
\(84\) −21.7357 −2.37156
\(85\) 1.98768 + 3.44276i 0.215594 + 0.373420i
\(86\) 6.95950 + 12.0542i 0.750462 + 1.29984i
\(87\) −16.5652 −1.77598
\(88\) 0.111292 0.0118638
\(89\) 0.742284 + 1.28567i 0.0786820 + 0.136281i 0.902682 0.430309i \(-0.141596\pi\)
−0.824000 + 0.566590i \(0.808262\pi\)
\(90\) 13.0884 22.6698i 1.37964 2.38961i
\(91\) −10.4736 18.1408i −1.09793 1.90167i
\(92\) 1.29434 2.24186i 0.134944 0.233730i
\(93\) 0.726623 1.25855i 0.0753473 0.130505i
\(94\) 4.73833 0.488721
\(95\) −6.83811 + 13.8922i −0.701575 + 1.42531i
\(96\) 20.7708 2.11991
\(97\) 8.33449 14.4358i 0.846240 1.46573i −0.0383009 0.999266i \(-0.512195\pi\)
0.884540 0.466464i \(-0.154472\pi\)
\(98\) 9.86240 17.0822i 0.996253 1.72556i
\(99\) 1.82967 + 3.16909i 0.183889 + 0.318505i
\(100\) −7.82908 + 13.5604i −0.782908 + 1.35604i
\(101\) 7.74526 + 13.4152i 0.770683 + 1.33486i 0.937189 + 0.348821i \(0.113418\pi\)
−0.166507 + 0.986040i \(0.553249\pi\)
\(102\) 5.81564 0.575834
\(103\) −6.13161 −0.604165 −0.302083 0.953282i \(-0.597682\pi\)
−0.302083 + 0.953282i \(0.597682\pi\)
\(104\) −0.284426 0.492640i −0.0278903 0.0483073i
\(105\) 18.7837 + 32.5342i 1.83310 + 3.17502i
\(106\) 26.1383 2.53878
\(107\) −0.568664 −0.0549749 −0.0274874 0.999622i \(-0.508751\pi\)
−0.0274874 + 0.999622i \(0.508751\pi\)
\(108\) −1.74850 3.02850i −0.168250 0.291417i
\(109\) 8.99308 15.5765i 0.861381 1.49196i −0.00921471 0.999958i \(-0.502933\pi\)
0.870596 0.491999i \(-0.163733\pi\)
\(110\) −3.57672 6.19505i −0.341026 0.590675i
\(111\) 1.29115 2.23634i 0.122551 0.212264i
\(112\) −7.96359 + 13.7933i −0.752488 + 1.30335i
\(113\) 4.20608 0.395675 0.197838 0.980235i \(-0.436608\pi\)
0.197838 + 0.980235i \(0.436608\pi\)
\(114\) 12.5986 + 18.8250i 1.17996 + 1.76312i
\(115\) −4.47418 −0.417220
\(116\) 6.59659 11.4256i 0.612478 1.06084i
\(117\) 9.35210 16.1983i 0.864602 1.49753i
\(118\) −6.25053 10.8262i −0.575408 0.996636i
\(119\) −2.29314 + 3.97184i −0.210212 + 0.364098i
\(120\) 0.510098 + 0.883516i 0.0465654 + 0.0806536i
\(121\) 1.00000 0.0909091
\(122\) −10.8017 −0.977936
\(123\) −7.48592 12.9660i −0.674983 1.16910i
\(124\) 0.578710 + 1.00236i 0.0519697 + 0.0900142i
\(125\) 9.30179 0.831977
\(126\) 30.1997 2.69040
\(127\) 5.06726 + 8.77675i 0.449647 + 0.778811i 0.998363 0.0571978i \(-0.0182166\pi\)
−0.548716 + 0.836009i \(0.684883\pi\)
\(128\) −0.444997 + 0.770758i −0.0393326 + 0.0681260i
\(129\) −8.91834 15.4470i −0.785216 1.36003i
\(130\) −18.2819 + 31.6651i −1.60342 + 2.77721i
\(131\) −0.633276 + 1.09687i −0.0553296 + 0.0958336i −0.892364 0.451317i \(-0.850954\pi\)
0.837034 + 0.547151i \(0.184288\pi\)
\(132\) −5.30376 −0.461633
\(133\) −17.8244 + 1.18150i −1.54557 + 0.102449i
\(134\) −20.2160 −1.74639
\(135\) −3.02206 + 5.23436i −0.260098 + 0.450502i
\(136\) −0.0622738 + 0.107861i −0.00533993 + 0.00924903i
\(137\) 5.91332 + 10.2422i 0.505209 + 0.875048i 0.999982 + 0.00602554i \(0.00191800\pi\)
−0.494773 + 0.869022i \(0.664749\pi\)
\(138\) −3.27269 + 5.66846i −0.278590 + 0.482531i
\(139\) 2.08925 + 3.61868i 0.177208 + 0.306932i 0.940923 0.338621i \(-0.109960\pi\)
−0.763716 + 0.645553i \(0.776627\pi\)
\(140\) −29.9201 −2.52871
\(141\) −6.07199 −0.511354
\(142\) 1.56703 + 2.71418i 0.131502 + 0.227769i
\(143\) −2.55568 4.42656i −0.213716 0.370168i
\(144\) −14.2217 −1.18514
\(145\) −22.8027 −1.89366
\(146\) 7.35428 + 12.7380i 0.608645 + 1.05420i
\(147\) −12.6383 + 21.8902i −1.04239 + 1.80547i
\(148\) 1.02832 + 1.78111i 0.0845276 + 0.146406i
\(149\) 6.43412 11.1442i 0.527104 0.912971i −0.472397 0.881386i \(-0.656611\pi\)
0.999501 0.0315848i \(-0.0100554\pi\)
\(150\) 19.7956 34.2869i 1.61630 2.79952i
\(151\) −9.13232 −0.743178 −0.371589 0.928397i \(-0.621187\pi\)
−0.371589 + 0.928397i \(0.621187\pi\)
\(152\) −0.484048 + 0.0320854i −0.0392615 + 0.00260247i
\(153\) −4.09520 −0.331077
\(154\) 4.12638 7.14710i 0.332513 0.575930i
\(155\) 1.00023 1.73244i 0.0803401 0.139153i
\(156\) 13.5547 + 23.4774i 1.08524 + 1.87970i
\(157\) 0.569186 0.985860i 0.0454260 0.0786802i −0.842418 0.538824i \(-0.818869\pi\)
0.887844 + 0.460144i \(0.152202\pi\)
\(158\) −14.7142 25.4857i −1.17060 2.02753i
\(159\) −33.4953 −2.65635
\(160\) 28.5919 2.26039
\(161\) −2.58088 4.47022i −0.203402 0.352303i
\(162\) −6.63258 11.4880i −0.521105 0.902580i
\(163\) 10.7609 0.842856 0.421428 0.906862i \(-0.361529\pi\)
0.421428 + 0.906862i \(0.361529\pi\)
\(164\) 11.9242 0.931120
\(165\) 4.58343 + 7.93873i 0.356820 + 0.618030i
\(166\) 3.87537 6.71234i 0.300787 0.520979i
\(167\) 8.07362 + 13.9839i 0.624756 + 1.08211i 0.988588 + 0.150644i \(0.0481347\pi\)
−0.363833 + 0.931464i \(0.618532\pi\)
\(168\) −0.588490 + 1.01929i −0.0454030 + 0.0786402i
\(169\) −6.56296 + 11.3674i −0.504843 + 0.874414i
\(170\) 8.00546 0.613991
\(171\) −8.87154 13.2560i −0.678424 1.01371i
\(172\) 14.2058 1.08318
\(173\) −11.2891 + 19.5533i −0.858296 + 1.48661i 0.0152572 + 0.999884i \(0.495143\pi\)
−0.873553 + 0.486729i \(0.838190\pi\)
\(174\) −16.6793 + 28.8893i −1.26445 + 2.19009i
\(175\) 15.6111 + 27.0391i 1.18008 + 2.04397i
\(176\) −1.94321 + 3.36573i −0.146475 + 0.253702i
\(177\) 8.00983 + 13.8734i 0.602055 + 1.04279i
\(178\) 2.98958 0.224078
\(179\) −24.2041 −1.80910 −0.904549 0.426369i \(-0.859793\pi\)
−0.904549 + 0.426369i \(0.859793\pi\)
\(180\) −13.3581 23.1370i −0.995657 1.72453i
\(181\) −0.716984 1.24185i −0.0532930 0.0923062i 0.838148 0.545443i \(-0.183638\pi\)
−0.891441 + 0.453136i \(0.850305\pi\)
\(182\) −42.1828 −3.12679
\(183\) 13.8419 1.02322
\(184\) −0.0700878 0.121396i −0.00516694 0.00894940i
\(185\) 1.77732 3.07841i 0.130671 0.226329i
\(186\) −1.46325 2.53442i −0.107291 0.185833i
\(187\) −0.559554 + 0.969175i −0.0409186 + 0.0708731i
\(188\) 2.41798 4.18807i 0.176350 0.305446i
\(189\) −6.97298 −0.507209
\(190\) 17.3424 + 25.9133i 1.25815 + 1.87995i
\(191\) 0.706099 0.0510915 0.0255458 0.999674i \(-0.491868\pi\)
0.0255458 + 0.999674i \(0.491868\pi\)
\(192\) 10.8846 18.8528i 0.785532 1.36058i
\(193\) 3.46026 5.99334i 0.249075 0.431410i −0.714195 0.699947i \(-0.753207\pi\)
0.963269 + 0.268537i \(0.0865402\pi\)
\(194\) −16.7837 29.0703i −1.20500 2.08713i
\(195\) 23.4275 40.5777i 1.67768 2.90583i
\(196\) −10.0656 17.4342i −0.718974 1.24530i
\(197\) −0.315004 −0.0224431 −0.0112215 0.999937i \(-0.503572\pi\)
−0.0112215 + 0.999937i \(0.503572\pi\)
\(198\) 7.36908 0.523697
\(199\) −3.03859 5.26299i −0.215400 0.373084i 0.737996 0.674805i \(-0.235772\pi\)
−0.953396 + 0.301721i \(0.902439\pi\)
\(200\) 0.423942 + 0.734288i 0.0299772 + 0.0519220i
\(201\) 25.9060 1.82727
\(202\) 31.1943 2.19483
\(203\) −13.1535 22.7825i −0.923194 1.59902i
\(204\) 2.96774 5.14027i 0.207783 0.359891i
\(205\) −10.3047 17.8482i −0.719710 1.24657i
\(206\) −6.17382 + 10.6934i −0.430150 + 0.745042i
\(207\) 2.30453 3.99156i 0.160176 0.277433i
\(208\) 19.8648 1.37738
\(209\) −4.34935 + 0.288300i −0.300851 + 0.0199421i
\(210\) 75.6519 5.22048
\(211\) −0.750068 + 1.29916i −0.0516368 + 0.0894376i −0.890688 0.454614i \(-0.849777\pi\)
0.839052 + 0.544052i \(0.183110\pi\)
\(212\) 13.3385 23.1029i 0.916091 1.58672i
\(213\) −2.00809 3.47812i −0.137592 0.238317i
\(214\) −0.572579 + 0.991736i −0.0391407 + 0.0677937i
\(215\) −12.2765 21.2634i −0.837247 1.45015i
\(216\) −0.189362 −0.0128844
\(217\) 2.30788 0.156669
\(218\) −18.1100 31.3674i −1.22656 2.12447i
\(219\) −9.42424 16.3233i −0.636831 1.10302i
\(220\) −7.30084 −0.492222
\(221\) 5.72015 0.384779
\(222\) −2.60008 4.50347i −0.174506 0.302253i
\(223\) −0.556842 + 0.964479i −0.0372889 + 0.0645863i −0.884068 0.467359i \(-0.845206\pi\)
0.846779 + 0.531945i \(0.178539\pi\)
\(224\) 16.4929 + 28.5666i 1.10198 + 1.90868i
\(225\) −13.9395 + 24.1439i −0.929297 + 1.60959i
\(226\) 4.23504 7.33531i 0.281711 0.487937i
\(227\) 7.44869 0.494387 0.247193 0.968966i \(-0.420492\pi\)
0.247193 + 0.968966i \(0.420492\pi\)
\(228\) 23.0679 1.52907i 1.52771 0.101265i
\(229\) −8.19763 −0.541715 −0.270857 0.962620i \(-0.587307\pi\)
−0.270857 + 0.962620i \(0.587307\pi\)
\(230\) −4.50499 + 7.80286i −0.297050 + 0.514506i
\(231\) −5.28780 + 9.15875i −0.347912 + 0.602601i
\(232\) −0.357203 0.618693i −0.0234515 0.0406192i
\(233\) 3.85323 6.67399i 0.252433 0.437227i −0.711762 0.702421i \(-0.752102\pi\)
0.964195 + 0.265193i \(0.0854358\pi\)
\(234\) −18.8330 32.6197i −1.23115 2.13241i
\(235\) −8.35834 −0.545238
\(236\) −12.7587 −0.830518
\(237\) 18.8556 + 32.6589i 1.22481 + 2.12143i
\(238\) 4.61786 + 7.99837i 0.299332 + 0.518458i
\(239\) 11.0555 0.715121 0.357560 0.933890i \(-0.383609\pi\)
0.357560 + 0.933890i \(0.383609\pi\)
\(240\) −35.6262 −2.29966
\(241\) −3.66606 6.34980i −0.236152 0.409027i 0.723455 0.690371i \(-0.242553\pi\)
−0.959607 + 0.281345i \(0.909220\pi\)
\(242\) 1.00688 1.74398i 0.0647250 0.112107i
\(243\) 11.0516 + 19.1420i 0.708963 + 1.22796i
\(244\) −5.51212 + 9.54727i −0.352877 + 0.611202i
\(245\) −17.3971 + 30.1327i −1.11146 + 1.92511i
\(246\) −30.1498 −1.92228
\(247\) 12.3917 + 18.5159i 0.788466 + 1.17814i
\(248\) 0.0626739 0.00397980
\(249\) −4.96615 + 8.60162i −0.314717 + 0.545106i
\(250\) 9.36583 16.2221i 0.592347 1.02597i
\(251\) −5.17437 8.96227i −0.326603 0.565693i 0.655232 0.755427i \(-0.272571\pi\)
−0.981836 + 0.189734i \(0.939237\pi\)
\(252\) 15.4110 26.6926i 0.970802 1.68148i
\(253\) −0.629766 1.09079i −0.0395930 0.0685771i
\(254\) 20.4086 1.28055
\(255\) −10.2587 −0.642425
\(256\) −7.53972 13.0592i −0.471233 0.816199i
\(257\) −12.5223 21.6893i −0.781122 1.35294i −0.931289 0.364282i \(-0.881314\pi\)
0.150167 0.988661i \(-0.452019\pi\)
\(258\) −35.9189 −2.23622
\(259\) 4.10092 0.254819
\(260\) 18.6586 + 32.3176i 1.15716 + 2.00425i
\(261\) 11.7450 20.3430i 0.727000 1.25920i
\(262\) 1.27527 + 2.20883i 0.0787865 + 0.136462i
\(263\) −1.79408 + 3.10744i −0.110628 + 0.191613i −0.916024 0.401124i \(-0.868619\pi\)
0.805396 + 0.592737i \(0.201953\pi\)
\(264\) −0.143598 + 0.248719i −0.00883786 + 0.0153076i
\(265\) −46.1077 −2.83237
\(266\) −15.8866 + 32.2749i −0.974069 + 1.97890i
\(267\) −3.83103 −0.234455
\(268\) −10.3163 + 17.8683i −0.630166 + 1.09148i
\(269\) 3.97289 6.88125i 0.242231 0.419557i −0.719118 0.694888i \(-0.755454\pi\)
0.961350 + 0.275331i \(0.0887873\pi\)
\(270\) 6.08573 + 10.5408i 0.370366 + 0.641493i
\(271\) −9.49124 + 16.4393i −0.576552 + 0.998617i 0.419320 + 0.907839i \(0.362269\pi\)
−0.995871 + 0.0907779i \(0.971065\pi\)
\(272\) −2.17466 3.76662i −0.131858 0.228385i
\(273\) 54.0557 3.27160
\(274\) 23.8161 1.43878
\(275\) 3.80928 + 6.59786i 0.229708 + 0.397866i
\(276\) 3.34012 + 5.78527i 0.201052 + 0.348232i
\(277\) 6.53005 0.392353 0.196176 0.980569i \(-0.437147\pi\)
0.196176 + 0.980569i \(0.437147\pi\)
\(278\) 8.41452 0.504669
\(279\) 1.03038 + 1.78467i 0.0616871 + 0.106845i
\(280\) −0.810080 + 1.40310i −0.0484115 + 0.0838512i
\(281\) 4.74162 + 8.21273i 0.282862 + 0.489931i 0.972088 0.234615i \(-0.0753830\pi\)
−0.689227 + 0.724546i \(0.742050\pi\)
\(282\) −6.11379 + 10.5894i −0.364071 + 0.630589i
\(283\) −3.82158 + 6.61917i −0.227169 + 0.393469i −0.956968 0.290193i \(-0.906280\pi\)
0.729799 + 0.683662i \(0.239614\pi\)
\(284\) 3.19864 0.189805
\(285\) −22.2237 33.2070i −1.31642 1.96701i
\(286\) −10.2931 −0.608643
\(287\) 11.8883 20.5911i 0.701743 1.21545i
\(288\) −14.7269 + 25.5077i −0.867791 + 1.50306i
\(289\) 7.87380 + 13.6378i 0.463165 + 0.802225i
\(290\) −22.9597 + 39.7673i −1.34824 + 2.33522i
\(291\) 21.5077 + 37.2525i 1.26081 + 2.18378i
\(292\) 15.0117 0.878491
\(293\) 11.6478 0.680472 0.340236 0.940340i \(-0.389493\pi\)
0.340236 + 0.940340i \(0.389493\pi\)
\(294\) 25.4506 + 44.0818i 1.48431 + 2.57090i
\(295\) 11.0259 + 19.0973i 0.641950 + 1.11189i
\(296\) 0.111367 0.00647305
\(297\) −1.70149 −0.0987303
\(298\) −12.9568 22.4419i −0.750569 1.30002i
\(299\) −3.21895 + 5.57539i −0.186157 + 0.322433i
\(300\) −20.2035 34.9935i −1.16645 2.02035i
\(301\) 14.1631 24.5312i 0.816346 1.41395i
\(302\) −9.19519 + 15.9265i −0.529124 + 0.916469i
\(303\) −39.9744 −2.29647
\(304\) 7.48136 15.1990i 0.429085 0.871722i
\(305\) 19.0540 1.09103
\(306\) −4.12339 + 7.14193i −0.235719 + 0.408277i
\(307\) −7.77605 + 13.4685i −0.443802 + 0.768688i −0.997968 0.0637182i \(-0.979704\pi\)
0.554166 + 0.832406i \(0.313037\pi\)
\(308\) −4.21141 7.29438i −0.239967 0.415636i
\(309\) 7.91152 13.7032i 0.450071 0.779545i
\(310\) −2.01422 3.48874i −0.114400 0.198147i
\(311\) 33.6852 1.91011 0.955057 0.296421i \(-0.0957933\pi\)
0.955057 + 0.296421i \(0.0957933\pi\)
\(312\) 1.46796 0.0831070
\(313\) −13.1265 22.7358i −0.741954 1.28510i −0.951604 0.307326i \(-0.900566\pi\)
0.209650 0.977777i \(-0.432768\pi\)
\(314\) −1.14621 1.98529i −0.0646844 0.112037i
\(315\) −53.2718 −3.00153
\(316\) −30.0347 −1.68959
\(317\) −13.9300 24.1275i −0.782389 1.35514i −0.930546 0.366174i \(-0.880667\pi\)
0.148157 0.988964i \(-0.452666\pi\)
\(318\) −33.7259 + 58.4150i −1.89126 + 3.27575i
\(319\) −3.20960 5.55920i −0.179703 0.311255i
\(320\) 14.9832 25.9516i 0.837584 1.45074i
\(321\) 0.733739 1.27087i 0.0409533 0.0709333i
\(322\) −10.3946 −0.579269
\(323\) 2.15428 4.37661i 0.119868 0.243521i
\(324\) −13.5385 −0.752139
\(325\) 19.4706 33.7240i 1.08003 1.87067i
\(326\) 10.8350 18.7667i 0.600093 1.03939i
\(327\) 23.2073 + 40.1962i 1.28337 + 2.22286i
\(328\) 0.322844 0.559182i 0.0178261 0.0308757i
\(329\) −4.82142 8.35094i −0.265813 0.460402i
\(330\) 18.4599 1.01619
\(331\) −18.6253 −1.02374 −0.511870 0.859063i \(-0.671047\pi\)
−0.511870 + 0.859063i \(0.671047\pi\)
\(332\) −3.95523 6.85066i −0.217071 0.375979i
\(333\) 1.83090 + 3.17121i 0.100333 + 0.173781i
\(334\) 32.5168 1.77924
\(335\) 35.6607 1.94835
\(336\) −20.5506 35.5947i −1.12113 1.94185i
\(337\) −7.41548 + 12.8440i −0.403947 + 0.699657i −0.994198 0.107563i \(-0.965695\pi\)
0.590251 + 0.807220i \(0.299029\pi\)
\(338\) 13.2163 + 22.8913i 0.718872 + 1.24512i
\(339\) −5.42705 + 9.39992i −0.294757 + 0.510534i
\(340\) 4.08521 7.07579i 0.221552 0.383739i
\(341\) 0.563149 0.0304962
\(342\) −32.0507 + 2.12450i −1.73310 + 0.114880i
\(343\) −11.4542 −0.618471
\(344\) 0.384620 0.666181i 0.0207373 0.0359181i
\(345\) 5.77297 9.99908i 0.310806 0.538333i
\(346\) 22.7337 + 39.3759i 1.22217 + 2.11686i
\(347\) −5.26910 + 9.12636i −0.282860 + 0.489928i −0.972088 0.234616i \(-0.924617\pi\)
0.689228 + 0.724545i \(0.257950\pi\)
\(348\) 17.0230 + 29.4846i 0.912526 + 1.58054i
\(349\) 18.8702 1.01010 0.505048 0.863091i \(-0.331475\pi\)
0.505048 + 0.863091i \(0.331475\pi\)
\(350\) 62.8741 3.36076
\(351\) 4.34845 + 7.53174i 0.232103 + 0.402014i
\(352\) 4.02446 + 6.97057i 0.214505 + 0.371533i
\(353\) 6.66031 0.354493 0.177246 0.984167i \(-0.443281\pi\)
0.177246 + 0.984167i \(0.443281\pi\)
\(354\) 32.2599 1.71459
\(355\) −2.76422 4.78777i −0.146710 0.254109i
\(356\) 1.52559 2.64240i 0.0808562 0.140047i
\(357\) −5.91762 10.2496i −0.313194 0.542467i
\(358\) −24.3707 + 42.2113i −1.28803 + 2.23094i
\(359\) 13.5684 23.5012i 0.716114 1.24035i −0.246415 0.969165i \(-0.579252\pi\)
0.962528 0.271181i \(-0.0874142\pi\)
\(360\) −1.44668 −0.0762466
\(361\) 18.8338 2.50784i 0.991251 0.131991i
\(362\) −2.88768 −0.151773
\(363\) −1.29029 + 2.23484i −0.0677224 + 0.117299i
\(364\) −21.5260 + 37.2841i −1.12827 + 1.95422i
\(365\) −12.9728 22.4696i −0.679030 1.17611i
\(366\) 13.9372 24.1400i 0.728510 1.26182i
\(367\) 10.4742 + 18.1418i 0.546747 + 0.946993i 0.998495 + 0.0548476i \(0.0174673\pi\)
−0.451748 + 0.892146i \(0.649199\pi\)
\(368\) 4.89506 0.255173
\(369\) 21.2306 1.10522
\(370\) −3.57912 6.19921i −0.186069 0.322282i
\(371\) −26.5967 46.0669i −1.38083 2.39167i
\(372\) −2.98681 −0.154859
\(373\) 12.4492 0.644598 0.322299 0.946638i \(-0.395544\pi\)
0.322299 + 0.946638i \(0.395544\pi\)
\(374\) 1.12681 + 1.95170i 0.0582661 + 0.100920i
\(375\) −12.0020 + 20.7880i −0.619779 + 1.07349i
\(376\) −0.130933 0.226782i −0.00675235 0.0116954i
\(377\) −16.4054 + 28.4150i −0.844922 + 1.46345i
\(378\) −7.02098 + 12.1607i −0.361120 + 0.625479i
\(379\) −2.36527 −0.121496 −0.0607478 0.998153i \(-0.519349\pi\)
−0.0607478 + 0.998153i \(0.519349\pi\)
\(380\) 31.7539 2.10483i 1.62894 0.107976i
\(381\) −26.1528 −1.33985
\(382\) 0.710960 1.23142i 0.0363759 0.0630049i
\(383\) −2.03738 + 3.52885i −0.104105 + 0.180316i −0.913372 0.407125i \(-0.866531\pi\)
0.809267 + 0.587441i \(0.199865\pi\)
\(384\) −1.14835 1.98900i −0.0586014 0.101501i
\(385\) −7.27888 + 12.6074i −0.370966 + 0.642532i
\(386\) −6.96815 12.0692i −0.354670 0.614306i
\(387\) 25.2931 1.28572
\(388\) −34.2592 −1.73925
\(389\) 15.3012 + 26.5024i 0.775800 + 1.34372i 0.934344 + 0.356373i \(0.115987\pi\)
−0.158544 + 0.987352i \(0.550680\pi\)
\(390\) −47.1776 81.7140i −2.38893 4.13775i
\(391\) 1.40955 0.0712841
\(392\) −1.09010 −0.0550584
\(393\) −1.63421 2.83054i −0.0824351 0.142782i
\(394\) −0.317172 + 0.549359i −0.0159789 + 0.0276763i
\(395\) 25.9556 + 44.9564i 1.30597 + 2.26200i
\(396\) 3.76046 6.51331i 0.188970 0.327306i
\(397\) 16.4053 28.4148i 0.823359 1.42610i −0.0798075 0.996810i \(-0.525431\pi\)
0.903167 0.429290i \(-0.141236\pi\)
\(398\) −12.2380 −0.613438
\(399\) 20.3581 41.3591i 1.01918 2.07054i
\(400\) −29.6089 −1.48044
\(401\) −8.70563 + 15.0786i −0.434738 + 0.752989i −0.997274 0.0737838i \(-0.976493\pi\)
0.562536 + 0.826773i \(0.309826\pi\)
\(402\) 26.0844 45.1794i 1.30097 2.25335i
\(403\) −1.43923 2.49281i −0.0716930 0.124176i
\(404\) 15.9186 27.5718i 0.791979 1.37175i
\(405\) 11.6998 + 20.2646i 0.581367 + 1.00696i
\(406\) −52.9762 −2.62916
\(407\) 1.00067 0.0496014
\(408\) −0.160702 0.278344i −0.00795593 0.0137801i
\(409\) 1.11047 + 1.92340i 0.0549094 + 0.0951059i 0.892174 0.451693i \(-0.149180\pi\)
−0.837264 + 0.546799i \(0.815846\pi\)
\(410\) −41.5025 −2.04966
\(411\) −30.5195 −1.50542
\(412\) 6.30104 + 10.9137i 0.310430 + 0.537680i
\(413\) −12.7203 + 22.0322i −0.625924 + 1.08413i
\(414\) −4.64079 8.03809i −0.228082 0.395050i
\(415\) −6.83610 + 11.8405i −0.335571 + 0.581226i
\(416\) 20.5704 35.6291i 1.00855 1.74686i
\(417\) −10.7829 −0.528041
\(418\) −3.87651 + 7.87545i −0.189606 + 0.385201i
\(419\) 15.3405 0.749434 0.374717 0.927139i \(-0.377740\pi\)
0.374717 + 0.927139i \(0.377740\pi\)
\(420\) 38.6054 66.8665i 1.88375 3.26275i
\(421\) 13.5100 23.4000i 0.658437 1.14045i −0.322583 0.946541i \(-0.604551\pi\)
0.981020 0.193905i \(-0.0621154\pi\)
\(422\) 1.51046 + 2.61620i 0.0735282 + 0.127355i
\(423\) 4.30515 7.45674i 0.209324 0.362559i
\(424\) −0.722274 1.25101i −0.0350767 0.0607547i
\(425\) −8.52598 −0.413571
\(426\) −8.08767 −0.391849
\(427\) 10.9911 + 19.0371i 0.531896 + 0.921270i
\(428\) 0.584378 + 1.01217i 0.0282470 + 0.0489252i
\(429\) 13.1902 0.636829
\(430\) −49.4439 −2.38440
\(431\) −2.43725 4.22143i −0.117398 0.203339i 0.801338 0.598212i \(-0.204122\pi\)
−0.918736 + 0.394873i \(0.870789\pi\)
\(432\) 3.30634 5.72675i 0.159076 0.275528i
\(433\) −5.95500 10.3144i −0.286179 0.495677i 0.686715 0.726926i \(-0.259052\pi\)
−0.972894 + 0.231250i \(0.925719\pi\)
\(434\) 2.32377 4.02488i 0.111544 0.193201i
\(435\) 29.4220 50.9604i 1.41068 2.44336i
\(436\) −36.9664 −1.77037
\(437\) 3.05355 + 4.56265i 0.146071 + 0.218261i
\(438\) −37.9565 −1.81363
\(439\) −8.36704 + 14.4921i −0.399337 + 0.691672i −0.993644 0.112566i \(-0.964093\pi\)
0.594307 + 0.804238i \(0.297426\pi\)
\(440\) −0.197669 + 0.342372i −0.00942349 + 0.0163220i
\(441\) −17.9216 31.0411i −0.853409 1.47815i
\(442\) 5.75953 9.97580i 0.273953 0.474501i
\(443\) 11.3895 + 19.7272i 0.541132 + 0.937268i 0.998839 + 0.0481649i \(0.0153373\pi\)
−0.457708 + 0.889103i \(0.651329\pi\)
\(444\) −5.30732 −0.251874
\(445\) −5.27357 −0.249991
\(446\) 1.12135 + 1.94224i 0.0530975 + 0.0919676i
\(447\) 16.6037 + 28.7585i 0.785328 + 1.36023i
\(448\) 34.5715 1.63335
\(449\) −21.0257 −0.992264 −0.496132 0.868247i \(-0.665247\pi\)
−0.496132 + 0.868247i \(0.665247\pi\)
\(450\) 28.0709 + 48.6201i 1.32327 + 2.29198i
\(451\) 2.90088 5.02447i 0.136597 0.236593i
\(452\) −4.32231 7.48646i −0.203304 0.352133i
\(453\) 11.7833 20.4093i 0.553628 0.958911i
\(454\) 7.49997 12.9903i 0.351991 0.609666i
\(455\) 74.4098 3.48839
\(456\) 0.552854 1.12317i 0.0258898 0.0525972i
\(457\) −33.8141 −1.58175 −0.790877 0.611975i \(-0.790375\pi\)
−0.790877 + 0.611975i \(0.790375\pi\)
\(458\) −8.25407 + 14.2965i −0.385687 + 0.668030i
\(459\) 0.952073 1.64904i 0.0444390 0.0769706i
\(460\) 4.59782 + 7.96365i 0.214374 + 0.371307i
\(461\) −10.1323 + 17.5497i −0.471909 + 0.817370i −0.999483 0.0321386i \(-0.989768\pi\)
0.527575 + 0.849509i \(0.323102\pi\)
\(462\) 10.6484 + 18.4436i 0.495409 + 0.858074i
\(463\) −17.8047 −0.827456 −0.413728 0.910401i \(-0.635774\pi\)
−0.413728 + 0.910401i \(0.635774\pi\)
\(464\) 24.9477 1.15817
\(465\) 2.58115 + 4.47069i 0.119698 + 0.207323i
\(466\) −7.75951 13.4399i −0.359452 0.622590i
\(467\) −16.8853 −0.781361 −0.390680 0.920526i \(-0.627760\pi\)
−0.390680 + 0.920526i \(0.627760\pi\)
\(468\) −38.4421 −1.77699
\(469\) 20.5705 + 35.6291i 0.949856 + 1.64520i
\(470\) −8.41588 + 14.5767i −0.388196 + 0.672375i
\(471\) 1.46883 + 2.54408i 0.0676799 + 0.117225i
\(472\) −0.345438 + 0.598317i −0.0159001 + 0.0275398i
\(473\) 3.45596 5.98589i 0.158905 0.275232i
\(474\) 75.9418 3.48812
\(475\) −18.4701 27.5982i −0.847465 1.26629i
\(476\) 9.42604 0.432042
\(477\) 23.7488 41.1341i 1.08738 1.88340i
\(478\) 11.1316 19.2805i 0.509148 0.881870i
\(479\) −20.4174 35.3639i −0.932893 1.61582i −0.778348 0.627833i \(-0.783942\pi\)
−0.154545 0.987986i \(-0.549391\pi\)
\(480\) −36.8917 + 63.8983i −1.68387 + 2.91654i
\(481\) −2.55739 4.42953i −0.116607 0.201969i
\(482\) −14.7652 −0.672536
\(483\) 13.3203 0.606095
\(484\) −1.02763 1.77991i −0.0467106 0.0809051i
\(485\) 29.6063 + 51.2796i 1.34435 + 2.32849i
\(486\) 44.5109 2.01905
\(487\) 37.0637 1.67952 0.839759 0.542959i \(-0.182696\pi\)
0.839759 + 0.542959i \(0.182696\pi\)
\(488\) 0.298479 + 0.516981i 0.0135115 + 0.0234026i
\(489\) −13.8846 + 24.0488i −0.627883 + 1.08753i
\(490\) 35.0338 + 60.6804i 1.58267 + 2.74126i
\(491\) 13.1133 22.7129i 0.591796 1.02502i −0.402195 0.915554i \(-0.631753\pi\)
0.993991 0.109466i \(-0.0349141\pi\)
\(492\) −15.3856 + 26.6486i −0.693634 + 1.20141i
\(493\) 7.18378 0.323541
\(494\) 44.7683 2.96750i 2.01422 0.133514i
\(495\) −12.9989 −0.584259
\(496\) −1.09432 + 1.89541i −0.0491362 + 0.0851064i
\(497\) 3.18902 5.52355i 0.143047 0.247765i
\(498\) 10.0007 + 17.3217i 0.448141 + 0.776203i
\(499\) 8.41284 14.5715i 0.376611 0.652309i −0.613956 0.789340i \(-0.710423\pi\)
0.990567 + 0.137032i \(0.0437562\pi\)
\(500\) −9.55882 16.5564i −0.427484 0.740423i
\(501\) −41.6691 −1.86164
\(502\) −20.8400 −0.930133
\(503\) 2.56023 + 4.43445i 0.114155 + 0.197722i 0.917442 0.397870i \(-0.130251\pi\)
−0.803287 + 0.595593i \(0.796917\pi\)
\(504\) −0.834500 1.44540i −0.0371716 0.0643831i
\(505\) −55.0264 −2.44864
\(506\) −2.53641 −0.112757
\(507\) −16.9362 29.3343i −0.752163 1.30278i
\(508\) 10.4146 18.0386i 0.462072 0.800332i
\(509\) −5.24697 9.08802i −0.232568 0.402820i 0.725995 0.687700i \(-0.241379\pi\)
−0.958563 + 0.284880i \(0.908046\pi\)
\(510\) −10.3293 + 17.8909i −0.457390 + 0.792223i
\(511\) 14.9665 25.9227i 0.662079 1.14675i
\(512\) −32.1465 −1.42069
\(513\) 7.40037 0.490539i 0.326734 0.0216578i
\(514\) −50.4342 −2.22456
\(515\) 10.8905 18.8630i 0.479894 0.831201i
\(516\) −18.3296 + 31.7477i −0.806914 + 1.39762i
\(517\) −1.17648 2.03773i −0.0517416 0.0896191i
\(518\) 4.12915 7.15190i 0.181424 0.314236i
\(519\) −29.1324 50.4588i −1.27877 2.21489i
\(520\) 2.02071 0.0886140
\(521\) −3.05739 −0.133946 −0.0669732 0.997755i \(-0.521334\pi\)
−0.0669732 + 0.997755i \(0.521334\pi\)
\(522\) −23.6518 40.9661i −1.03521 1.79304i
\(523\) −18.8920 32.7218i −0.826088 1.43083i −0.901085 0.433643i \(-0.857228\pi\)
0.0749967 0.997184i \(-0.476105\pi\)
\(524\) 2.60310 0.113717
\(525\) −80.5709 −3.51640
\(526\) 3.61286 + 6.25767i 0.157528 + 0.272847i
\(527\) −0.315112 + 0.545790i −0.0137265 + 0.0237750i
\(528\) −5.01458 8.68551i −0.218232 0.377988i
\(529\) 10.7068 18.5447i 0.465513 0.806292i
\(530\) −46.4251 + 80.4107i −2.01658 + 3.49282i
\(531\) −22.7165 −0.985810
\(532\) 20.4199 + 30.5117i 0.885314 + 1.32285i
\(533\) −29.6548 −1.28449
\(534\) −3.85741 + 6.68123i −0.166926 + 0.289125i
\(535\) 1.01002 1.74941i 0.0436671 0.0756336i
\(536\) 0.558622 + 0.967562i 0.0241288 + 0.0417923i
\(537\) 31.2302 54.0923i 1.34768 2.33425i
\(538\) −8.00049 13.8572i −0.344925 0.597428i
\(539\) −9.79497 −0.421899
\(540\) 12.4223 0.534570
\(541\) 10.3091 + 17.8558i 0.443221 + 0.767682i 0.997926 0.0643653i \(-0.0205023\pi\)
−0.554705 + 0.832047i \(0.687169\pi\)
\(542\) 19.1132 + 33.1050i 0.820980 + 1.42198i
\(543\) 3.70046 0.158802
\(544\) −9.00761 −0.386198
\(545\) 31.9458 + 55.3317i 1.36841 + 2.37015i
\(546\) 54.4278 94.2717i 2.32930 4.03446i
\(547\) 1.69198 + 2.93060i 0.0723439 + 0.125303i 0.899928 0.436038i \(-0.143619\pi\)
−0.827584 + 0.561342i \(0.810285\pi\)
\(548\) 12.1534 21.0504i 0.519169 0.899228i
\(549\) −9.81418 + 16.9987i −0.418859 + 0.725485i
\(550\) 15.3420 0.654185
\(551\) 15.5624 + 23.2536i 0.662981 + 0.990636i
\(552\) 0.361733 0.0153964
\(553\) −29.9444 + 51.8652i −1.27336 + 2.20553i
\(554\) 6.57501 11.3882i 0.279345 0.483840i
\(555\) 4.58651 + 7.94406i 0.194686 + 0.337207i
\(556\) 4.29395 7.43735i 0.182104 0.315414i
\(557\) −3.33704 5.77992i −0.141395 0.244903i 0.786627 0.617428i \(-0.211825\pi\)
−0.928022 + 0.372525i \(0.878492\pi\)
\(558\) 4.14989 0.175679
\(559\) −35.3292 −1.49427
\(560\) −28.2887 48.9975i −1.19542 2.07052i
\(561\) −1.44397 2.50103i −0.0609644 0.105593i
\(562\) 19.0971 0.805561
\(563\) 22.1574 0.933823 0.466912 0.884304i \(-0.345367\pi\)
0.466912 + 0.884304i \(0.345367\pi\)
\(564\) 6.23977 + 10.8076i 0.262742 + 0.455082i
\(565\) −7.47055 + 12.9394i −0.314289 + 0.544364i
\(566\) 7.69578 + 13.3295i 0.323478 + 0.560280i
\(567\) −13.4978 + 23.3788i −0.566853 + 0.981819i
\(568\) 0.0866027 0.150000i 0.00363377 0.00629387i
\(569\) −14.7481 −0.618271 −0.309136 0.951018i \(-0.600040\pi\)
−0.309136 + 0.951018i \(0.600040\pi\)
\(570\) −80.2888 + 5.32200i −3.36293 + 0.222914i
\(571\) 44.9746 1.88213 0.941065 0.338226i \(-0.109827\pi\)
0.941065 + 0.338226i \(0.109827\pi\)
\(572\) −5.25259 + 9.09776i −0.219622 + 0.380396i
\(573\) −0.911069 + 1.57802i −0.0380605 + 0.0659226i
\(574\) −23.9403 41.4657i −0.999247 1.73075i
\(575\) 4.79790 8.31021i 0.200086 0.346560i
\(576\) 15.4348 + 26.7339i 0.643118 + 1.11391i
\(577\) 3.92477 0.163390 0.0816951 0.996657i \(-0.473967\pi\)
0.0816951 + 0.996657i \(0.473967\pi\)
\(578\) 31.7120 1.31905
\(579\) 8.92943 + 15.4662i 0.371095 + 0.642755i
\(580\) 23.4328 + 40.5868i 0.972994 + 1.68527i
\(581\) −15.7733 −0.654388
\(582\) 86.6233 3.59065
\(583\) −6.48991 11.2408i −0.268784 0.465548i
\(584\) 0.406438 0.703971i 0.0168185 0.0291305i
\(585\) 33.2211 + 57.5406i 1.37352 + 2.37901i
\(586\) 11.7280 20.3135i 0.484479 0.839142i
\(587\) −5.27535 + 9.13718i −0.217737 + 0.377132i −0.954116 0.299438i \(-0.903201\pi\)
0.736379 + 0.676570i \(0.236534\pi\)
\(588\) 51.9501 2.14239
\(589\) −2.44933 + 0.162356i −0.100923 + 0.00668976i
\(590\) 44.4070 1.82821
\(591\) 0.406445 0.703983i 0.0167189 0.0289580i
\(592\) −1.94451 + 3.36799i −0.0799190 + 0.138424i
\(593\) 3.23898 + 5.61007i 0.133009 + 0.230378i 0.924835 0.380368i \(-0.124203\pi\)
−0.791826 + 0.610746i \(0.790869\pi\)
\(594\) −1.71320 + 2.96735i −0.0702935 + 0.121752i
\(595\) −8.14585 14.1090i −0.333947 0.578413i
\(596\) −26.4477 −1.08334
\(597\) 15.6826 0.641846
\(598\) 6.48223 + 11.2276i 0.265078 + 0.459129i
\(599\) −9.65323 16.7199i −0.394420 0.683156i 0.598607 0.801043i \(-0.295721\pi\)
−0.993027 + 0.117887i \(0.962388\pi\)
\(600\) −2.18802 −0.0893256
\(601\) −35.6734 −1.45515 −0.727573 0.686030i \(-0.759352\pi\)
−0.727573 + 0.686030i \(0.759352\pi\)
\(602\) −28.5212 49.4001i −1.16244 2.01340i
\(603\) −18.3678 + 31.8140i −0.747996 + 1.29557i
\(604\) 9.38467 + 16.2547i 0.381857 + 0.661396i
\(605\) −1.77613 + 3.07635i −0.0722100 + 0.125071i
\(606\) −40.2496 + 69.7144i −1.63503 + 2.83195i
\(607\) 23.6873 0.961437 0.480718 0.876875i \(-0.340376\pi\)
0.480718 + 0.876875i \(0.340376\pi\)
\(608\) −19.5134 29.1572i −0.791374 1.18248i
\(609\) 67.8870 2.75092
\(610\) 19.1852 33.2297i 0.776784 1.34543i
\(611\) −6.01341 + 10.4155i −0.243277 + 0.421368i
\(612\) 4.20836 + 7.28910i 0.170113 + 0.294644i
\(613\) −10.1824 + 17.6364i −0.411261 + 0.712325i −0.995028 0.0995960i \(-0.968245\pi\)
0.583767 + 0.811921i \(0.301578\pi\)
\(614\) 15.6592 + 27.1225i 0.631952 + 1.09457i
\(615\) 53.1839 2.14458
\(616\) −0.456093 −0.0183765
\(617\) −18.4839 32.0151i −0.744135 1.28888i −0.950598 0.310425i \(-0.899529\pi\)
0.206463 0.978454i \(-0.433805\pi\)
\(618\) −15.9320 27.5950i −0.640878 1.11003i
\(619\) 22.3944 0.900106 0.450053 0.893002i \(-0.351405\pi\)
0.450053 + 0.893002i \(0.351405\pi\)
\(620\) −4.11146 −0.165120
\(621\) 1.07154 + 1.85596i 0.0429993 + 0.0744770i
\(622\) 33.9171 58.7462i 1.35995 2.35551i
\(623\) −3.04200 5.26891i −0.121875 0.211094i
\(624\) −25.6313 + 44.3947i −1.02607 + 1.77721i
\(625\) 2.52520 4.37377i 0.101008 0.174951i
\(626\) −52.8675 −2.11301
\(627\) 4.96760 10.0921i 0.198387 0.403040i
\(628\) −2.33966 −0.0933625
\(629\) −0.559929 + 0.969826i −0.0223258 + 0.0386695i
\(630\) −53.6386 + 92.9048i −2.13701 + 3.70141i
\(631\) 7.33580 + 12.7060i 0.292033 + 0.505817i 0.974290 0.225296i \(-0.0723348\pi\)
−0.682257 + 0.731112i \(0.739001\pi\)
\(632\) −0.813184 + 1.40848i −0.0323467 + 0.0560262i
\(633\) −1.93560 3.35256i −0.0769333 0.133252i
\(634\) −56.1038 −2.22817
\(635\) −36.0005 −1.42863
\(636\) 34.4209 + 59.6187i 1.36488 + 2.36404i
\(637\) 25.0328 + 43.3580i 0.991834 + 1.71791i
\(638\) −12.9268 −0.511777
\(639\) 5.69510 0.225295
\(640\) −1.58075 2.73793i −0.0624845 0.108226i
\(641\) 13.8311 23.9562i 0.546296 0.946213i −0.452228 0.891902i \(-0.649371\pi\)
0.998524 0.0543103i \(-0.0172960\pi\)
\(642\) −1.47758 2.55925i −0.0583155 0.101005i
\(643\) 15.8621 27.4740i 0.625542 1.08347i −0.362894 0.931830i \(-0.618211\pi\)
0.988436 0.151640i \(-0.0484553\pi\)
\(644\) −5.30440 + 9.18750i −0.209023 + 0.362038i
\(645\) 63.3605 2.49482
\(646\) −5.46358 8.16376i −0.214962 0.321199i
\(647\) 5.52403 0.217172 0.108586 0.994087i \(-0.465368\pi\)
0.108586 + 0.994087i \(0.465368\pi\)
\(648\) −0.366552 + 0.634887i −0.0143995 + 0.0249407i
\(649\) −3.10390 + 5.37611i −0.121839 + 0.211031i
\(650\) −39.2092 67.9123i −1.53791 2.66374i
\(651\) −2.97782 + 5.15774i −0.116710 + 0.202148i
\(652\) −11.0582 19.1534i −0.433073 0.750105i
\(653\) −34.3342 −1.34360 −0.671801 0.740731i \(-0.734479\pi\)
−0.671801 + 0.740731i \(0.734479\pi\)
\(654\) 93.4682 3.65490
\(655\) −2.24956 3.89635i −0.0878976 0.152243i
\(656\) 11.2740 + 19.5272i 0.440176 + 0.762408i
\(657\) 26.7278 1.04275
\(658\) −19.4184 −0.757010
\(659\) 2.02403 + 3.50573i 0.0788451 + 0.136564i 0.902752 0.430162i \(-0.141543\pi\)
−0.823907 + 0.566725i \(0.808210\pi\)
\(660\) 9.42016 16.3162i 0.366679 0.635107i
\(661\) −5.90898 10.2347i −0.229833 0.398082i 0.727926 0.685656i \(-0.240485\pi\)
−0.957758 + 0.287574i \(0.907151\pi\)
\(662\) −18.7535 + 32.4821i −0.728877 + 1.26245i
\(663\) −7.38063 + 12.7836i −0.286640 + 0.496475i
\(664\) −0.428349 −0.0166231
\(665\) 28.0237 56.9325i 1.08671 2.20775i
\(666\) 7.37402 0.285738
\(667\) −4.04260 + 7.00198i −0.156530 + 0.271118i
\(668\) 16.5934 28.7407i 0.642019 1.11201i
\(669\) −1.43697 2.48891i −0.0555565 0.0962267i
\(670\) 35.9062 62.1913i 1.38718 2.40266i
\(671\) 2.68195 + 4.64528i 0.103536 + 0.179329i
\(672\) −85.1223 −3.28366
\(673\) 38.6295 1.48906 0.744529 0.667590i \(-0.232674\pi\)
0.744529 + 0.667590i \(0.232674\pi\)
\(674\) 14.9331 + 25.8648i 0.575200 + 0.996276i
\(675\) −6.48143 11.2262i −0.249471 0.432096i
\(676\) 26.9773 1.03759
\(677\) −21.8650 −0.840340 −0.420170 0.907445i \(-0.638030\pi\)
−0.420170 + 0.907445i \(0.638030\pi\)
\(678\) 10.9288 + 18.9293i 0.419719 + 0.726975i
\(679\) −34.1561 + 59.1602i −1.31079 + 2.27036i
\(680\) −0.221213 0.383152i −0.00848312 0.0146932i
\(681\) −9.61093 + 16.6466i −0.368292 + 0.637900i
\(682\) 0.567026 0.982118i 0.0217126 0.0376072i
\(683\) 7.14617 0.273441 0.136720 0.990610i \(-0.456344\pi\)
0.136720 + 0.990610i \(0.456344\pi\)
\(684\) −14.4778 + 29.4128i −0.553572 + 1.12463i
\(685\) −42.0113 −1.60517
\(686\) −11.5331 + 19.9759i −0.440336 + 0.762684i
\(687\) 10.5773 18.3204i 0.403548 0.698966i
\(688\) 13.4313 + 23.2637i 0.512063 + 0.886919i
\(689\) −33.1722 + 57.4559i −1.26376 + 2.18890i
\(690\) −11.6254 20.1358i −0.442573 0.766558i
\(691\) 10.3822 0.394956 0.197478 0.980307i \(-0.436725\pi\)
0.197478 + 0.980307i \(0.436725\pi\)
\(692\) 46.4043 1.76403
\(693\) −7.49830 12.9874i −0.284837 0.493352i
\(694\) 10.6108 + 18.3784i 0.402779 + 0.697633i
\(695\) −14.8431 −0.563031
\(696\) 1.84357 0.0698805
\(697\) 3.24639 + 5.62292i 0.122966 + 0.212983i
\(698\) 19.0001 32.9091i 0.719163 1.24563i
\(699\) 9.94353 + 17.2227i 0.376099 + 0.651422i
\(700\) 32.0849 55.5726i 1.21269 2.10045i
\(701\) 6.09223 10.5521i 0.230100 0.398546i −0.727737 0.685856i \(-0.759428\pi\)
0.957837 + 0.287311i \(0.0927612\pi\)
\(702\) 17.5135 0.661006
\(703\) −4.35227 + 0.288494i −0.164149 + 0.0108807i
\(704\) 8.43585 0.317938
\(705\) 10.7846 18.6796i 0.406173 0.703513i
\(706\) 6.70617 11.6154i 0.252390 0.437152i
\(707\) −31.7414 54.9777i −1.19376 2.06765i
\(708\) 16.4623 28.5136i 0.618692 1.07161i
\(709\) 15.4741 + 26.8019i 0.581142 + 1.00657i 0.995344 + 0.0963825i \(0.0307272\pi\)
−0.414202 + 0.910185i \(0.635939\pi\)
\(710\) −11.1330 −0.417814
\(711\) −53.4760 −2.00551
\(712\) −0.0826102 0.143085i −0.00309595 0.00536234i
\(713\) −0.354652 0.614275i −0.0132818 0.0230048i
\(714\) −23.8334 −0.891944
\(715\) 18.1569 0.679028
\(716\) 24.8729 + 43.0812i 0.929545 + 1.61002i
\(717\) −14.2647 + 24.7073i −0.532727 + 0.922710i
\(718\) −27.3237 47.3260i −1.01971 1.76619i
\(719\) −12.4152 + 21.5038i −0.463009 + 0.801956i −0.999109 0.0421989i \(-0.986564\pi\)
0.536100 + 0.844155i \(0.319897\pi\)
\(720\) 25.2597 43.7510i 0.941372 1.63050i
\(721\) 25.1283 0.935828
\(722\) 14.5898 35.3707i 0.542977 1.31636i
\(723\) 18.9210 0.703681
\(724\) −1.47359 + 2.55234i −0.0547657 + 0.0948569i
\(725\) 24.4525 42.3530i 0.908144 1.57295i
\(726\) 2.59834 + 4.50045i 0.0964333 + 0.167027i
\(727\) −20.6171 + 35.7099i −0.764648 + 1.32441i 0.175785 + 0.984429i \(0.443754\pi\)
−0.940433 + 0.339980i \(0.889580\pi\)
\(728\) 1.16562 + 2.01892i 0.0432009 + 0.0748262i
\(729\) −37.2774 −1.38064
\(730\) −52.2486 −1.93381
\(731\) 3.86759 + 6.69886i 0.143048 + 0.247766i
\(732\) −14.2244 24.6374i −0.525750 0.910625i
\(733\) −24.6152 −0.909183 −0.454591 0.890700i \(-0.650215\pi\)
−0.454591 + 0.890700i \(0.650215\pi\)
\(734\) 42.1851 1.55708
\(735\) −44.8945 77.7596i −1.65596 2.86821i
\(736\) 5.06894 8.77966i 0.186843 0.323622i
\(737\) 5.01943 + 8.69391i 0.184893 + 0.320244i
\(738\) 21.3768 37.0257i 0.786891 1.36293i
\(739\) 0.581173 1.00662i 0.0213788 0.0370292i −0.855138 0.518400i \(-0.826528\pi\)
0.876517 + 0.481371i \(0.159861\pi\)
\(740\) −7.30574 −0.268564
\(741\) −57.3689 + 3.80274i −2.10750 + 0.139697i
\(742\) −107.119 −3.93247
\(743\) −11.1098 + 19.2428i −0.407580 + 0.705950i −0.994618 0.103610i \(-0.966961\pi\)
0.587038 + 0.809560i \(0.300294\pi\)
\(744\) −0.0808672 + 0.140066i −0.00296474 + 0.00513507i
\(745\) 22.8557 + 39.5872i 0.837367 + 1.45036i
\(746\) 12.5350 21.7112i 0.458937 0.794903i
\(747\) −7.04218 12.1974i −0.257660 0.446280i
\(748\) 2.30006 0.0840986
\(749\) 2.33048 0.0851539
\(750\) 24.1692 + 41.8622i 0.882534 + 1.52859i
\(751\) −12.1031 20.9632i −0.441648 0.764957i 0.556164 0.831073i \(-0.312273\pi\)
−0.997812 + 0.0661159i \(0.978939\pi\)
\(752\) 9.14459 0.333469
\(753\) 26.7056 0.973208
\(754\) 33.0367 + 57.2213i 1.20313 + 2.08388i
\(755\) 16.2202 28.0942i 0.590313 1.02245i
\(756\) 7.16566 + 12.4113i 0.260612 + 0.451394i
\(757\) −15.9662 + 27.6543i −0.580303 + 1.00511i 0.415141 + 0.909757i \(0.363732\pi\)
−0.995443 + 0.0953562i \(0.969601\pi\)
\(758\) −2.38155 + 4.12497i −0.0865018 + 0.149826i
\(759\) 3.25031 0.117979
\(760\) 0.761026 1.54609i 0.0276053 0.0560825i
\(761\) −20.1507 −0.730463 −0.365231 0.930917i \(-0.619010\pi\)
−0.365231 + 0.930917i \(0.619010\pi\)
\(762\) −26.3329 + 45.6099i −0.953940 + 1.65227i
\(763\) −36.8552 + 63.8350i −1.33425 + 2.31098i
\(764\) −0.725610 1.25679i −0.0262517 0.0454692i
\(765\) 7.27361 12.5983i 0.262978 0.455491i
\(766\) 4.10282 + 7.10629i 0.148241 + 0.256761i
\(767\) 31.7302 1.14571
\(768\) 38.9136 1.40417
\(769\) −5.66959 9.82001i −0.204451 0.354119i 0.745507 0.666498i \(-0.232207\pi\)
−0.949958 + 0.312379i \(0.898874\pi\)
\(770\) 14.6580 + 25.3884i 0.528237 + 0.914933i
\(771\) 64.6296