Properties

Label 209.2.e.b.144.7
Level $209$
Weight $2$
Character 209.144
Analytic conductor $1.669$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(45,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 14 x^{16} - 11 x^{15} + 130 x^{14} - 92 x^{13} + 629 x^{12} - 276 x^{11} + 2060 x^{10} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 144.7
Root \(0.797832 - 1.38189i\) of defining polynomial
Character \(\chi\) \(=\) 209.144
Dual form 209.2.e.b.45.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.797832 - 1.38189i) q^{2} +(-0.583506 + 1.01066i) q^{3} +(-0.273072 - 0.472974i) q^{4} +(0.206639 - 0.357909i) q^{5} +(0.931080 + 1.61268i) q^{6} +2.20560 q^{7} +2.31987 q^{8} +(0.819041 + 1.41862i) q^{9} +O(q^{10})\) \(q+(0.797832 - 1.38189i) q^{2} +(-0.583506 + 1.01066i) q^{3} +(-0.273072 - 0.472974i) q^{4} +(0.206639 - 0.357909i) q^{5} +(0.931080 + 1.61268i) q^{6} +2.20560 q^{7} +2.31987 q^{8} +(0.819041 + 1.41862i) q^{9} +(-0.329727 - 0.571103i) q^{10} -1.00000 q^{11} +0.637357 q^{12} +(-2.41770 - 4.18759i) q^{13} +(1.75970 - 3.04788i) q^{14} +(0.241150 + 0.417685i) q^{15} +(2.39701 - 4.15174i) q^{16} +(0.827285 - 1.43290i) q^{17} +2.61383 q^{18} +(-1.15945 + 4.20187i) q^{19} -0.225709 q^{20} +(-1.28698 + 2.22911i) q^{21} +(-0.797832 + 1.38189i) q^{22} +(-2.50635 - 4.34113i) q^{23} +(-1.35366 + 2.34460i) q^{24} +(2.41460 + 4.18221i) q^{25} -7.71569 q^{26} -5.41270 q^{27} +(-0.602287 - 1.04319i) q^{28} +(2.48706 + 4.30771i) q^{29} +0.769590 q^{30} -7.24422 q^{31} +(-1.50495 - 2.60665i) q^{32} +(0.583506 - 1.01066i) q^{33} +(-1.32007 - 2.28643i) q^{34} +(0.455763 - 0.789404i) q^{35} +(0.447314 - 0.774771i) q^{36} -7.83371 q^{37} +(4.88145 + 4.95461i) q^{38} +5.64298 q^{39} +(0.479375 - 0.830302i) q^{40} +(3.12797 - 5.41780i) q^{41} +(2.05359 + 3.55692i) q^{42} +(-2.74610 + 4.75638i) q^{43} +(0.273072 + 0.472974i) q^{44} +0.676984 q^{45} -7.99859 q^{46} +(0.790657 + 1.36946i) q^{47} +(2.79734 + 4.84513i) q^{48} -2.13534 q^{49} +7.70578 q^{50} +(0.965452 + 1.67221i) q^{51} +(-1.32041 + 2.28702i) q^{52} +(-6.20873 - 10.7538i) q^{53} +(-4.31843 + 7.47973i) q^{54} +(-0.206639 + 0.357909i) q^{55} +5.11669 q^{56} +(-3.57012 - 3.62363i) q^{57} +7.93702 q^{58} +(-0.812097 + 1.40659i) q^{59} +(0.131703 - 0.228116i) q^{60} +(-2.46108 - 4.26271i) q^{61} +(-5.77967 + 10.0107i) q^{62} +(1.80647 + 3.12890i) q^{63} +4.78523 q^{64} -1.99837 q^{65} +(-0.931080 - 1.61268i) q^{66} +(7.71973 + 13.3710i) q^{67} -0.903633 q^{68} +5.84989 q^{69} +(-0.727244 - 1.25962i) q^{70} +(6.30910 - 10.9277i) q^{71} +(1.90007 + 3.29101i) q^{72} +(3.75791 - 6.50889i) q^{73} +(-6.24999 + 10.8253i) q^{74} -5.63574 q^{75} +(2.30399 - 0.599020i) q^{76} -2.20560 q^{77} +(4.50215 - 7.79796i) q^{78} +(-3.84096 + 6.65273i) q^{79} +(-0.990631 - 1.71582i) q^{80} +(0.701222 - 1.21455i) q^{81} +(-4.99118 - 8.64498i) q^{82} +6.46812 q^{83} +1.40575 q^{84} +(-0.341899 - 0.592186i) q^{85} +(4.38185 + 7.58959i) q^{86} -5.80486 q^{87} -2.31987 q^{88} +(-1.80018 - 3.11800i) q^{89} +(0.540119 - 0.935514i) q^{90} +(-5.33248 - 9.23613i) q^{91} +(-1.36883 + 2.37088i) q^{92} +(4.22705 - 7.32146i) q^{93} +2.52325 q^{94} +(1.26430 + 1.28325i) q^{95} +3.51260 q^{96} +(7.45250 - 12.9081i) q^{97} +(-1.70364 + 2.95080i) q^{98} +(-0.819041 - 1.41862i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9} + 21 q^{10} - 18 q^{11} + 16 q^{12} + 11 q^{13} + q^{14} + 7 q^{15} - 13 q^{16} + 6 q^{17} - 8 q^{18} + 4 q^{19} + 4 q^{20} + 24 q^{21} - q^{22} - q^{23} - 3 q^{24} - 7 q^{25} - 4 q^{26} + 6 q^{27} - 2 q^{28} + 13 q^{29} - 64 q^{30} - 32 q^{31} - 14 q^{32} + 8 q^{34} - 12 q^{35} + 10 q^{36} - 36 q^{37} - 20 q^{38} + 20 q^{39} + 32 q^{40} + 4 q^{41} + 11 q^{42} + q^{43} + 9 q^{44} + 22 q^{45} - 14 q^{46} - 14 q^{47} + 37 q^{48} - 12 q^{49} + 30 q^{50} - 16 q^{51} + 57 q^{52} - 4 q^{53} - 33 q^{54} - 34 q^{56} - 7 q^{57} + 8 q^{58} + 31 q^{59} + 9 q^{60} + 3 q^{61} + 5 q^{62} + 50 q^{63} + 64 q^{64} - 56 q^{65} + 3 q^{66} - 2 q^{67} - 96 q^{68} - 58 q^{70} - 12 q^{71} + 5 q^{72} - 26 q^{73} + 35 q^{74} + 50 q^{75} - 36 q^{76} + 6 q^{77} + 3 q^{78} + 31 q^{79} + 31 q^{80} - 21 q^{81} + 25 q^{82} + 36 q^{83} - 102 q^{84} - 11 q^{85} + 41 q^{86} - 124 q^{87} - 11 q^{89} + 51 q^{90} - 20 q^{91} - 33 q^{92} + 20 q^{93} - 86 q^{94} + 17 q^{95} + 60 q^{96} + 16 q^{97} + 4 q^{98} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.797832 1.38189i 0.564152 0.977141i −0.432976 0.901406i \(-0.642536\pi\)
0.997128 0.0757350i \(-0.0241303\pi\)
\(3\) −0.583506 + 1.01066i −0.336888 + 0.583506i −0.983846 0.179019i \(-0.942708\pi\)
0.646958 + 0.762526i \(0.276041\pi\)
\(4\) −0.273072 0.472974i −0.136536 0.236487i
\(5\) 0.206639 0.357909i 0.0924118 0.160062i −0.816114 0.577891i \(-0.803876\pi\)
0.908525 + 0.417829i \(0.137209\pi\)
\(6\) 0.931080 + 1.61268i 0.380112 + 0.658373i
\(7\) 2.20560 0.833637 0.416819 0.908990i \(-0.363145\pi\)
0.416819 + 0.908990i \(0.363145\pi\)
\(8\) 2.31987 0.820197
\(9\) 0.819041 + 1.41862i 0.273014 + 0.472873i
\(10\) −0.329727 0.571103i −0.104269 0.180599i
\(11\) −1.00000 −0.301511
\(12\) 0.637357 0.183989
\(13\) −2.41770 4.18759i −0.670550 1.16143i −0.977748 0.209782i \(-0.932725\pi\)
0.307198 0.951646i \(-0.400609\pi\)
\(14\) 1.75970 3.04788i 0.470299 0.814581i
\(15\) 0.241150 + 0.417685i 0.0622648 + 0.107846i
\(16\) 2.39701 4.15174i 0.599252 1.03793i
\(17\) 0.827285 1.43290i 0.200646 0.347529i −0.748091 0.663596i \(-0.769029\pi\)
0.948737 + 0.316067i \(0.102363\pi\)
\(18\) 2.61383 0.616085
\(19\) −1.15945 + 4.20187i −0.265997 + 0.963974i
\(20\) −0.225709 −0.0504701
\(21\) −1.28698 + 2.22911i −0.280842 + 0.486433i
\(22\) −0.797832 + 1.38189i −0.170098 + 0.294619i
\(23\) −2.50635 4.34113i −0.522610 0.905188i −0.999654 0.0263079i \(-0.991625\pi\)
0.477044 0.878880i \(-0.341708\pi\)
\(24\) −1.35366 + 2.34460i −0.276314 + 0.478590i
\(25\) 2.41460 + 4.18221i 0.482920 + 0.836442i
\(26\) −7.71569 −1.51317
\(27\) −5.41270 −1.04167
\(28\) −0.602287 1.04319i −0.113821 0.197145i
\(29\) 2.48706 + 4.30771i 0.461835 + 0.799922i 0.999052 0.0435219i \(-0.0138578\pi\)
−0.537217 + 0.843444i \(0.680524\pi\)
\(30\) 0.769590 0.140507
\(31\) −7.24422 −1.30110 −0.650550 0.759464i \(-0.725462\pi\)
−0.650550 + 0.759464i \(0.725462\pi\)
\(32\) −1.50495 2.60665i −0.266040 0.460796i
\(33\) 0.583506 1.01066i 0.101575 0.175934i
\(34\) −1.32007 2.28643i −0.226390 0.392119i
\(35\) 0.455763 0.789404i 0.0770379 0.133434i
\(36\) 0.447314 0.774771i 0.0745523 0.129128i
\(37\) −7.83371 −1.28785 −0.643927 0.765087i \(-0.722696\pi\)
−0.643927 + 0.765087i \(0.722696\pi\)
\(38\) 4.88145 + 4.95461i 0.791876 + 0.803744i
\(39\) 5.64298 0.903600
\(40\) 0.479375 0.830302i 0.0757959 0.131282i
\(41\) 3.12797 5.41780i 0.488506 0.846118i −0.511406 0.859339i \(-0.670875\pi\)
0.999913 + 0.0132214i \(0.00420861\pi\)
\(42\) 2.05359 + 3.55692i 0.316875 + 0.548844i
\(43\) −2.74610 + 4.75638i −0.418776 + 0.725341i −0.995817 0.0913741i \(-0.970874\pi\)
0.577041 + 0.816715i \(0.304207\pi\)
\(44\) 0.273072 + 0.472974i 0.0411671 + 0.0713036i
\(45\) 0.676984 0.100919
\(46\) −7.99859 −1.17933
\(47\) 0.790657 + 1.36946i 0.115329 + 0.199756i 0.917911 0.396786i \(-0.129874\pi\)
−0.802582 + 0.596542i \(0.796541\pi\)
\(48\) 2.79734 + 4.84513i 0.403761 + 0.699334i
\(49\) −2.13534 −0.305049
\(50\) 7.70578 1.08976
\(51\) 0.965452 + 1.67221i 0.135190 + 0.234156i
\(52\) −1.32041 + 2.28702i −0.183108 + 0.317153i
\(53\) −6.20873 10.7538i −0.852835 1.47715i −0.878639 0.477486i \(-0.841548\pi\)
0.0258041 0.999667i \(-0.491785\pi\)
\(54\) −4.31843 + 7.47973i −0.587663 + 1.01786i
\(55\) −0.206639 + 0.357909i −0.0278632 + 0.0482605i
\(56\) 5.11669 0.683746
\(57\) −3.57012 3.62363i −0.472874 0.479961i
\(58\) 7.93702 1.04218
\(59\) −0.812097 + 1.40659i −0.105726 + 0.183123i −0.914035 0.405636i \(-0.867050\pi\)
0.808309 + 0.588759i \(0.200383\pi\)
\(60\) 0.131703 0.228116i 0.0170028 0.0294496i
\(61\) −2.46108 4.26271i −0.315108 0.545784i 0.664352 0.747420i \(-0.268708\pi\)
−0.979461 + 0.201636i \(0.935374\pi\)
\(62\) −5.77967 + 10.0107i −0.734019 + 1.27136i
\(63\) 1.80647 + 3.12890i 0.227594 + 0.394205i
\(64\) 4.78523 0.598154
\(65\) −1.99837 −0.247867
\(66\) −0.931080 1.61268i −0.114608 0.198507i
\(67\) 7.71973 + 13.3710i 0.943115 + 1.63352i 0.759483 + 0.650527i \(0.225452\pi\)
0.183632 + 0.982995i \(0.441215\pi\)
\(68\) −0.903633 −0.109582
\(69\) 5.84989 0.704243
\(70\) −0.727244 1.25962i −0.0869223 0.150554i
\(71\) 6.30910 10.9277i 0.748753 1.29688i −0.199668 0.979864i \(-0.563986\pi\)
0.948421 0.317014i \(-0.102680\pi\)
\(72\) 1.90007 + 3.29101i 0.223925 + 0.387849i
\(73\) 3.75791 6.50889i 0.439830 0.761807i −0.557846 0.829944i \(-0.688372\pi\)
0.997676 + 0.0681368i \(0.0217054\pi\)
\(74\) −6.24999 + 10.8253i −0.726546 + 1.25842i
\(75\) −5.63574 −0.650759
\(76\) 2.30399 0.599020i 0.264286 0.0687123i
\(77\) −2.20560 −0.251351
\(78\) 4.50215 7.79796i 0.509768 0.882945i
\(79\) −3.84096 + 6.65273i −0.432141 + 0.748491i −0.997057 0.0766576i \(-0.975575\pi\)
0.564916 + 0.825148i \(0.308909\pi\)
\(80\) −0.990631 1.71582i −0.110756 0.191835i
\(81\) 0.701222 1.21455i 0.0779135 0.134950i
\(82\) −4.99118 8.64498i −0.551184 0.954679i
\(83\) 6.46812 0.709968 0.354984 0.934872i \(-0.384486\pi\)
0.354984 + 0.934872i \(0.384486\pi\)
\(84\) 1.40575 0.153380
\(85\) −0.341899 0.592186i −0.0370841 0.0642316i
\(86\) 4.38185 + 7.58959i 0.472507 + 0.818406i
\(87\) −5.80486 −0.622346
\(88\) −2.31987 −0.247299
\(89\) −1.80018 3.11800i −0.190819 0.330508i 0.754703 0.656066i \(-0.227781\pi\)
−0.945522 + 0.325559i \(0.894448\pi\)
\(90\) 0.540119 0.935514i 0.0569336 0.0986118i
\(91\) −5.33248 9.23613i −0.558996 0.968209i
\(92\) −1.36883 + 2.37088i −0.142710 + 0.247181i
\(93\) 4.22705 7.32146i 0.438324 0.759200i
\(94\) 2.52325 0.260253
\(95\) 1.26430 + 1.28325i 0.129714 + 0.131659i
\(96\) 3.51260 0.358503
\(97\) 7.45250 12.9081i 0.756687 1.31062i −0.187844 0.982199i \(-0.560150\pi\)
0.944531 0.328422i \(-0.106517\pi\)
\(98\) −1.70364 + 2.95080i −0.172094 + 0.298076i
\(99\) −0.819041 1.41862i −0.0823167 0.142577i
\(100\) 1.31872 2.28409i 0.131872 0.228409i
\(101\) −1.23228 2.13438i −0.122617 0.212378i 0.798182 0.602416i \(-0.205795\pi\)
−0.920799 + 0.390038i \(0.872462\pi\)
\(102\) 3.08107 0.305072
\(103\) −13.7785 −1.35763 −0.678816 0.734308i \(-0.737507\pi\)
−0.678816 + 0.734308i \(0.737507\pi\)
\(104\) −5.60875 9.71464i −0.549983 0.952599i
\(105\) 0.531881 + 0.921244i 0.0519062 + 0.0899043i
\(106\) −19.8141 −1.92452
\(107\) 0.873251 0.0844203 0.0422102 0.999109i \(-0.486560\pi\)
0.0422102 + 0.999109i \(0.486560\pi\)
\(108\) 1.47806 + 2.56007i 0.142226 + 0.246343i
\(109\) −4.51921 + 7.82750i −0.432862 + 0.749739i −0.997118 0.0758606i \(-0.975830\pi\)
0.564256 + 0.825600i \(0.309163\pi\)
\(110\) 0.329727 + 0.571103i 0.0314382 + 0.0544526i
\(111\) 4.57102 7.91724i 0.433862 0.751471i
\(112\) 5.28683 9.15706i 0.499559 0.865261i
\(113\) 15.3143 1.44065 0.720324 0.693638i \(-0.243993\pi\)
0.720324 + 0.693638i \(0.243993\pi\)
\(114\) −7.85580 + 2.04245i −0.735763 + 0.191293i
\(115\) −2.07164 −0.193181
\(116\) 1.35829 2.35263i 0.126114 0.218436i
\(117\) 3.96040 6.85961i 0.366139 0.634171i
\(118\) 1.29583 + 2.24445i 0.119291 + 0.206618i
\(119\) 1.82466 3.16040i 0.167266 0.289713i
\(120\) 0.559437 + 0.968973i 0.0510694 + 0.0884547i
\(121\) 1.00000 0.0909091
\(122\) −7.85410 −0.711077
\(123\) 3.65038 + 6.32264i 0.329143 + 0.570093i
\(124\) 1.97819 + 3.42633i 0.177647 + 0.307693i
\(125\) 4.06220 0.363334
\(126\) 5.76505 0.513592
\(127\) 0.748191 + 1.29590i 0.0663912 + 0.114993i 0.897310 0.441400i \(-0.145518\pi\)
−0.830919 + 0.556393i \(0.812185\pi\)
\(128\) 6.82772 11.8260i 0.603491 1.04528i
\(129\) −3.20473 5.55076i −0.282161 0.488717i
\(130\) −1.59436 + 2.76152i −0.139835 + 0.242201i
\(131\) −6.22412 + 10.7805i −0.543804 + 0.941896i 0.454877 + 0.890554i \(0.349683\pi\)
−0.998681 + 0.0513419i \(0.983650\pi\)
\(132\) −0.637357 −0.0554748
\(133\) −2.55728 + 9.26762i −0.221745 + 0.803605i
\(134\) 24.6362 2.12824
\(135\) −1.11848 + 1.93726i −0.0962630 + 0.166732i
\(136\) 1.91919 3.32413i 0.164569 0.285042i
\(137\) 9.09737 + 15.7571i 0.777241 + 1.34622i 0.933527 + 0.358508i \(0.116715\pi\)
−0.156286 + 0.987712i \(0.549952\pi\)
\(138\) 4.66723 8.08387i 0.397301 0.688145i
\(139\) 7.60506 + 13.1723i 0.645052 + 1.11726i 0.984289 + 0.176563i \(0.0564978\pi\)
−0.339237 + 0.940701i \(0.610169\pi\)
\(140\) −0.497824 −0.0420738
\(141\) −1.84541 −0.155412
\(142\) −10.0672 17.4369i −0.844822 1.46327i
\(143\) 2.41770 + 4.18759i 0.202179 + 0.350184i
\(144\) 7.85299 0.654416
\(145\) 2.05569 0.170716
\(146\) −5.99636 10.3860i −0.496262 0.859551i
\(147\) 1.24599 2.15811i 0.102767 0.177998i
\(148\) 2.13917 + 3.70515i 0.175838 + 0.304561i
\(149\) −4.29530 + 7.43967i −0.351884 + 0.609482i −0.986580 0.163281i \(-0.947792\pi\)
0.634695 + 0.772763i \(0.281126\pi\)
\(150\) −4.49637 + 7.78795i −0.367127 + 0.635883i
\(151\) −2.67243 −0.217479 −0.108740 0.994070i \(-0.534681\pi\)
−0.108740 + 0.994070i \(0.534681\pi\)
\(152\) −2.68977 + 9.74776i −0.218169 + 0.790648i
\(153\) 2.71032 0.219116
\(154\) −1.75970 + 3.04788i −0.141800 + 0.245605i
\(155\) −1.49694 + 2.59277i −0.120237 + 0.208257i
\(156\) −1.54094 2.66899i −0.123374 0.213690i
\(157\) 3.30744 5.72866i 0.263963 0.457197i −0.703329 0.710865i \(-0.748304\pi\)
0.967291 + 0.253668i \(0.0816370\pi\)
\(158\) 6.12888 + 10.6155i 0.487587 + 0.844526i
\(159\) 14.4913 1.14924
\(160\) −1.24393 −0.0983411
\(161\) −5.52800 9.57478i −0.435667 0.754598i
\(162\) −1.11891 1.93802i −0.0879102 0.152265i
\(163\) 8.88161 0.695661 0.347831 0.937557i \(-0.386918\pi\)
0.347831 + 0.937557i \(0.386918\pi\)
\(164\) −3.41664 −0.266795
\(165\) −0.241150 0.417685i −0.0187735 0.0325167i
\(166\) 5.16047 8.93820i 0.400530 0.693739i
\(167\) 8.48524 + 14.6969i 0.656607 + 1.13728i 0.981488 + 0.191522i \(0.0613424\pi\)
−0.324881 + 0.945755i \(0.605324\pi\)
\(168\) −2.98562 + 5.17125i −0.230346 + 0.398970i
\(169\) −5.19059 + 8.99036i −0.399276 + 0.691566i
\(170\) −1.09111 −0.0836844
\(171\) −6.91049 + 1.79668i −0.528458 + 0.137395i
\(172\) 2.99953 0.228712
\(173\) −0.141689 + 0.245412i −0.0107724 + 0.0186583i −0.871361 0.490642i \(-0.836762\pi\)
0.860589 + 0.509300i \(0.170096\pi\)
\(174\) −4.63130 + 8.02165i −0.351098 + 0.608120i
\(175\) 5.32564 + 9.22427i 0.402580 + 0.697289i
\(176\) −2.39701 + 4.15174i −0.180681 + 0.312949i
\(177\) −0.947727 1.64151i −0.0712355 0.123384i
\(178\) −5.74496 −0.430603
\(179\) −11.3672 −0.849622 −0.424811 0.905282i \(-0.639659\pi\)
−0.424811 + 0.905282i \(0.639659\pi\)
\(180\) −0.184865 0.320196i −0.0137790 0.0238660i
\(181\) −4.20561 7.28433i −0.312601 0.541440i 0.666324 0.745662i \(-0.267867\pi\)
−0.978925 + 0.204222i \(0.934533\pi\)
\(182\) −17.0177 −1.26144
\(183\) 5.74421 0.424624
\(184\) −5.81440 10.0708i −0.428643 0.742432i
\(185\) −1.61875 + 2.80376i −0.119013 + 0.206137i
\(186\) −6.74495 11.6826i −0.494563 0.856609i
\(187\) −0.827285 + 1.43290i −0.0604971 + 0.104784i
\(188\) 0.431813 0.747921i 0.0314932 0.0545478i
\(189\) −11.9382 −0.868379
\(190\) 2.78200 0.723300i 0.201828 0.0524737i
\(191\) 9.83023 0.711290 0.355645 0.934621i \(-0.384261\pi\)
0.355645 + 0.934621i \(0.384261\pi\)
\(192\) −2.79221 + 4.83626i −0.201511 + 0.349027i
\(193\) 6.74566 11.6838i 0.485563 0.841020i −0.514299 0.857611i \(-0.671948\pi\)
0.999862 + 0.0165909i \(0.00528129\pi\)
\(194\) −11.8917 20.5970i −0.853774 1.47878i
\(195\) 1.16606 2.01968i 0.0835034 0.144632i
\(196\) 0.583102 + 1.00996i 0.0416501 + 0.0721401i
\(197\) 5.29868 0.377515 0.188758 0.982024i \(-0.439554\pi\)
0.188758 + 0.982024i \(0.439554\pi\)
\(198\) −2.61383 −0.185757
\(199\) 4.49865 + 7.79188i 0.318901 + 0.552352i 0.980259 0.197718i \(-0.0633530\pi\)
−0.661358 + 0.750070i \(0.730020\pi\)
\(200\) 5.60155 + 9.70217i 0.396089 + 0.686047i
\(201\) −18.0180 −1.27089
\(202\) −3.93262 −0.276698
\(203\) 5.48545 + 9.50108i 0.385003 + 0.666845i
\(204\) 0.527275 0.913268i 0.0369167 0.0639415i
\(205\) −1.29272 2.23906i −0.0902875 0.156383i
\(206\) −10.9929 + 19.0403i −0.765911 + 1.32660i
\(207\) 4.10561 7.11112i 0.285359 0.494257i
\(208\) −23.1810 −1.60731
\(209\) 1.15945 4.20187i 0.0802010 0.290649i
\(210\) 1.69741 0.117132
\(211\) 5.13867 8.90044i 0.353761 0.612731i −0.633144 0.774034i \(-0.718236\pi\)
0.986905 + 0.161302i \(0.0515694\pi\)
\(212\) −3.39086 + 5.87314i −0.232885 + 0.403369i
\(213\) 7.36280 + 12.7527i 0.504491 + 0.873804i
\(214\) 0.696708 1.20673i 0.0476259 0.0824906i
\(215\) 1.13490 + 1.96571i 0.0773997 + 0.134060i
\(216\) −12.5567 −0.854378
\(217\) −15.9778 −1.08465
\(218\) 7.21114 + 12.4901i 0.488400 + 0.845934i
\(219\) 4.38552 + 7.59595i 0.296346 + 0.513287i
\(220\) 0.225709 0.0152173
\(221\) −8.00052 −0.538173
\(222\) −7.29381 12.6333i −0.489529 0.847889i
\(223\) −6.12388 + 10.6069i −0.410085 + 0.710288i −0.994899 0.100880i \(-0.967834\pi\)
0.584814 + 0.811168i \(0.301168\pi\)
\(224\) −3.31932 5.74923i −0.221781 0.384136i
\(225\) −3.95531 + 6.85080i −0.263688 + 0.456720i
\(226\) 12.2182 21.1626i 0.812745 1.40772i
\(227\) −5.38317 −0.357294 −0.178647 0.983913i \(-0.557172\pi\)
−0.178647 + 0.983913i \(0.557172\pi\)
\(228\) −0.738984 + 2.67809i −0.0489404 + 0.177361i
\(229\) −5.34294 −0.353071 −0.176536 0.984294i \(-0.556489\pi\)
−0.176536 + 0.984294i \(0.556489\pi\)
\(230\) −1.65282 + 2.86277i −0.108984 + 0.188765i
\(231\) 1.28698 2.22911i 0.0846771 0.146665i
\(232\) 5.76964 + 9.99331i 0.378796 + 0.656093i
\(233\) 2.94957 5.10880i 0.193233 0.334689i −0.753087 0.657921i \(-0.771436\pi\)
0.946320 + 0.323232i \(0.104769\pi\)
\(234\) −6.31946 10.9456i −0.413116 0.715538i
\(235\) 0.653523 0.0426311
\(236\) 0.887043 0.0577416
\(237\) −4.48244 7.76382i −0.291166 0.504314i
\(238\) −2.91154 5.04293i −0.188727 0.326885i
\(239\) 0.636360 0.0411627 0.0205814 0.999788i \(-0.493448\pi\)
0.0205814 + 0.999788i \(0.493448\pi\)
\(240\) 2.31216 0.149249
\(241\) 4.07766 + 7.06271i 0.262665 + 0.454949i 0.966949 0.254969i \(-0.0820653\pi\)
−0.704284 + 0.709918i \(0.748732\pi\)
\(242\) 0.797832 1.38189i 0.0512866 0.0888310i
\(243\) −7.30071 12.6452i −0.468341 0.811191i
\(244\) −1.34410 + 2.32805i −0.0860473 + 0.149038i
\(245\) −0.441245 + 0.764259i −0.0281901 + 0.0488267i
\(246\) 11.6495 0.742748
\(247\) 20.3989 5.30356i 1.29795 0.337458i
\(248\) −16.8056 −1.06716
\(249\) −3.77419 + 6.53708i −0.239179 + 0.414271i
\(250\) 3.24095 5.61349i 0.204976 0.355028i
\(251\) −6.19906 10.7371i −0.391281 0.677719i 0.601338 0.798995i \(-0.294635\pi\)
−0.992619 + 0.121276i \(0.961301\pi\)
\(252\) 0.986595 1.70883i 0.0621496 0.107646i
\(253\) 2.50635 + 4.34113i 0.157573 + 0.272924i
\(254\) 2.38772 0.149819
\(255\) 0.798000 0.0499727
\(256\) −6.10951 10.5820i −0.381844 0.661374i
\(257\) −1.39827 2.42187i −0.0872216 0.151072i 0.819114 0.573631i \(-0.194465\pi\)
−0.906336 + 0.422558i \(0.861132\pi\)
\(258\) −10.2273 −0.636727
\(259\) −17.2780 −1.07360
\(260\) 0.545698 + 0.945177i 0.0338428 + 0.0586174i
\(261\) −4.07400 + 7.05638i −0.252175 + 0.436779i
\(262\) 9.93161 + 17.2020i 0.613577 + 1.06275i
\(263\) 2.93763 5.08813i 0.181142 0.313747i −0.761128 0.648602i \(-0.775354\pi\)
0.942270 + 0.334855i \(0.108687\pi\)
\(264\) 1.35366 2.34460i 0.0833118 0.144300i
\(265\) −5.13187 −0.315248
\(266\) 10.7665 + 10.9279i 0.660137 + 0.670031i
\(267\) 4.20166 0.257138
\(268\) 4.21608 7.30246i 0.257538 0.446069i
\(269\) 7.82445 13.5523i 0.477065 0.826301i −0.522589 0.852584i \(-0.675034\pi\)
0.999655 + 0.0262835i \(0.00836726\pi\)
\(270\) 1.78471 + 3.09121i 0.108614 + 0.188125i
\(271\) −13.7883 + 23.8820i −0.837577 + 1.45073i 0.0543377 + 0.998523i \(0.482695\pi\)
−0.891915 + 0.452203i \(0.850638\pi\)
\(272\) −3.96602 6.86934i −0.240475 0.416515i
\(273\) 12.4461 0.753275
\(274\) 29.0327 1.75393
\(275\) −2.41460 4.18221i −0.145606 0.252197i
\(276\) −1.59744 2.76685i −0.0961545 0.166545i
\(277\) 23.6510 1.42105 0.710525 0.703672i \(-0.248457\pi\)
0.710525 + 0.703672i \(0.248457\pi\)
\(278\) 24.2702 1.45563
\(279\) −5.93331 10.2768i −0.355218 0.615255i
\(280\) 1.05731 1.83131i 0.0631863 0.109442i
\(281\) 14.3290 + 24.8185i 0.854794 + 1.48055i 0.876836 + 0.480790i \(0.159650\pi\)
−0.0220416 + 0.999757i \(0.507017\pi\)
\(282\) −1.47233 + 2.55015i −0.0876760 + 0.151859i
\(283\) 10.3771 17.9737i 0.616856 1.06843i −0.373200 0.927751i \(-0.621739\pi\)
0.990056 0.140675i \(-0.0449273\pi\)
\(284\) −6.89136 −0.408927
\(285\) −2.03466 + 0.528996i −0.120523 + 0.0313350i
\(286\) 7.71569 0.456238
\(287\) 6.89903 11.9495i 0.407237 0.705355i
\(288\) 2.46523 4.26991i 0.145265 0.251607i
\(289\) 7.13120 + 12.3516i 0.419482 + 0.726565i
\(290\) 1.64010 2.84073i 0.0963099 0.166814i
\(291\) 8.69717 + 15.0639i 0.509837 + 0.883063i
\(292\) −4.10472 −0.240210
\(293\) −6.05799 −0.353912 −0.176956 0.984219i \(-0.556625\pi\)
−0.176956 + 0.984219i \(0.556625\pi\)
\(294\) −1.98817 3.44362i −0.115953 0.200836i
\(295\) 0.335622 + 0.581314i 0.0195407 + 0.0338454i
\(296\) −18.1732 −1.05629
\(297\) 5.41270 0.314077
\(298\) 6.85385 + 11.8712i 0.397033 + 0.687681i
\(299\) −12.1192 + 20.9911i −0.700873 + 1.21395i
\(300\) 1.53896 + 2.66556i 0.0888520 + 0.153896i
\(301\) −6.05679 + 10.4907i −0.349107 + 0.604672i
\(302\) −2.13215 + 3.69299i −0.122691 + 0.212508i
\(303\) 2.87618 0.165232
\(304\) 14.6658 + 14.8856i 0.841143 + 0.853750i
\(305\) −2.03422 −0.116479
\(306\) 2.16238 3.74535i 0.123615 0.214108i
\(307\) 15.7235 27.2339i 0.897389 1.55432i 0.0665682 0.997782i \(-0.478795\pi\)
0.830820 0.556541i \(-0.187872\pi\)
\(308\) 0.602287 + 1.04319i 0.0343185 + 0.0594413i
\(309\) 8.03982 13.9254i 0.457369 0.792187i
\(310\) 2.38861 + 4.13720i 0.135664 + 0.234977i
\(311\) 10.8262 0.613897 0.306948 0.951726i \(-0.400692\pi\)
0.306948 + 0.951726i \(0.400692\pi\)
\(312\) 13.0910 0.741130
\(313\) 10.3198 + 17.8744i 0.583310 + 1.01032i 0.995084 + 0.0990363i \(0.0315760\pi\)
−0.411774 + 0.911286i \(0.635091\pi\)
\(314\) −5.27757 9.14102i −0.297831 0.515858i
\(315\) 1.49315 0.0841296
\(316\) 4.19543 0.236011
\(317\) −17.0473 29.5268i −0.957471 1.65839i −0.728610 0.684929i \(-0.759833\pi\)
−0.228861 0.973459i \(-0.573500\pi\)
\(318\) 11.5617 20.0254i 0.648345 1.12297i
\(319\) −2.48706 4.30771i −0.139249 0.241186i
\(320\) 0.988816 1.71268i 0.0552765 0.0957417i
\(321\) −0.509547 + 0.882562i −0.0284402 + 0.0492598i
\(322\) −17.6417 −0.983131
\(323\) 5.06165 + 5.13752i 0.281638 + 0.285859i
\(324\) −0.765936 −0.0425520
\(325\) 11.6756 20.2227i 0.647645 1.12175i
\(326\) 7.08603 12.2734i 0.392459 0.679759i
\(327\) −5.27398 9.13480i −0.291652 0.505155i
\(328\) 7.25646 12.5686i 0.400671 0.693983i
\(329\) 1.74387 + 3.02047i 0.0961428 + 0.166524i
\(330\) −0.769590 −0.0423645
\(331\) −16.3637 −0.899432 −0.449716 0.893172i \(-0.648475\pi\)
−0.449716 + 0.893172i \(0.648475\pi\)
\(332\) −1.76626 3.05925i −0.0969362 0.167898i
\(333\) −6.41613 11.1131i −0.351602 0.608992i
\(334\) 27.0792 1.48171
\(335\) 6.38079 0.348620
\(336\) 6.16980 + 10.6864i 0.336590 + 0.582991i
\(337\) 4.55688 7.89274i 0.248229 0.429945i −0.714806 0.699323i \(-0.753485\pi\)
0.963034 + 0.269378i \(0.0868182\pi\)
\(338\) 8.28243 + 14.3456i 0.450505 + 0.780297i
\(339\) −8.93599 + 15.4776i −0.485336 + 0.840627i
\(340\) −0.186726 + 0.323419i −0.0101266 + 0.0175398i
\(341\) 7.24422 0.392296
\(342\) −3.03061 + 10.9830i −0.163877 + 0.593890i
\(343\) −20.1489 −1.08794
\(344\) −6.37058 + 11.0342i −0.343479 + 0.594923i
\(345\) 1.20882 2.09373i 0.0650804 0.112723i
\(346\) 0.226088 + 0.391595i 0.0121545 + 0.0210523i
\(347\) −7.63150 + 13.2181i −0.409680 + 0.709587i −0.994854 0.101321i \(-0.967693\pi\)
0.585173 + 0.810908i \(0.301026\pi\)
\(348\) 1.58514 + 2.74555i 0.0849726 + 0.147177i
\(349\) −13.0663 −0.699426 −0.349713 0.936857i \(-0.613721\pi\)
−0.349713 + 0.936857i \(0.613721\pi\)
\(350\) 16.9959 0.908466
\(351\) 13.0863 + 22.6661i 0.698495 + 1.20983i
\(352\) 1.50495 + 2.60665i 0.0802142 + 0.138935i
\(353\) −15.6514 −0.833038 −0.416519 0.909127i \(-0.636750\pi\)
−0.416519 + 0.909127i \(0.636750\pi\)
\(354\) −3.02451 −0.160751
\(355\) −2.60742 4.51618i −0.138387 0.239694i
\(356\) −0.983157 + 1.70288i −0.0521072 + 0.0902523i
\(357\) 2.12940 + 3.68822i 0.112700 + 0.195202i
\(358\) −9.06909 + 15.7081i −0.479316 + 0.830200i
\(359\) 18.3775 31.8308i 0.969927 1.67996i 0.274178 0.961679i \(-0.411594\pi\)
0.695749 0.718285i \(-0.255073\pi\)
\(360\) 1.57051 0.0827732
\(361\) −16.3113 9.74372i −0.858492 0.512827i
\(362\) −13.4215 −0.705417
\(363\) −0.583506 + 1.01066i −0.0306261 + 0.0530460i
\(364\) −2.91230 + 5.04425i −0.152646 + 0.264391i
\(365\) −1.55306 2.68998i −0.0812909 0.140800i
\(366\) 4.58292 7.93784i 0.239553 0.414918i
\(367\) −8.38353 14.5207i −0.437617 0.757975i 0.559888 0.828568i \(-0.310844\pi\)
−0.997505 + 0.0705935i \(0.977511\pi\)
\(368\) −24.0310 −1.25270
\(369\) 10.2477 0.533475
\(370\) 2.58298 + 4.47386i 0.134283 + 0.232585i
\(371\) −13.6940 23.7186i −0.710955 1.23141i
\(372\) −4.61715 −0.239388
\(373\) 22.0884 1.14369 0.571847 0.820360i \(-0.306227\pi\)
0.571847 + 0.820360i \(0.306227\pi\)
\(374\) 1.32007 + 2.28643i 0.0682591 + 0.118228i
\(375\) −2.37032 + 4.10551i −0.122403 + 0.212008i
\(376\) 1.83422 + 3.17696i 0.0945926 + 0.163839i
\(377\) 12.0259 20.8295i 0.619368 1.07278i
\(378\) −9.52471 + 16.4973i −0.489898 + 0.848528i
\(379\) −4.76307 −0.244662 −0.122331 0.992489i \(-0.539037\pi\)
−0.122331 + 0.992489i \(0.539037\pi\)
\(380\) 0.261699 0.948400i 0.0134249 0.0486519i
\(381\) −1.74630 −0.0894655
\(382\) 7.84287 13.5842i 0.401276 0.695031i
\(383\) −2.37393 + 4.11177i −0.121302 + 0.210102i −0.920281 0.391257i \(-0.872040\pi\)
0.798979 + 0.601359i \(0.205374\pi\)
\(384\) 7.96803 + 13.8010i 0.406617 + 0.704281i
\(385\) −0.455763 + 0.789404i −0.0232278 + 0.0402318i
\(386\) −10.7638 18.6435i −0.547863 0.948927i
\(387\) −8.99667 −0.457326
\(388\) −8.14028 −0.413260
\(389\) −11.2176 19.4295i −0.568756 0.985114i −0.996689 0.0813039i \(-0.974092\pi\)
0.427933 0.903810i \(-0.359242\pi\)
\(390\) −1.86064 3.22273i −0.0942172 0.163189i
\(391\) −8.29386 −0.419439
\(392\) −4.95371 −0.250200
\(393\) −7.26363 12.5810i −0.366402 0.634626i
\(394\) 4.22745 7.32217i 0.212976 0.368885i
\(395\) 1.58738 + 2.74943i 0.0798699 + 0.138339i
\(396\) −0.447314 + 0.774771i −0.0224784 + 0.0389337i
\(397\) −19.6159 + 33.9757i −0.984494 + 1.70519i −0.340330 + 0.940306i \(0.610539\pi\)
−0.644164 + 0.764888i \(0.722794\pi\)
\(398\) 14.3567 0.719634
\(399\) −7.87425 7.99227i −0.394205 0.400114i
\(400\) 23.1513 1.15756
\(401\) −2.99155 + 5.18151i −0.149391 + 0.258752i −0.931002 0.365013i \(-0.881065\pi\)
0.781612 + 0.623765i \(0.214398\pi\)
\(402\) −14.3754 + 24.8989i −0.716978 + 1.24184i
\(403\) 17.5144 + 30.3358i 0.872453 + 1.51113i
\(404\) −0.673003 + 1.16568i −0.0334832 + 0.0579945i
\(405\) −0.289800 0.501948i −0.0144003 0.0249420i
\(406\) 17.5059 0.868802
\(407\) 7.83371 0.388303
\(408\) 2.23972 + 3.87931i 0.110883 + 0.192054i
\(409\) −3.06231 5.30407i −0.151421 0.262270i 0.780329 0.625369i \(-0.215052\pi\)
−0.931750 + 0.363100i \(0.881718\pi\)
\(410\) −4.12550 −0.203744
\(411\) −21.2335 −1.04737
\(412\) 3.76251 + 6.51686i 0.185366 + 0.321063i
\(413\) −1.79116 + 3.10238i −0.0881371 + 0.152658i
\(414\) −6.55117 11.3470i −0.321972 0.557673i
\(415\) 1.33657 2.31500i 0.0656094 0.113639i
\(416\) −7.27706 + 12.6042i −0.356787 + 0.617973i
\(417\) −17.7504 −0.869240
\(418\) −4.88145 4.95461i −0.238759 0.242338i
\(419\) −1.36783 −0.0668231 −0.0334115 0.999442i \(-0.510637\pi\)
−0.0334115 + 0.999442i \(0.510637\pi\)
\(420\) 0.290483 0.503132i 0.0141741 0.0245503i
\(421\) −15.6469 + 27.1013i −0.762584 + 1.32083i 0.178930 + 0.983862i \(0.442736\pi\)
−0.941514 + 0.336973i \(0.890597\pi\)
\(422\) −8.19959 14.2021i −0.399150 0.691348i
\(423\) −1.29516 + 2.24329i −0.0629729 + 0.109072i
\(424\) −14.4034 24.9475i −0.699492 1.21156i
\(425\) 7.99025 0.387584
\(426\) 23.4971 1.13844
\(427\) −5.42814 9.40182i −0.262686 0.454986i
\(428\) −0.238460 0.413025i −0.0115264 0.0199643i
\(429\) −5.64298 −0.272446
\(430\) 3.62185 0.174661
\(431\) −6.48920 11.2396i −0.312574 0.541393i 0.666345 0.745643i \(-0.267858\pi\)
−0.978919 + 0.204250i \(0.934524\pi\)
\(432\) −12.9743 + 22.4721i −0.624225 + 1.08119i
\(433\) 13.9273 + 24.1227i 0.669302 + 1.15926i 0.978100 + 0.208137i \(0.0667401\pi\)
−0.308798 + 0.951128i \(0.599927\pi\)
\(434\) −12.7476 + 22.0795i −0.611905 + 1.05985i
\(435\) −1.19951 + 2.07761i −0.0575121 + 0.0996139i
\(436\) 4.93628 0.236405
\(437\) 21.1468 5.49802i 1.01159 0.263006i
\(438\) 13.9956 0.668738
\(439\) 11.4040 19.7524i 0.544285 0.942730i −0.454366 0.890815i \(-0.650134\pi\)
0.998652 0.0519150i \(-0.0165325\pi\)
\(440\) −0.479375 + 0.830302i −0.0228533 + 0.0395831i
\(441\) −1.74893 3.02924i −0.0832825 0.144249i
\(442\) −6.38307 + 11.0558i −0.303612 + 0.525871i
\(443\) −4.16308 7.21066i −0.197794 0.342589i 0.750019 0.661416i \(-0.230044\pi\)
−0.947813 + 0.318827i \(0.896711\pi\)
\(444\) −4.99287 −0.236951
\(445\) −1.48795 −0.0705356
\(446\) 9.77165 + 16.9250i 0.462701 + 0.801422i
\(447\) −5.01267 8.68219i −0.237091 0.410654i
\(448\) 10.5543 0.498644
\(449\) −42.0027 −1.98223 −0.991115 0.133006i \(-0.957537\pi\)
−0.991115 + 0.133006i \(0.957537\pi\)
\(450\) 6.31135 + 10.9316i 0.297520 + 0.515320i
\(451\) −3.12797 + 5.41780i −0.147290 + 0.255114i
\(452\) −4.18190 7.24327i −0.196700 0.340695i
\(453\) 1.55938 2.70092i 0.0732660 0.126900i
\(454\) −4.29487 + 7.43893i −0.201568 + 0.349126i
\(455\) −4.40760 −0.206631
\(456\) −8.28220 8.40634i −0.387850 0.393663i
\(457\) −19.5851 −0.916152 −0.458076 0.888913i \(-0.651461\pi\)
−0.458076 + 0.888913i \(0.651461\pi\)
\(458\) −4.26276 + 7.38333i −0.199186 + 0.345000i
\(459\) −4.47784 + 7.75585i −0.209008 + 0.362012i
\(460\) 0.565707 + 0.979833i 0.0263762 + 0.0456849i
\(461\) 11.5781 20.0539i 0.539247 0.934004i −0.459697 0.888076i \(-0.652042\pi\)
0.998945 0.0459283i \(-0.0146246\pi\)
\(462\) −2.05359 3.55692i −0.0955415 0.165483i
\(463\) 27.3013 1.26880 0.634399 0.773005i \(-0.281247\pi\)
0.634399 + 0.773005i \(0.281247\pi\)
\(464\) 23.8460 1.10702
\(465\) −1.74695 3.02580i −0.0810127 0.140318i
\(466\) −4.70652 8.15193i −0.218025 0.377631i
\(467\) −41.8946 −1.93865 −0.969326 0.245777i \(-0.920957\pi\)
−0.969326 + 0.245777i \(0.920957\pi\)
\(468\) −4.32589 −0.199964
\(469\) 17.0266 + 29.4909i 0.786216 + 1.36177i
\(470\) 0.521402 0.903094i 0.0240505 0.0416566i
\(471\) 3.85983 + 6.68542i 0.177852 + 0.308048i
\(472\) −1.88396 + 3.26311i −0.0867161 + 0.150197i
\(473\) 2.74610 4.75638i 0.126266 0.218699i
\(474\) −14.3050 −0.657048
\(475\) −20.3727 + 5.29675i −0.934764 + 0.243032i
\(476\) −1.99305 −0.0913513
\(477\) 10.1704 17.6157i 0.465671 0.806566i
\(478\) 0.507709 0.879377i 0.0232221 0.0402218i
\(479\) 2.02880 + 3.51399i 0.0926983 + 0.160558i 0.908646 0.417568i \(-0.137117\pi\)
−0.815947 + 0.578126i \(0.803784\pi\)
\(480\) 0.725840 1.25719i 0.0331299 0.0573827i
\(481\) 18.9396 + 32.8044i 0.863571 + 1.49575i
\(482\) 13.0131 0.592732
\(483\) 12.9025 0.587084
\(484\) −0.273072 0.472974i −0.0124124 0.0214988i
\(485\) −3.07996 5.33464i −0.139854 0.242234i
\(486\) −23.2990 −1.05686
\(487\) 10.2039 0.462381 0.231190 0.972909i \(-0.425738\pi\)
0.231190 + 0.972909i \(0.425738\pi\)
\(488\) −5.70937 9.88891i −0.258451 0.447650i
\(489\) −5.18247 + 8.97631i −0.234360 + 0.405923i
\(490\) 0.704079 + 1.21950i 0.0318070 + 0.0550914i
\(491\) 1.63476 2.83149i 0.0737758 0.127783i −0.826777 0.562529i \(-0.809828\pi\)
0.900553 + 0.434746i \(0.143162\pi\)
\(492\) 1.99363 3.45307i 0.0898798 0.155676i
\(493\) 8.23002 0.370662
\(494\) 8.94597 32.4203i 0.402498 1.45866i
\(495\) −0.676984 −0.0304281
\(496\) −17.3644 + 30.0761i −0.779686 + 1.35046i
\(497\) 13.9153 24.1021i 0.624188 1.08113i
\(498\) 6.02233 + 10.4310i 0.269867 + 0.467424i
\(499\) 11.2025 19.4033i 0.501494 0.868613i −0.498505 0.866887i \(-0.666117\pi\)
0.999999 0.00172563i \(-0.000549286\pi\)
\(500\) −1.10927 1.92131i −0.0496081 0.0859238i
\(501\) −19.8048 −0.884811
\(502\) −19.7832 −0.882969
\(503\) 2.40438 + 4.16451i 0.107206 + 0.185686i 0.914637 0.404275i \(-0.132476\pi\)
−0.807431 + 0.589962i \(0.799143\pi\)
\(504\) 4.19078 + 7.25864i 0.186672 + 0.323326i
\(505\) −1.01855 −0.0453249
\(506\) 7.99859 0.355581
\(507\) −6.05748 10.4919i −0.269022 0.465960i
\(508\) 0.408620 0.707750i 0.0181296 0.0314013i
\(509\) 5.76697 + 9.98868i 0.255616 + 0.442741i 0.965063 0.262019i \(-0.0843883\pi\)
−0.709446 + 0.704759i \(0.751055\pi\)
\(510\) 0.636670 1.10275i 0.0281922 0.0488304i
\(511\) 8.28843 14.3560i 0.366659 0.635071i
\(512\) 7.81342 0.345308
\(513\) 6.27577 22.7434i 0.277082 1.00415i
\(514\) −4.46233 −0.196825
\(515\) −2.84717 + 4.93144i −0.125461 + 0.217305i
\(516\) −1.75024 + 3.03151i −0.0770502 + 0.133455i
\(517\) −0.790657 1.36946i −0.0347731 0.0602287i
\(518\) −13.7850 + 23.8762i −0.605676 + 1.04906i
\(519\) −0.165353 0.286399i −0.00725817 0.0125715i
\(520\) −4.63595 −0.203300
\(521\) 4.84230 0.212145 0.106072 0.994358i \(-0.466172\pi\)
0.106072 + 0.994358i \(0.466172\pi\)
\(522\) 6.50074 + 11.2596i 0.284530 + 0.492820i
\(523\) 18.9189 + 32.7685i 0.827265 + 1.43287i 0.900176 + 0.435527i \(0.143438\pi\)
−0.0729108 + 0.997338i \(0.523229\pi\)
\(524\) 6.79853 0.296995
\(525\) −12.4302 −0.542497
\(526\) −4.68747 8.11894i −0.204383 0.354003i
\(527\) −5.99303 + 10.3802i −0.261060 + 0.452170i
\(528\) −2.79734 4.84513i −0.121738 0.210857i
\(529\) −1.06359 + 1.84219i −0.0462430 + 0.0800952i
\(530\) −4.09437 + 7.09165i −0.177848 + 0.308042i
\(531\) −2.66056 −0.115459
\(532\) 5.08167 1.32120i 0.220318 0.0572812i
\(533\) −30.2500 −1.31027
\(534\) 3.35222 5.80622i 0.145065 0.251260i
\(535\) 0.180448 0.312545i 0.00780144 0.0135125i
\(536\) 17.9087 + 31.0188i 0.773539 + 1.33981i
\(537\) 6.63281 11.4884i 0.286227 0.495760i
\(538\) −12.4852 21.6250i −0.538275 0.932319i
\(539\) 2.13534 0.0919757
\(540\) 1.22170 0.0525735
\(541\) 0.206473 + 0.357622i 0.00887698 + 0.0153754i 0.870430 0.492293i \(-0.163841\pi\)
−0.861553 + 0.507668i \(0.830508\pi\)
\(542\) 22.0014 + 38.1076i 0.945042 + 1.63686i
\(543\) 9.81600 0.421245
\(544\) −4.98010 −0.213520
\(545\) 1.86769 + 3.23494i 0.0800031 + 0.138570i
\(546\) 9.92993 17.1991i 0.424962 0.736056i
\(547\) 13.1542 + 22.7837i 0.562432 + 0.974161i 0.997283 + 0.0736591i \(0.0234677\pi\)
−0.434851 + 0.900502i \(0.643199\pi\)
\(548\) 4.96847 8.60564i 0.212243 0.367615i
\(549\) 4.03144 6.98266i 0.172058 0.298013i
\(550\) −7.70578 −0.328576
\(551\) −20.9840 + 5.45570i −0.893951 + 0.232421i
\(552\) 13.5710 0.577618
\(553\) −8.47160 + 14.6732i −0.360249 + 0.623970i
\(554\) 18.8695 32.6830i 0.801689 1.38857i
\(555\) −1.88910 3.27202i −0.0801880 0.138890i
\(556\) 4.15345 7.19399i 0.176146 0.305093i
\(557\) 18.0568 + 31.2753i 0.765090 + 1.32517i 0.940199 + 0.340626i \(0.110639\pi\)
−0.175109 + 0.984549i \(0.556028\pi\)
\(558\) −18.9351 −0.801588
\(559\) 26.5570 1.12324
\(560\) −2.18493 3.78441i −0.0923303 0.159921i
\(561\) −0.965452 1.67221i −0.0407614 0.0706008i
\(562\) 45.7284 1.92894
\(563\) −44.9653 −1.89506 −0.947532 0.319662i \(-0.896431\pi\)
−0.947532 + 0.319662i \(0.896431\pi\)
\(564\) 0.503931 + 0.872834i 0.0212193 + 0.0367529i
\(565\) 3.16453 5.48113i 0.133133 0.230593i
\(566\) −16.5584 28.6800i −0.696002 1.20551i
\(567\) 1.54661 2.67881i 0.0649516 0.112500i
\(568\) 14.6363 25.3508i 0.614125 1.06369i
\(569\) 40.8649 1.71315 0.856574 0.516024i \(-0.172589\pi\)
0.856574 + 0.516024i \(0.172589\pi\)
\(570\) −0.892303 + 3.23371i −0.0373745 + 0.135445i
\(571\) −31.4841 −1.31757 −0.658784 0.752332i \(-0.728929\pi\)
−0.658784 + 0.752332i \(0.728929\pi\)
\(572\) 1.32041 2.28702i 0.0552093 0.0956253i
\(573\) −5.73600 + 9.93504i −0.239625 + 0.415042i
\(574\) −11.0085 19.0673i −0.459488 0.795856i
\(575\) 12.1037 20.9642i 0.504758 0.874267i
\(576\) 3.91930 + 6.78843i 0.163304 + 0.282851i
\(577\) −32.6849 −1.36069 −0.680345 0.732892i \(-0.738170\pi\)
−0.680345 + 0.732892i \(0.738170\pi\)
\(578\) 22.7580 0.946608
\(579\) 7.87227 + 13.6352i 0.327160 + 0.566658i
\(580\) −0.561352 0.972291i −0.0233089 0.0403722i
\(581\) 14.2661 0.591856
\(582\) 27.7555 1.15050
\(583\) 6.20873 + 10.7538i 0.257139 + 0.445379i
\(584\) 8.71784 15.0997i 0.360747 0.624832i
\(585\) −1.63675 2.83493i −0.0676711 0.117210i
\(586\) −4.83326 + 8.37146i −0.199660 + 0.345822i
\(587\) −1.38822 + 2.40446i −0.0572979 + 0.0992428i −0.893252 0.449557i \(-0.851582\pi\)
0.835954 + 0.548800i \(0.184915\pi\)
\(588\) −1.36097 −0.0561256
\(589\) 8.39932 30.4392i 0.346088 1.25423i
\(590\) 1.07108 0.0440956
\(591\) −3.09181 + 5.35518i −0.127180 + 0.220282i
\(592\) −18.7775 + 32.5235i −0.771749 + 1.33671i
\(593\) −0.738309 1.27879i −0.0303187 0.0525135i 0.850468 0.526027i \(-0.176319\pi\)
−0.880787 + 0.473513i \(0.842986\pi\)
\(594\) 4.31843 7.47973i 0.177187 0.306897i
\(595\) −0.754091 1.30612i −0.0309147 0.0535459i
\(596\) 4.69170 0.192179
\(597\) −10.5000 −0.429735
\(598\) 19.3382 + 33.4948i 0.790799 + 1.36970i
\(599\) −15.3058 26.5104i −0.625377 1.08318i −0.988468 0.151431i \(-0.951612\pi\)
0.363091 0.931754i \(-0.381721\pi\)
\(600\) −13.0742 −0.533750
\(601\) 19.2289 0.784362 0.392181 0.919888i \(-0.371721\pi\)
0.392181 + 0.919888i \(0.371721\pi\)
\(602\) 9.66460 + 16.7396i 0.393900 + 0.682254i
\(603\) −12.6455 + 21.9027i −0.514966 + 0.891948i
\(604\) 0.729765 + 1.26399i 0.0296937 + 0.0514310i
\(605\) 0.206639 0.357909i 0.00840108 0.0145511i
\(606\) 2.29471 3.97455i 0.0932161 0.161455i
\(607\) 21.3100 0.864947 0.432474 0.901647i \(-0.357641\pi\)
0.432474 + 0.901647i \(0.357641\pi\)
\(608\) 12.6977 3.30132i 0.514961 0.133886i
\(609\) −12.8032 −0.518811
\(610\) −1.62296 + 2.81106i −0.0657119 + 0.113816i
\(611\) 3.82315 6.62189i 0.154668 0.267893i
\(612\) −0.740112 1.28191i −0.0299173 0.0518182i
\(613\) 6.88667 11.9281i 0.278150 0.481770i −0.692775 0.721154i \(-0.743612\pi\)
0.970925 + 0.239384i \(0.0769455\pi\)
\(614\) −25.0895 43.4562i −1.01253 1.75375i
\(615\) 3.01724 0.121667
\(616\) −5.11669 −0.206157
\(617\) −17.1808 29.7581i −0.691674 1.19801i −0.971289 0.237902i \(-0.923540\pi\)
0.279615 0.960112i \(-0.409793\pi\)
\(618\) −12.8288 22.2202i −0.516052 0.893828i
\(619\) 13.6621 0.549128 0.274564 0.961569i \(-0.411466\pi\)
0.274564 + 0.961569i \(0.411466\pi\)
\(620\) 1.63509 0.0656667
\(621\) 13.5661 + 23.4972i 0.544390 + 0.942911i
\(622\) 8.63748 14.9606i 0.346331 0.599863i
\(623\) −3.97047 6.87706i −0.159074 0.275523i
\(624\) 13.5263 23.4282i 0.541484 0.937878i
\(625\) −11.2336 + 19.4572i −0.449344 + 0.778286i
\(626\) 32.9339 1.31630
\(627\) 3.57012 + 3.62363i 0.142577 + 0.144714i
\(628\) −3.61268 −0.144162
\(629\) −6.48071 + 11.2249i −0.258403 + 0.447567i
\(630\) 1.19129 2.06337i 0.0474619 0.0822065i
\(631\) −15.7214 27.2303i −0.625860 1.08402i −0.988374 0.152043i \(-0.951415\pi\)
0.362513 0.931979i \(-0.381919\pi\)
\(632\) −8.91050 + 15.4334i −0.354441 + 0.613910i
\(633\) 5.99689 + 10.3869i 0.238355 + 0.412843i
\(634\) −54.4035 −2.16064
\(635\) 0.618422 0.0245413
\(636\) −3.95718 6.85403i −0.156912 0.271780i
\(637\) 5.16262 + 8.94193i 0.204551 + 0.354292i
\(638\) −7.93702 −0.314230
\(639\) 20.6697 0.817679
\(640\) −2.82175 4.88741i −0.111539 0.193192i
\(641\) −3.25913 + 5.64498i −0.128728 + 0.222963i −0.923184 0.384358i \(-0.874423\pi\)
0.794456 + 0.607322i \(0.207756\pi\)
\(642\) 0.813066 + 1.40827i 0.0320892 + 0.0555801i
\(643\) 5.22309 9.04665i 0.205978 0.356765i −0.744466 0.667661i \(-0.767296\pi\)
0.950444 + 0.310896i \(0.100629\pi\)
\(644\) −3.01908 + 5.22920i −0.118969 + 0.206060i
\(645\) −2.64889 −0.104300
\(646\) 11.1378 2.89575i 0.438211 0.113932i
\(647\) −24.9256 −0.979928 −0.489964 0.871743i \(-0.662990\pi\)
−0.489964 + 0.871743i \(0.662990\pi\)
\(648\) 1.62674 2.81760i 0.0639044 0.110686i
\(649\) 0.812097 1.40659i 0.0318776 0.0552136i
\(650\) −18.6303 32.2686i −0.730741 1.26568i
\(651\) 9.32316 16.1482i 0.365403 0.632897i
\(652\) −2.42532 4.20077i −0.0949828 0.164515i
\(653\) 17.6003 0.688752 0.344376 0.938832i \(-0.388091\pi\)
0.344376 + 0.938832i \(0.388091\pi\)
\(654\) −16.8310 −0.658144
\(655\) 2.57229 + 4.45534i 0.100508 + 0.174085i
\(656\) −14.9955 25.9730i −0.585477 1.01408i
\(657\) 12.3115 0.480318
\(658\) 5.56527 0.216957
\(659\) −2.85204 4.93988i −0.111100 0.192430i 0.805114 0.593120i \(-0.202104\pi\)
−0.916214 + 0.400690i \(0.868771\pi\)
\(660\) −0.131703 + 0.228116i −0.00512653 + 0.00887940i
\(661\) 17.6095 + 30.5006i 0.684931 + 1.18633i 0.973459 + 0.228863i \(0.0735009\pi\)
−0.288528 + 0.957472i \(0.593166\pi\)
\(662\) −13.0555 + 22.6128i −0.507417 + 0.878871i
\(663\) 4.66835 8.08582i 0.181304 0.314027i
\(664\) 15.0052 0.582313
\(665\) 2.78853 + 2.83033i 0.108135 + 0.109755i
\(666\) −20.4760 −0.793428
\(667\) 12.4669 21.5933i 0.482720 0.836095i
\(668\) 4.63416 8.02660i 0.179301 0.310558i
\(669\) −7.14664 12.3783i −0.276305 0.478574i
\(670\) 5.09080 8.81752i 0.196675 0.340651i
\(671\) 2.46108 + 4.26271i 0.0950088 + 0.164560i
\(672\) 7.74737 0.298861
\(673\) −25.7412 −0.992250 −0.496125 0.868251i \(-0.665244\pi\)
−0.496125 + 0.868251i \(0.665244\pi\)
\(674\) −7.27124 12.5942i −0.280078 0.485109i
\(675\) −13.0695 22.6371i −0.503046 0.871300i
\(676\) 5.66961 0.218062
\(677\) 27.5905 1.06039 0.530194 0.847876i \(-0.322119\pi\)
0.530194 + 0.847876i \(0.322119\pi\)
\(678\) 14.2588 + 24.6970i 0.547607 + 0.948484i
\(679\) 16.4372 28.4701i 0.630803 1.09258i
\(680\) −0.793159 1.37379i −0.0304163 0.0526825i
\(681\) 3.14112 5.44057i 0.120368 0.208483i
\(682\) 5.77967 10.0107i 0.221315 0.383329i
\(683\) −0.774825 −0.0296479 −0.0148239 0.999890i \(-0.504719\pi\)
−0.0148239 + 0.999890i \(0.504719\pi\)
\(684\) 2.73684 + 2.77786i 0.104646 + 0.106214i
\(685\) 7.51949 0.287305
\(686\) −16.0754 + 27.8435i −0.613763 + 1.06307i
\(687\) 3.11764 5.39990i 0.118945 0.206019i
\(688\) 13.1648 + 22.8022i 0.501905 + 0.869324i
\(689\) −30.0218 + 51.9992i −1.14374 + 1.98101i
\(690\) −1.92886 3.34089i −0.0734306 0.127185i
\(691\) 26.5487 1.00996 0.504980 0.863131i \(-0.331500\pi\)
0.504980 + 0.863131i \(0.331500\pi\)
\(692\) 0.154765 0.00588328
\(693\) −1.80647 3.12890i −0.0686223 0.118857i
\(694\) 12.1773 + 21.0917i 0.462244 + 0.800631i
\(695\) 6.28601 0.238442
\(696\) −13.4665 −0.510446
\(697\) −5.17544 8.96412i −0.196034 0.339540i
\(698\) −10.4248 + 18.0562i −0.394583 + 0.683437i
\(699\) 3.44218 + 5.96204i 0.130195 + 0.225505i
\(700\) 2.90856 5.03778i 0.109933 0.190410i
\(701\) −13.8493 + 23.9876i −0.523079 + 0.906000i 0.476560 + 0.879142i \(0.341883\pi\)
−0.999639 + 0.0268578i \(0.991450\pi\)
\(702\) 41.7627 1.57623
\(703\) 9.08282 32.9162i 0.342565 1.24146i
\(704\) −4.78523 −0.180350
\(705\) −0.381335 + 0.660491i −0.0143619 + 0.0248755i
\(706\) −12.4872 + 21.6284i −0.469960 + 0.813995i
\(707\) −2.71792 4.70757i −0.102218 0.177046i
\(708\) −0.517595 + 0.896501i −0.0194524 + 0.0336926i
\(709\) 13.1264 + 22.7356i 0.492972 + 0.853852i 0.999967 0.00809658i \(-0.00257725\pi\)
−0.506995 + 0.861949i \(0.669244\pi\)
\(710\) −8.32112 −0.312286
\(711\) −12.5836 −0.471922
\(712\) −4.17618 7.23335i −0.156509 0.271081i
\(713\) 18.1565 + 31.4481i 0.679968 + 1.17774i
\(714\) 6.79561 0.254319
\(715\) 1.99837 0.0747348
\(716\) 3.10405 + 5.37638i 0.116004 + 0.200925i
\(717\) −0.371320 + 0.643146i −0.0138672 + 0.0240187i
\(718\) −29.3243 50.7912i −1.09437 1.89551i
\(719\) 20.6029 35.6853i 0.768359 1.33084i −0.170093 0.985428i \(-0.554407\pi\)
0.938452 0.345409i \(-0.112260\pi\)
\(720\) 1.62273 2.81066i 0.0604757 0.104747i
\(721\) −30.3897 −1.13177
\(722\) −26.4784 + 14.7666i −0.985425 + 0.549554i
\(723\) −9.51735 −0.353954
\(724\) −2.29687 + 3.97829i −0.0853624 + 0.147852i
\(725\) −12.0105 + 20.8028i −0.446059 + 0.772597i
\(726\) 0.931080 + 1.61268i 0.0345556 + 0.0598521i
\(727\) −4.34274 + 7.52184i −0.161063 + 0.278970i −0.935250 0.353987i \(-0.884826\pi\)
0.774187 + 0.632957i \(0.218159\pi\)
\(728\) −12.3706 21.4266i −0.458486 0.794122i
\(729\) 21.2474 0.786940
\(730\) −4.95633 −0.183442
\(731\) 4.54361 + 7.86976i 0.168051 + 0.291074i
\(732\) −1.56858 2.71687i −0.0579765 0.100418i
\(733\) 33.9444 1.25377 0.626883 0.779113i \(-0.284330\pi\)
0.626883 + 0.779113i \(0.284330\pi\)
\(734\) −26.7546 −0.987530
\(735\) −0.514939 0.891900i −0.0189938 0.0328982i
\(736\) −7.54388 + 13.0664i −0.278071 + 0.481633i
\(737\) −7.71973 13.3710i −0.284360 0.492526i
\(738\) 8.17597 14.1612i 0.300961 0.521281i
\(739\) −17.9896 + 31.1589i −0.661758 + 1.14620i 0.318395 + 0.947958i \(0.396856\pi\)
−0.980153 + 0.198241i \(0.936477\pi\)
\(740\) 1.76814 0.0649982
\(741\) −6.54277 + 23.7111i −0.240355 + 0.871047i
\(742\) −43.7019 −1.60435
\(743\) −23.2294 + 40.2344i −0.852203 + 1.47606i 0.0270132 + 0.999635i \(0.491400\pi\)
−0.879216 + 0.476423i \(0.841933\pi\)
\(744\) 9.80618 16.9848i 0.359512 0.622693i
\(745\) 1.77515 + 3.07465i 0.0650366 + 0.112647i
\(746\) 17.6228 30.5237i 0.645218 1.11755i
\(747\) 5.29765 + 9.17580i 0.193831 + 0.335725i
\(748\) 0.903633 0.0330401
\(749\) 1.92604 0.0703760
\(750\) 3.78223 + 6.55101i 0.138107 + 0.239209i
\(751\) −2.13647 3.70048i −0.0779610 0.135032i 0.824409 0.565994i \(-0.191508\pi\)
−0.902370 + 0.430962i \(0.858174\pi\)
\(752\) 7.58085 0.276445
\(753\) 14.4688 0.527271
\(754\) −19.1894 33.2370i −0.698835 1.21042i
\(755\) −0.552228 + 0.956487i −0.0200976 + 0.0348101i
\(756\) 3.26000 + 5.64648i 0.118565 + 0.205360i
\(757\) −5.30317 + 9.18537i −0.192747 + 0.333848i −0.946160 0.323700i \(-0.895073\pi\)
0.753413 + 0.657548i \(0.228406\pi\)
\(758\) −3.80013 + 6.58201i −0.138027 + 0.239070i
\(759\) −5.84989 −0.212337
\(760\) 2.93300 + 2.97696i 0.106391 + 0.107986i
\(761\) 36.7869 1.33352 0.666762 0.745271i \(-0.267680\pi\)
0.666762 + 0.745271i \(0.267680\pi\)
\(762\) −1.39325 + 2.41318i −0.0504722 + 0.0874204i
\(763\) −9.96756 + 17.2643i −0.360850 + 0.625010i
\(764\) −2.68436 4.64944i −0.0971167 0.168211i
\(765\) 0.560058 0.970049i 0.0202489 0.0350722i
\(766\) 3.78800 + 6.56101i 0.136866 + 0.237059i
\(767\) 7.85364 0.283578
\(768\) 14.2597 0.514554
\(769\) −3.87754 6.71609i −0.139828 0.242188i 0.787604 0.616182i \(-0.211321\pi\)
−0.927431 + 0.373994i \(0.877988\pi\)
\(770\) 0.727244 + 1.25962i 0.0262081 + 0.0453937i