Properties

Label 209.2.e.b.144.4
Level $209$
Weight $2$
Character 209.144
Analytic conductor $1.669$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(45,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 14 x^{16} - 11 x^{15} + 130 x^{14} - 92 x^{13} + 629 x^{12} - 276 x^{11} + 2060 x^{10} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 144.4
Root \(-0.198213 + 0.343315i\) of defining polynomial
Character \(\chi\) \(=\) 209.144
Dual form 209.2.e.b.45.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.198213 + 0.343315i) q^{2} +(-0.634005 + 1.09813i) q^{3} +(0.921423 + 1.59595i) q^{4} +(-0.220960 + 0.382715i) q^{5} +(-0.251336 - 0.435327i) q^{6} -0.667657 q^{7} -1.52341 q^{8} +(0.696076 + 1.20564i) q^{9} +O(q^{10})\) \(q+(-0.198213 + 0.343315i) q^{2} +(-0.634005 + 1.09813i) q^{3} +(0.921423 + 1.59595i) q^{4} +(-0.220960 + 0.382715i) q^{5} +(-0.251336 - 0.435327i) q^{6} -0.667657 q^{7} -1.52341 q^{8} +(0.696076 + 1.20564i) q^{9} +(-0.0875945 - 0.151718i) q^{10} -1.00000 q^{11} -2.33675 q^{12} +(-0.802426 - 1.38984i) q^{13} +(0.132338 - 0.229217i) q^{14} +(-0.280180 - 0.485286i) q^{15} +(-1.54089 + 2.66890i) q^{16} +(-2.02772 + 3.51212i) q^{17} -0.551886 q^{18} +(2.81513 - 3.32792i) q^{19} -0.814392 q^{20} +(0.423298 - 0.733173i) q^{21} +(0.198213 - 0.343315i) q^{22} +(0.187443 + 0.324661i) q^{23} +(0.965846 - 1.67289i) q^{24} +(2.40235 + 4.16100i) q^{25} +0.636205 q^{26} -5.56929 q^{27} +(-0.615195 - 1.06555i) q^{28} +(1.28039 + 2.21770i) q^{29} +0.222141 q^{30} +9.01266 q^{31} +(-2.13425 - 3.69663i) q^{32} +(0.634005 - 1.09813i) q^{33} +(-0.803843 - 1.39230i) q^{34} +(0.147526 - 0.255522i) q^{35} +(-1.28276 + 2.22181i) q^{36} +7.24253 q^{37} +(0.584530 + 1.62611i) q^{38} +2.03497 q^{39} +(0.336612 - 0.583030i) q^{40} +(2.54306 - 4.40471i) q^{41} +(0.167806 + 0.290649i) q^{42} +(5.01170 - 8.68051i) q^{43} +(-0.921423 - 1.59595i) q^{44} -0.615222 q^{45} -0.148615 q^{46} +(-1.03598 - 1.79437i) q^{47} +(-1.95386 - 3.38418i) q^{48} -6.55423 q^{49} -1.90471 q^{50} +(-2.57117 - 4.45340i) q^{51} +(1.47875 - 2.56126i) q^{52} +(0.163017 + 0.282353i) q^{53} +(1.10391 - 1.91202i) q^{54} +(0.220960 - 0.382715i) q^{55} +1.01711 q^{56} +(1.86968 + 5.20129i) q^{57} -1.01516 q^{58} +(6.93879 - 12.0183i) q^{59} +(0.516328 - 0.894307i) q^{60} +(5.53232 + 9.58226i) q^{61} +(-1.78643 + 3.09418i) q^{62} +(-0.464740 - 0.804954i) q^{63} -4.47140 q^{64} +0.709217 q^{65} +(0.251336 + 0.435327i) q^{66} +(4.06006 + 7.03224i) q^{67} -7.47357 q^{68} -0.475359 q^{69} +(0.0584831 + 0.101296i) q^{70} +(-3.19012 + 5.52545i) q^{71} +(-1.06041 - 1.83668i) q^{72} +(0.0659932 - 0.114304i) q^{73} +(-1.43556 + 2.48647i) q^{74} -6.09241 q^{75} +(7.90512 + 1.42639i) q^{76} +0.667657 q^{77} +(-0.403357 + 0.698635i) q^{78} +(-0.134657 + 0.233233i) q^{79} +(-0.680950 - 1.17944i) q^{80} +(1.44273 - 2.49887i) q^{81} +(1.00814 + 1.74614i) q^{82} -5.76350 q^{83} +1.56015 q^{84} +(-0.896094 - 1.55208i) q^{85} +(1.98677 + 3.44118i) q^{86} -3.24709 q^{87} +1.52341 q^{88} +(-0.492968 - 0.853846i) q^{89} +(0.121945 - 0.211215i) q^{90} +(0.535745 + 0.927938i) q^{91} +(-0.345429 + 0.598300i) q^{92} +(-5.71407 + 9.89706i) q^{93} +0.821379 q^{94} +(0.651612 + 1.81273i) q^{95} +5.41251 q^{96} +(1.68899 - 2.92541i) q^{97} +(1.29914 - 2.25017i) q^{98} +(-0.696076 - 1.20564i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9} + 21 q^{10} - 18 q^{11} + 16 q^{12} + 11 q^{13} + q^{14} + 7 q^{15} - 13 q^{16} + 6 q^{17} - 8 q^{18} + 4 q^{19} + 4 q^{20} + 24 q^{21} - q^{22} - q^{23} - 3 q^{24} - 7 q^{25} - 4 q^{26} + 6 q^{27} - 2 q^{28} + 13 q^{29} - 64 q^{30} - 32 q^{31} - 14 q^{32} + 8 q^{34} - 12 q^{35} + 10 q^{36} - 36 q^{37} - 20 q^{38} + 20 q^{39} + 32 q^{40} + 4 q^{41} + 11 q^{42} + q^{43} + 9 q^{44} + 22 q^{45} - 14 q^{46} - 14 q^{47} + 37 q^{48} - 12 q^{49} + 30 q^{50} - 16 q^{51} + 57 q^{52} - 4 q^{53} - 33 q^{54} - 34 q^{56} - 7 q^{57} + 8 q^{58} + 31 q^{59} + 9 q^{60} + 3 q^{61} + 5 q^{62} + 50 q^{63} + 64 q^{64} - 56 q^{65} + 3 q^{66} - 2 q^{67} - 96 q^{68} - 58 q^{70} - 12 q^{71} + 5 q^{72} - 26 q^{73} + 35 q^{74} + 50 q^{75} - 36 q^{76} + 6 q^{77} + 3 q^{78} + 31 q^{79} + 31 q^{80} - 21 q^{81} + 25 q^{82} + 36 q^{83} - 102 q^{84} - 11 q^{85} + 41 q^{86} - 124 q^{87} - 11 q^{89} + 51 q^{90} - 20 q^{91} - 33 q^{92} + 20 q^{93} - 86 q^{94} + 17 q^{95} + 60 q^{96} + 16 q^{97} + 4 q^{98} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.198213 + 0.343315i −0.140158 + 0.242760i −0.927556 0.373684i \(-0.878094\pi\)
0.787398 + 0.616445i \(0.211428\pi\)
\(3\) −0.634005 + 1.09813i −0.366043 + 0.634005i −0.988943 0.148297i \(-0.952621\pi\)
0.622900 + 0.782301i \(0.285954\pi\)
\(4\) 0.921423 + 1.59595i 0.460712 + 0.797976i
\(5\) −0.220960 + 0.382715i −0.0988165 + 0.171155i −0.911195 0.411975i \(-0.864839\pi\)
0.812379 + 0.583130i \(0.198172\pi\)
\(6\) −0.251336 0.435327i −0.102608 0.177721i
\(7\) −0.667657 −0.252351 −0.126175 0.992008i \(-0.540270\pi\)
−0.126175 + 0.992008i \(0.540270\pi\)
\(8\) −1.52341 −0.538605
\(9\) 0.696076 + 1.20564i 0.232025 + 0.401880i
\(10\) −0.0875945 0.151718i −0.0276998 0.0479775i
\(11\) −1.00000 −0.301511
\(12\) −2.33675 −0.674560
\(13\) −0.802426 1.38984i −0.222553 0.385473i 0.733030 0.680197i \(-0.238106\pi\)
−0.955582 + 0.294724i \(0.904772\pi\)
\(14\) 0.132338 0.229217i 0.0353689 0.0612608i
\(15\) −0.280180 0.485286i −0.0723421 0.125300i
\(16\) −1.54089 + 2.66890i −0.385222 + 0.667224i
\(17\) −2.02772 + 3.51212i −0.491795 + 0.851815i −0.999955 0.00944813i \(-0.996993\pi\)
0.508160 + 0.861263i \(0.330326\pi\)
\(18\) −0.551886 −0.130081
\(19\) 2.81513 3.32792i 0.645835 0.763477i
\(20\) −0.814392 −0.182104
\(21\) 0.423298 0.733173i 0.0923711 0.159991i
\(22\) 0.198213 0.343315i 0.0422592 0.0731950i
\(23\) 0.187443 + 0.324661i 0.0390846 + 0.0676965i 0.884906 0.465770i \(-0.154222\pi\)
−0.845821 + 0.533466i \(0.820889\pi\)
\(24\) 0.965846 1.67289i 0.197152 0.341478i
\(25\) 2.40235 + 4.16100i 0.480471 + 0.832199i
\(26\) 0.636205 0.124770
\(27\) −5.56929 −1.07181
\(28\) −0.615195 1.06555i −0.116261 0.201370i
\(29\) 1.28039 + 2.21770i 0.237762 + 0.411817i 0.960072 0.279753i \(-0.0902527\pi\)
−0.722309 + 0.691570i \(0.756919\pi\)
\(30\) 0.222141 0.0405573
\(31\) 9.01266 1.61872 0.809361 0.587311i \(-0.199814\pi\)
0.809361 + 0.587311i \(0.199814\pi\)
\(32\) −2.13425 3.69663i −0.377286 0.653479i
\(33\) 0.634005 1.09813i 0.110366 0.191160i
\(34\) −0.803843 1.39230i −0.137858 0.238777i
\(35\) 0.147526 0.255522i 0.0249364 0.0431911i
\(36\) −1.28276 + 2.22181i −0.213794 + 0.370301i
\(37\) 7.24253 1.19066 0.595332 0.803480i \(-0.297020\pi\)
0.595332 + 0.803480i \(0.297020\pi\)
\(38\) 0.584530 + 1.62611i 0.0948232 + 0.263790i
\(39\) 2.03497 0.325855
\(40\) 0.336612 0.583030i 0.0532231 0.0921851i
\(41\) 2.54306 4.40471i 0.397159 0.687900i −0.596215 0.802825i \(-0.703329\pi\)
0.993374 + 0.114925i \(0.0366627\pi\)
\(42\) 0.167806 + 0.290649i 0.0258931 + 0.0448481i
\(43\) 5.01170 8.68051i 0.764277 1.32377i −0.176352 0.984327i \(-0.556430\pi\)
0.940628 0.339439i \(-0.110237\pi\)
\(44\) −0.921423 1.59595i −0.138910 0.240599i
\(45\) −0.615222 −0.0917118
\(46\) −0.148615 −0.0219120
\(47\) −1.03598 1.79437i −0.151113 0.261736i 0.780524 0.625126i \(-0.214952\pi\)
−0.931637 + 0.363390i \(0.881619\pi\)
\(48\) −1.95386 3.38418i −0.282015 0.488465i
\(49\) −6.55423 −0.936319
\(50\) −1.90471 −0.269367
\(51\) −2.57117 4.45340i −0.360036 0.623601i
\(52\) 1.47875 2.56126i 0.205065 0.355183i
\(53\) 0.163017 + 0.282353i 0.0223921 + 0.0387842i 0.877004 0.480483i \(-0.159538\pi\)
−0.854612 + 0.519267i \(0.826205\pi\)
\(54\) 1.10391 1.91202i 0.150223 0.260193i
\(55\) 0.220960 0.382715i 0.0297943 0.0516053i
\(56\) 1.01711 0.135917
\(57\) 1.86968 + 5.20129i 0.247645 + 0.688928i
\(58\) −1.01516 −0.133297
\(59\) 6.93879 12.0183i 0.903353 1.56465i 0.0802407 0.996776i \(-0.474431\pi\)
0.823113 0.567878i \(-0.192236\pi\)
\(60\) 0.516328 0.894307i 0.0666577 0.115455i
\(61\) 5.53232 + 9.58226i 0.708341 + 1.22688i 0.965472 + 0.260506i \(0.0838894\pi\)
−0.257131 + 0.966377i \(0.582777\pi\)
\(62\) −1.78643 + 3.09418i −0.226877 + 0.392962i
\(63\) −0.464740 0.804954i −0.0585518 0.101415i
\(64\) −4.47140 −0.558925
\(65\) 0.709217 0.0879676
\(66\) 0.251336 + 0.435327i 0.0309373 + 0.0535850i
\(67\) 4.06006 + 7.03224i 0.496016 + 0.859125i 0.999989 0.00459440i \(-0.00146245\pi\)
−0.503974 + 0.863719i \(0.668129\pi\)
\(68\) −7.47357 −0.906303
\(69\) −0.475359 −0.0572265
\(70\) 0.0584831 + 0.101296i 0.00699007 + 0.0121072i
\(71\) −3.19012 + 5.52545i −0.378598 + 0.655751i −0.990859 0.134905i \(-0.956927\pi\)
0.612261 + 0.790656i \(0.290260\pi\)
\(72\) −1.06041 1.83668i −0.124970 0.216455i
\(73\) 0.0659932 0.114304i 0.00772392 0.0133782i −0.862138 0.506674i \(-0.830875\pi\)
0.869862 + 0.493296i \(0.164208\pi\)
\(74\) −1.43556 + 2.48647i −0.166881 + 0.289046i
\(75\) −6.09241 −0.703491
\(76\) 7.90512 + 1.42639i 0.906780 + 0.163618i
\(77\) 0.667657 0.0760866
\(78\) −0.403357 + 0.698635i −0.0456712 + 0.0791048i
\(79\) −0.134657 + 0.233233i −0.0151501 + 0.0262408i −0.873501 0.486822i \(-0.838156\pi\)
0.858351 + 0.513063i \(0.171489\pi\)
\(80\) −0.680950 1.17944i −0.0761326 0.131865i
\(81\) 1.44273 2.49887i 0.160303 0.277653i
\(82\) 1.00814 + 1.74614i 0.111330 + 0.192829i
\(83\) −5.76350 −0.632626 −0.316313 0.948655i \(-0.602445\pi\)
−0.316313 + 0.948655i \(0.602445\pi\)
\(84\) 1.56015 0.170226
\(85\) −0.896094 1.55208i −0.0971950 0.168347i
\(86\) 1.98677 + 3.44118i 0.214239 + 0.371072i
\(87\) −3.24709 −0.348125
\(88\) 1.52341 0.162396
\(89\) −0.492968 0.853846i −0.0522545 0.0905075i 0.838715 0.544571i \(-0.183307\pi\)
−0.890970 + 0.454063i \(0.849974\pi\)
\(90\) 0.121945 0.211215i 0.0128541 0.0222640i
\(91\) 0.535745 + 0.927938i 0.0561614 + 0.0972743i
\(92\) −0.345429 + 0.598300i −0.0360134 + 0.0623771i
\(93\) −5.71407 + 9.89706i −0.592521 + 1.02628i
\(94\) 0.821379 0.0847187
\(95\) 0.651612 + 1.81273i 0.0668539 + 0.185982i
\(96\) 5.41251 0.552411
\(97\) 1.68899 2.92541i 0.171491 0.297031i −0.767450 0.641108i \(-0.778475\pi\)
0.938941 + 0.344077i \(0.111808\pi\)
\(98\) 1.29914 2.25017i 0.131232 0.227301i
\(99\) −0.696076 1.20564i −0.0699583 0.121171i
\(100\) −4.42717 + 7.66808i −0.442717 + 0.766808i
\(101\) 3.37624 + 5.84781i 0.335948 + 0.581879i 0.983666 0.180001i \(-0.0576100\pi\)
−0.647718 + 0.761880i \(0.724277\pi\)
\(102\) 2.03856 0.201848
\(103\) −9.88932 −0.974424 −0.487212 0.873284i \(-0.661986\pi\)
−0.487212 + 0.873284i \(0.661986\pi\)
\(104\) 1.22242 + 2.11729i 0.119868 + 0.207618i
\(105\) 0.187064 + 0.324005i 0.0182556 + 0.0316196i
\(106\) −0.129248 −0.0125537
\(107\) 0.528111 0.0510544 0.0255272 0.999674i \(-0.491874\pi\)
0.0255272 + 0.999674i \(0.491874\pi\)
\(108\) −5.13167 8.88832i −0.493795 0.855279i
\(109\) 1.27111 2.20163i 0.121750 0.210877i −0.798708 0.601719i \(-0.794483\pi\)
0.920458 + 0.390842i \(0.127816\pi\)
\(110\) 0.0875945 + 0.151718i 0.00835181 + 0.0144658i
\(111\) −4.59180 + 7.95322i −0.435834 + 0.754887i
\(112\) 1.02878 1.78191i 0.0972110 0.168374i
\(113\) −16.5799 −1.55971 −0.779855 0.625960i \(-0.784707\pi\)
−0.779855 + 0.625960i \(0.784707\pi\)
\(114\) −2.15628 0.389075i −0.201954 0.0364402i
\(115\) −0.165670 −0.0154488
\(116\) −2.35956 + 4.08688i −0.219080 + 0.379457i
\(117\) 1.11710 1.93487i 0.103276 0.178879i
\(118\) 2.75072 + 4.76438i 0.253224 + 0.438597i
\(119\) 1.35382 2.34489i 0.124105 0.214956i
\(120\) 0.426827 + 0.739287i 0.0389638 + 0.0674873i
\(121\) 1.00000 0.0909091
\(122\) −4.38631 −0.397118
\(123\) 3.22462 + 5.58521i 0.290755 + 0.503602i
\(124\) 8.30448 + 14.3838i 0.745764 + 1.29170i
\(125\) −4.33291 −0.387547
\(126\) 0.368471 0.0328260
\(127\) −4.61960 8.00138i −0.409923 0.710008i 0.584957 0.811064i \(-0.301111\pi\)
−0.994881 + 0.101056i \(0.967778\pi\)
\(128\) 5.15480 8.92837i 0.455624 0.789164i
\(129\) 6.35488 + 11.0070i 0.559516 + 0.969110i
\(130\) −0.140576 + 0.243485i −0.0123293 + 0.0213551i
\(131\) 7.39831 12.8142i 0.646393 1.11959i −0.337584 0.941295i \(-0.609610\pi\)
0.983978 0.178291i \(-0.0570568\pi\)
\(132\) 2.33675 0.203388
\(133\) −1.87954 + 2.22191i −0.162977 + 0.192664i
\(134\) −3.21903 −0.278082
\(135\) 1.23059 2.13145i 0.105913 0.183446i
\(136\) 3.08905 5.35038i 0.264883 0.458792i
\(137\) −1.25376 2.17158i −0.107116 0.185531i 0.807485 0.589889i \(-0.200828\pi\)
−0.914601 + 0.404358i \(0.867495\pi\)
\(138\) 0.0942224 0.163198i 0.00802075 0.0138923i
\(139\) −1.62007 2.80604i −0.137412 0.238005i 0.789104 0.614259i \(-0.210545\pi\)
−0.926516 + 0.376255i \(0.877212\pi\)
\(140\) 0.543735 0.0459540
\(141\) 2.62726 0.221255
\(142\) −1.26465 2.19043i −0.106127 0.183817i
\(143\) 0.802426 + 1.38984i 0.0671022 + 0.116224i
\(144\) −4.29030 −0.357525
\(145\) −1.13166 −0.0939794
\(146\) 0.0261614 + 0.0453129i 0.00216513 + 0.00375012i
\(147\) 4.15541 7.19739i 0.342733 0.593631i
\(148\) 6.67343 + 11.5587i 0.548553 + 0.950121i
\(149\) −11.7001 + 20.2651i −0.958508 + 1.66018i −0.232379 + 0.972625i \(0.574651\pi\)
−0.726129 + 0.687558i \(0.758683\pi\)
\(150\) 1.20760 2.09162i 0.0985998 0.170780i
\(151\) −8.86774 −0.721647 −0.360823 0.932634i \(-0.617504\pi\)
−0.360823 + 0.932634i \(0.617504\pi\)
\(152\) −4.28858 + 5.06977i −0.347850 + 0.411213i
\(153\) −5.64580 −0.456436
\(154\) −0.132338 + 0.229217i −0.0106641 + 0.0184708i
\(155\) −1.99144 + 3.44928i −0.159956 + 0.277053i
\(156\) 1.87506 + 3.24771i 0.150125 + 0.260025i
\(157\) 3.24906 5.62753i 0.259303 0.449126i −0.706752 0.707461i \(-0.749840\pi\)
0.966055 + 0.258335i \(0.0831738\pi\)
\(158\) −0.0533816 0.0924597i −0.00424681 0.00735570i
\(159\) −0.413413 −0.0327858
\(160\) 1.88634 0.149128
\(161\) −0.125148 0.216762i −0.00986302 0.0170833i
\(162\) 0.571934 + 0.990619i 0.0449354 + 0.0778304i
\(163\) −10.6557 −0.834619 −0.417310 0.908764i \(-0.637027\pi\)
−0.417310 + 0.908764i \(0.637027\pi\)
\(164\) 9.37294 0.731904
\(165\) 0.280180 + 0.485286i 0.0218120 + 0.0377795i
\(166\) 1.14240 1.97870i 0.0886675 0.153577i
\(167\) −6.82309 11.8179i −0.527987 0.914500i −0.999468 0.0326235i \(-0.989614\pi\)
0.471481 0.881876i \(-0.343720\pi\)
\(168\) −0.644854 + 1.11692i −0.0497516 + 0.0861722i
\(169\) 5.21223 9.02784i 0.400941 0.694449i
\(170\) 0.710470 0.0544906
\(171\) 5.97182 + 1.07755i 0.456676 + 0.0824020i
\(172\) 18.4716 1.40844
\(173\) 11.3068 19.5840i 0.859643 1.48895i −0.0126258 0.999920i \(-0.504019\pi\)
0.872269 0.489026i \(-0.162648\pi\)
\(174\) 0.643616 1.11478i 0.0487924 0.0845110i
\(175\) −1.60395 2.77812i −0.121247 0.210006i
\(176\) 1.54089 2.66890i 0.116149 0.201176i
\(177\) 8.79845 + 15.2394i 0.661332 + 1.14546i
\(178\) 0.390851 0.0292955
\(179\) −2.55941 −0.191299 −0.0956497 0.995415i \(-0.530493\pi\)
−0.0956497 + 0.995415i \(0.530493\pi\)
\(180\) −0.566879 0.981864i −0.0422527 0.0731838i
\(181\) 1.32662 + 2.29777i 0.0986069 + 0.170792i 0.911108 0.412167i \(-0.135228\pi\)
−0.812501 + 0.582959i \(0.801895\pi\)
\(182\) −0.424767 −0.0314858
\(183\) −14.0301 −1.03713
\(184\) −0.285552 0.494590i −0.0210512 0.0364617i
\(185\) −1.60031 + 2.77182i −0.117657 + 0.203788i
\(186\) −2.26521 3.92345i −0.166093 0.287682i
\(187\) 2.02772 3.51212i 0.148282 0.256832i
\(188\) 1.90915 3.30675i 0.139239 0.241169i
\(189\) 3.71838 0.270472
\(190\) −0.751496 0.135599i −0.0545192 0.00983737i
\(191\) 6.90666 0.499748 0.249874 0.968278i \(-0.419611\pi\)
0.249874 + 0.968278i \(0.419611\pi\)
\(192\) 2.83489 4.91017i 0.204591 0.354361i
\(193\) 2.93315 5.08036i 0.211132 0.365692i −0.740937 0.671575i \(-0.765618\pi\)
0.952069 + 0.305883i \(0.0989515\pi\)
\(194\) 0.669560 + 1.15971i 0.0480716 + 0.0832624i
\(195\) −0.449647 + 0.778811i −0.0321999 + 0.0557718i
\(196\) −6.03922 10.4602i −0.431373 0.747160i
\(197\) 19.8898 1.41709 0.708543 0.705667i \(-0.249353\pi\)
0.708543 + 0.705667i \(0.249353\pi\)
\(198\) 0.551886 0.0392208
\(199\) −7.03701 12.1885i −0.498841 0.864017i 0.501159 0.865355i \(-0.332907\pi\)
−0.999999 + 0.00133827i \(0.999574\pi\)
\(200\) −3.65976 6.33888i −0.258784 0.448227i
\(201\) −10.2964 −0.726252
\(202\) −2.67686 −0.188343
\(203\) −0.854862 1.48066i −0.0599995 0.103922i
\(204\) 4.73828 8.20694i 0.331746 0.574600i
\(205\) 1.12383 + 1.94653i 0.0784918 + 0.135952i
\(206\) 1.96019 3.39515i 0.136573 0.236552i
\(207\) −0.260949 + 0.451978i −0.0181372 + 0.0314146i
\(208\) 4.94579 0.342929
\(209\) −2.81513 + 3.32792i −0.194727 + 0.230197i
\(210\) −0.148314 −0.0102347
\(211\) 8.08162 13.9978i 0.556362 0.963646i −0.441435 0.897293i \(-0.645530\pi\)
0.997796 0.0663531i \(-0.0211364\pi\)
\(212\) −0.300415 + 0.520334i −0.0206326 + 0.0357367i
\(213\) −4.04510 7.00633i −0.277166 0.480066i
\(214\) −0.104678 + 0.181308i −0.00715567 + 0.0123940i
\(215\) 2.21477 + 3.83610i 0.151046 + 0.261620i
\(216\) 8.48428 0.577282
\(217\) −6.01737 −0.408486
\(218\) 0.503901 + 0.872782i 0.0341285 + 0.0591123i
\(219\) 0.0836800 + 0.144938i 0.00565457 + 0.00979400i
\(220\) 0.814392 0.0549063
\(221\) 6.50839 0.437802
\(222\) −1.82031 3.15287i −0.122171 0.211607i
\(223\) −3.12201 + 5.40749i −0.209066 + 0.362112i −0.951420 0.307895i \(-0.900376\pi\)
0.742355 + 0.670007i \(0.233709\pi\)
\(224\) 1.42495 + 2.46808i 0.0952084 + 0.164906i
\(225\) −3.34444 + 5.79274i −0.222963 + 0.386183i
\(226\) 3.28636 5.69215i 0.218606 0.378636i
\(227\) 5.75444 0.381936 0.190968 0.981596i \(-0.438837\pi\)
0.190968 + 0.981596i \(0.438837\pi\)
\(228\) −6.57824 + 7.77650i −0.435655 + 0.515011i
\(229\) 14.0825 0.930599 0.465300 0.885153i \(-0.345947\pi\)
0.465300 + 0.885153i \(0.345947\pi\)
\(230\) 0.0328380 0.0568771i 0.00216527 0.00375036i
\(231\) −0.423298 + 0.733173i −0.0278509 + 0.0482393i
\(232\) −1.95055 3.37846i −0.128060 0.221807i
\(233\) −9.79670 + 16.9684i −0.641803 + 1.11164i 0.343227 + 0.939252i \(0.388480\pi\)
−0.985030 + 0.172383i \(0.944853\pi\)
\(234\) 0.442847 + 0.767034i 0.0289498 + 0.0501426i
\(235\) 0.915642 0.0597299
\(236\) 25.5742 1.66474
\(237\) −0.170747 0.295742i −0.0110912 0.0192105i
\(238\) 0.536692 + 0.929577i 0.0347885 + 0.0602555i
\(239\) −14.8597 −0.961192 −0.480596 0.876942i \(-0.659580\pi\)
−0.480596 + 0.876942i \(0.659580\pi\)
\(240\) 1.72690 0.111471
\(241\) −6.97637 12.0834i −0.449388 0.778362i 0.548959 0.835850i \(-0.315024\pi\)
−0.998346 + 0.0574873i \(0.981691\pi\)
\(242\) −0.198213 + 0.343315i −0.0127416 + 0.0220691i
\(243\) −6.52455 11.3008i −0.418550 0.724949i
\(244\) −10.1952 + 17.6586i −0.652682 + 1.13048i
\(245\) 1.44823 2.50840i 0.0925238 0.160256i
\(246\) −2.55665 −0.163006
\(247\) −6.88421 1.24218i −0.438032 0.0790378i
\(248\) −13.7299 −0.871852
\(249\) 3.65408 6.32906i 0.231568 0.401088i
\(250\) 0.858839 1.48755i 0.0543177 0.0940811i
\(251\) 6.88758 + 11.9296i 0.434740 + 0.752992i 0.997274 0.0737817i \(-0.0235068\pi\)
−0.562534 + 0.826774i \(0.690173\pi\)
\(252\) 0.856445 1.48341i 0.0539510 0.0934458i
\(253\) −0.187443 0.324661i −0.0117844 0.0204113i
\(254\) 3.66266 0.229816
\(255\) 2.27251 0.142310
\(256\) −2.42791 4.20526i −0.151744 0.262828i
\(257\) 4.03246 + 6.98443i 0.251538 + 0.435677i 0.963949 0.266085i \(-0.0857303\pi\)
−0.712411 + 0.701762i \(0.752397\pi\)
\(258\) −5.03848 −0.313682
\(259\) −4.83553 −0.300465
\(260\) 0.653489 + 1.13188i 0.0405277 + 0.0701960i
\(261\) −1.78250 + 3.08738i −0.110334 + 0.191104i
\(262\) 2.93288 + 5.07990i 0.181194 + 0.313838i
\(263\) −11.2342 + 19.4583i −0.692732 + 1.19985i 0.278207 + 0.960521i \(0.410260\pi\)
−0.970939 + 0.239326i \(0.923073\pi\)
\(264\) −0.965846 + 1.67289i −0.0594437 + 0.102960i
\(265\) −0.144081 −0.00885083
\(266\) −0.390265 1.08569i −0.0239287 0.0665677i
\(267\) 1.25018 0.0765096
\(268\) −7.48208 + 12.9593i −0.457040 + 0.791617i
\(269\) 7.25896 12.5729i 0.442587 0.766582i −0.555294 0.831654i \(-0.687394\pi\)
0.997881 + 0.0650717i \(0.0207276\pi\)
\(270\) 0.487839 + 0.844962i 0.0296890 + 0.0514228i
\(271\) −9.77021 + 16.9225i −0.593498 + 1.02797i 0.400259 + 0.916402i \(0.368920\pi\)
−0.993757 + 0.111567i \(0.964413\pi\)
\(272\) −6.24899 10.8236i −0.378901 0.656275i
\(273\) −1.35866 −0.0822298
\(274\) 0.994049 0.0600527
\(275\) −2.40235 4.16100i −0.144867 0.250918i
\(276\) −0.438007 0.758650i −0.0263649 0.0456654i
\(277\) 16.4062 0.985750 0.492875 0.870100i \(-0.335946\pi\)
0.492875 + 0.870100i \(0.335946\pi\)
\(278\) 1.28447 0.0770376
\(279\) 6.27350 + 10.8660i 0.375585 + 0.650532i
\(280\) −0.224742 + 0.389264i −0.0134309 + 0.0232630i
\(281\) 5.27958 + 9.14450i 0.314953 + 0.545515i 0.979428 0.201796i \(-0.0646778\pi\)
−0.664474 + 0.747311i \(0.731345\pi\)
\(282\) −0.520758 + 0.901979i −0.0310107 + 0.0537121i
\(283\) 6.81481 11.8036i 0.405098 0.701651i −0.589235 0.807962i \(-0.700571\pi\)
0.994333 + 0.106311i \(0.0339040\pi\)
\(284\) −11.7578 −0.697698
\(285\) −2.40373 0.433726i −0.142385 0.0256917i
\(286\) −0.636205 −0.0376196
\(287\) −1.69789 + 2.94084i −0.100223 + 0.173592i
\(288\) 2.97121 5.14628i 0.175080 0.303248i
\(289\) 0.276669 + 0.479205i 0.0162747 + 0.0281885i
\(290\) 0.224310 0.388517i 0.0131720 0.0228145i
\(291\) 2.14165 + 3.70945i 0.125546 + 0.217452i
\(292\) 0.243231 0.0142340
\(293\) −29.3909 −1.71704 −0.858518 0.512784i \(-0.828614\pi\)
−0.858518 + 0.512784i \(0.828614\pi\)
\(294\) 1.64732 + 2.85323i 0.0960734 + 0.166404i
\(295\) 3.06640 + 5.31115i 0.178532 + 0.309227i
\(296\) −11.0333 −0.641298
\(297\) 5.56929 0.323163
\(298\) −4.63822 8.03363i −0.268685 0.465376i
\(299\) 0.300818 0.521033i 0.0173968 0.0301321i
\(300\) −5.61369 9.72319i −0.324106 0.561369i
\(301\) −3.34610 + 5.79561i −0.192866 + 0.334053i
\(302\) 1.75770 3.04443i 0.101144 0.175187i
\(303\) −8.56220 −0.491885
\(304\) 4.54407 + 12.6412i 0.260620 + 0.725025i
\(305\) −4.88970 −0.279983
\(306\) 1.11907 1.93829i 0.0639731 0.110805i
\(307\) −15.8419 + 27.4389i −0.904143 + 1.56602i −0.0820790 + 0.996626i \(0.526156\pi\)
−0.822064 + 0.569395i \(0.807177\pi\)
\(308\) 0.615195 + 1.06555i 0.0350540 + 0.0607153i
\(309\) 6.26987 10.8597i 0.356681 0.617789i
\(310\) −0.789460 1.36738i −0.0448383 0.0776622i
\(311\) 26.7120 1.51470 0.757348 0.653011i \(-0.226495\pi\)
0.757348 + 0.653011i \(0.226495\pi\)
\(312\) −3.10008 −0.175507
\(313\) −9.43495 16.3418i −0.533295 0.923694i −0.999244 0.0388824i \(-0.987620\pi\)
0.465949 0.884812i \(-0.345713\pi\)
\(314\) 1.28801 + 2.23090i 0.0726867 + 0.125897i
\(315\) 0.410757 0.0231435
\(316\) −0.496305 −0.0279193
\(317\) 14.5166 + 25.1435i 0.815335 + 1.41220i 0.909087 + 0.416606i \(0.136780\pi\)
−0.0937527 + 0.995596i \(0.529886\pi\)
\(318\) 0.0819440 0.141931i 0.00459519 0.00795910i
\(319\) −1.28039 2.21770i −0.0716881 0.124167i
\(320\) 0.988003 1.71127i 0.0552311 0.0956630i
\(321\) −0.334824 + 0.579933i −0.0186881 + 0.0323687i
\(322\) 0.0992237 0.00552952
\(323\) 5.97975 + 16.6352i 0.332722 + 0.925606i
\(324\) 5.31744 0.295414
\(325\) 3.85542 6.67778i 0.213860 0.370417i
\(326\) 2.11210 3.65827i 0.116978 0.202613i
\(327\) 1.61178 + 2.79168i 0.0891315 + 0.154380i
\(328\) −3.87411 + 6.71016i −0.213912 + 0.370506i
\(329\) 0.691679 + 1.19802i 0.0381335 + 0.0660492i
\(330\) −0.222141 −0.0122285
\(331\) −18.5242 −1.01818 −0.509091 0.860712i \(-0.670019\pi\)
−0.509091 + 0.860712i \(0.670019\pi\)
\(332\) −5.31062 9.19827i −0.291458 0.504820i
\(333\) 5.04135 + 8.73188i 0.276264 + 0.478504i
\(334\) 5.40970 0.296006
\(335\) −3.58846 −0.196058
\(336\) 1.30451 + 2.25947i 0.0711668 + 0.123264i
\(337\) −3.19606 + 5.53574i −0.174101 + 0.301551i −0.939850 0.341588i \(-0.889035\pi\)
0.765749 + 0.643139i \(0.222368\pi\)
\(338\) 2.06626 + 3.57887i 0.112390 + 0.194665i
\(339\) 10.5118 18.2069i 0.570921 0.988863i
\(340\) 1.65136 2.86024i 0.0895577 0.155119i
\(341\) −9.01266 −0.488063
\(342\) −1.55363 + 1.83663i −0.0840107 + 0.0993137i
\(343\) 9.04958 0.488631
\(344\) −7.63484 + 13.2239i −0.411643 + 0.712987i
\(345\) 0.105036 0.181927i 0.00565493 0.00979462i
\(346\) 4.48233 + 7.76362i 0.240972 + 0.417375i
\(347\) 15.1980 26.3238i 0.815873 1.41313i −0.0928267 0.995682i \(-0.529590\pi\)
0.908700 0.417451i \(-0.137076\pi\)
\(348\) −2.99195 5.18220i −0.160385 0.277795i
\(349\) −21.8950 −1.17201 −0.586007 0.810306i \(-0.699301\pi\)
−0.586007 + 0.810306i \(0.699301\pi\)
\(350\) 1.27169 0.0679749
\(351\) 4.46894 + 7.74043i 0.238534 + 0.413154i
\(352\) 2.13425 + 3.69663i 0.113756 + 0.197031i
\(353\) 24.2146 1.28881 0.644406 0.764684i \(-0.277105\pi\)
0.644406 + 0.764684i \(0.277105\pi\)
\(354\) −6.97587 −0.370763
\(355\) −1.40978 2.44181i −0.0748235 0.129598i
\(356\) 0.908465 1.57351i 0.0481485 0.0833957i
\(357\) 1.71666 + 2.97335i 0.0908554 + 0.157366i
\(358\) 0.507309 0.878685i 0.0268121 0.0464399i
\(359\) −9.04762 + 15.6709i −0.477515 + 0.827080i −0.999668 0.0257718i \(-0.991796\pi\)
0.522153 + 0.852852i \(0.325129\pi\)
\(360\) 0.937232 0.0493964
\(361\) −3.15009 18.7370i −0.165794 0.986160i
\(362\) −1.05181 −0.0552821
\(363\) −0.634005 + 1.09813i −0.0332766 + 0.0576368i
\(364\) −0.987296 + 1.71005i −0.0517484 + 0.0896308i
\(365\) 0.0291638 + 0.0505131i 0.00152650 + 0.00264398i
\(366\) 2.78094 4.81673i 0.145362 0.251775i
\(367\) 9.07821 + 15.7239i 0.473879 + 0.820782i 0.999553 0.0299039i \(-0.00952011\pi\)
−0.525674 + 0.850686i \(0.676187\pi\)
\(368\) −1.15532 −0.0602250
\(369\) 7.08066 0.368604
\(370\) −0.634406 1.09882i −0.0329812 0.0571251i
\(371\) −0.108839 0.188515i −0.00565065 0.00978722i
\(372\) −21.0603 −1.09193
\(373\) −25.2547 −1.30764 −0.653819 0.756651i \(-0.726834\pi\)
−0.653819 + 0.756651i \(0.726834\pi\)
\(374\) 0.803843 + 1.39230i 0.0415657 + 0.0719940i
\(375\) 2.74708 4.75808i 0.141859 0.245706i
\(376\) 1.57822 + 2.73355i 0.0813903 + 0.140972i
\(377\) 2.05484 3.55908i 0.105829 0.183302i
\(378\) −0.737031 + 1.27658i −0.0379088 + 0.0656599i
\(379\) −20.6962 −1.06309 −0.531545 0.847030i \(-0.678388\pi\)
−0.531545 + 0.847030i \(0.678388\pi\)
\(380\) −2.29262 + 2.71023i −0.117609 + 0.139032i
\(381\) 11.7154 0.600198
\(382\) −1.36899 + 2.37116i −0.0700436 + 0.121319i
\(383\) 11.1426 19.2995i 0.569359 0.986158i −0.427271 0.904124i \(-0.640525\pi\)
0.996630 0.0820343i \(-0.0261417\pi\)
\(384\) 6.53633 + 11.3213i 0.333556 + 0.577735i
\(385\) −0.147526 + 0.255522i −0.00751861 + 0.0130226i
\(386\) 1.16278 + 2.01399i 0.0591837 + 0.102509i
\(387\) 13.9541 0.709327
\(388\) 6.22509 0.316031
\(389\) −0.491555 0.851399i −0.0249229 0.0431676i 0.853295 0.521429i \(-0.174601\pi\)
−0.878218 + 0.478261i \(0.841267\pi\)
\(390\) −0.178252 0.308741i −0.00902613 0.0156337i
\(391\) −1.52033 −0.0768865
\(392\) 9.98475 0.504306
\(393\) 9.38112 + 16.2486i 0.473215 + 0.819633i
\(394\) −3.94241 + 6.82846i −0.198616 + 0.344013i
\(395\) −0.0595078 0.103071i −0.00299416 0.00518604i
\(396\) 1.28276 2.22181i 0.0644612 0.111650i
\(397\) 3.17284 5.49552i 0.159240 0.275812i −0.775355 0.631526i \(-0.782429\pi\)
0.934595 + 0.355714i \(0.115762\pi\)
\(398\) 5.57931 0.279666
\(399\) −1.24830 3.47268i −0.0624933 0.173851i
\(400\) −14.8070 −0.740351
\(401\) 10.5666 18.3018i 0.527669 0.913949i −0.471811 0.881700i \(-0.656400\pi\)
0.999480 0.0322492i \(-0.0102670\pi\)
\(402\) 2.04088 3.53491i 0.101790 0.176305i
\(403\) −7.23199 12.5262i −0.360251 0.623973i
\(404\) −6.22189 + 10.7766i −0.309550 + 0.536157i
\(405\) 0.637571 + 1.10431i 0.0316812 + 0.0548734i
\(406\) 0.677779 0.0336376
\(407\) −7.24253 −0.358999
\(408\) 3.91694 + 6.78433i 0.193917 + 0.335875i
\(409\) −4.92644 8.53284i −0.243597 0.421922i 0.718139 0.695899i \(-0.244994\pi\)
−0.961736 + 0.273977i \(0.911661\pi\)
\(410\) −0.891033 −0.0440050
\(411\) 3.17957 0.156836
\(412\) −9.11225 15.7829i −0.448928 0.777567i
\(413\) −4.63273 + 8.02413i −0.227962 + 0.394841i
\(414\) −0.103447 0.179176i −0.00508415 0.00880601i
\(415\) 1.27351 2.20578i 0.0625139 0.108277i
\(416\) −3.42516 + 5.93255i −0.167932 + 0.290867i
\(417\) 4.10852 0.201195
\(418\) −0.584530 1.62611i −0.0285903 0.0795358i
\(419\) 33.3872 1.63107 0.815535 0.578708i \(-0.196443\pi\)
0.815535 + 0.578708i \(0.196443\pi\)
\(420\) −0.344730 + 0.597091i −0.0168211 + 0.0291350i
\(421\) −7.13493 + 12.3581i −0.347735 + 0.602295i −0.985847 0.167649i \(-0.946382\pi\)
0.638112 + 0.769944i \(0.279716\pi\)
\(422\) 3.20377 + 5.54908i 0.155957 + 0.270125i
\(423\) 1.44224 2.49804i 0.0701242 0.121459i
\(424\) −0.248340 0.430138i −0.0120605 0.0208894i
\(425\) −19.4852 −0.945173
\(426\) 3.20717 0.155388
\(427\) −3.69369 6.39767i −0.178750 0.309605i
\(428\) 0.486613 + 0.842839i 0.0235213 + 0.0407402i
\(429\) −2.03497 −0.0982491
\(430\) −1.75599 −0.0846813
\(431\) −2.07207 3.58892i −0.0998079 0.172872i 0.811797 0.583940i \(-0.198489\pi\)
−0.911605 + 0.411067i \(0.865156\pi\)
\(432\) 8.58165 14.8639i 0.412885 0.715137i
\(433\) 4.01930 + 6.96163i 0.193155 + 0.334554i 0.946294 0.323307i \(-0.104795\pi\)
−0.753139 + 0.657861i \(0.771461\pi\)
\(434\) 1.19272 2.06585i 0.0572525 0.0991642i
\(435\) 0.717479 1.24271i 0.0344005 0.0595834i
\(436\) 4.68492 0.224367
\(437\) 1.60812 + 0.290167i 0.0769269 + 0.0138806i
\(438\) −0.0663459 −0.00317013
\(439\) −6.81758 + 11.8084i −0.325385 + 0.563584i −0.981590 0.190999i \(-0.938827\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(440\) −0.336612 + 0.583030i −0.0160474 + 0.0277948i
\(441\) −4.56225 7.90204i −0.217250 0.376288i
\(442\) −1.29005 + 2.23443i −0.0613613 + 0.106281i
\(443\) −12.2950 21.2955i −0.584152 1.01178i −0.994981 0.100068i \(-0.968094\pi\)
0.410829 0.911712i \(-0.365239\pi\)
\(444\) −16.9239 −0.803175
\(445\) 0.435706 0.0206544
\(446\) −1.23765 2.14367i −0.0586043 0.101506i
\(447\) −14.8358 25.6964i −0.701709 1.21540i
\(448\) 2.98536 0.141045
\(449\) 35.6469 1.68228 0.841141 0.540815i \(-0.181884\pi\)
0.841141 + 0.540815i \(0.181884\pi\)
\(450\) −1.32582 2.29640i −0.0625000 0.108253i
\(451\) −2.54306 + 4.40471i −0.119748 + 0.207410i
\(452\) −15.2771 26.4608i −0.718577 1.24461i
\(453\) 5.62219 9.73792i 0.264154 0.457527i
\(454\) −1.14061 + 1.97559i −0.0535313 + 0.0927189i
\(455\) −0.473514 −0.0221987
\(456\) −2.84828 7.92367i −0.133383 0.371060i
\(457\) −5.94149 −0.277931 −0.138966 0.990297i \(-0.544378\pi\)
−0.138966 + 0.990297i \(0.544378\pi\)
\(458\) −2.79134 + 4.83474i −0.130431 + 0.225913i
\(459\) 11.2930 19.5600i 0.527111 0.912984i
\(460\) −0.152652 0.264401i −0.00711745 0.0123278i
\(461\) 11.2066 19.4103i 0.521941 0.904029i −0.477733 0.878505i \(-0.658541\pi\)
0.999674 0.0255237i \(-0.00812534\pi\)
\(462\) −0.167806 0.290649i −0.00780706 0.0135222i
\(463\) 12.7180 0.591055 0.295528 0.955334i \(-0.404505\pi\)
0.295528 + 0.955334i \(0.404505\pi\)
\(464\) −7.89175 −0.366365
\(465\) −2.52517 4.37372i −0.117102 0.202826i
\(466\) −3.88367 6.72671i −0.179907 0.311609i
\(467\) 19.6469 0.909150 0.454575 0.890708i \(-0.349791\pi\)
0.454575 + 0.890708i \(0.349791\pi\)
\(468\) 4.11728 0.190321
\(469\) −2.71073 4.69512i −0.125170 0.216801i
\(470\) −0.181492 + 0.314354i −0.00837161 + 0.0145001i
\(471\) 4.11984 + 7.13576i 0.189832 + 0.328799i
\(472\) −10.5706 + 18.3088i −0.486551 + 0.842730i
\(473\) −5.01170 + 8.68051i −0.230438 + 0.399130i
\(474\) 0.135377 0.00621806
\(475\) 20.6104 + 3.71891i 0.945670 + 0.170635i
\(476\) 4.98978 0.228706
\(477\) −0.226944 + 0.393079i −0.0103911 + 0.0179978i
\(478\) 2.94538 5.10155i 0.134719 0.233339i
\(479\) −11.2330 19.4561i −0.513249 0.888973i −0.999882 0.0153667i \(-0.995108\pi\)
0.486633 0.873606i \(-0.338225\pi\)
\(480\) −1.19595 + 2.07145i −0.0545874 + 0.0945481i
\(481\) −5.81159 10.0660i −0.264986 0.458969i
\(482\) 5.53123 0.251941
\(483\) 0.317377 0.0144412
\(484\) 0.921423 + 1.59595i 0.0418829 + 0.0725433i
\(485\) 0.746400 + 1.29280i 0.0338923 + 0.0587031i
\(486\) 5.17300 0.234652
\(487\) 32.2789 1.46270 0.731348 0.682005i \(-0.238892\pi\)
0.731348 + 0.682005i \(0.238892\pi\)
\(488\) −8.42797 14.5977i −0.381516 0.660805i
\(489\) 6.75577 11.7013i 0.305506 0.529153i
\(490\) 0.574115 + 0.994396i 0.0259359 + 0.0449223i
\(491\) 15.2924 26.4873i 0.690138 1.19535i −0.281655 0.959516i \(-0.590883\pi\)
0.971792 0.235838i \(-0.0757834\pi\)
\(492\) −5.94249 + 10.2927i −0.267908 + 0.464030i
\(493\) −10.3851 −0.467722
\(494\) 1.79100 2.11724i 0.0805809 0.0952591i
\(495\) 0.615222 0.0276522
\(496\) −13.8875 + 24.0539i −0.623567 + 1.08005i
\(497\) 2.12991 3.68911i 0.0955394 0.165479i
\(498\) 1.44857 + 2.50901i 0.0649122 + 0.112431i
\(499\) −12.2293 + 21.1817i −0.547457 + 0.948223i 0.450991 + 0.892528i \(0.351071\pi\)
−0.998448 + 0.0556942i \(0.982263\pi\)
\(500\) −3.99244 6.91511i −0.178547 0.309253i
\(501\) 17.3035 0.773063
\(502\) −5.46084 −0.243729
\(503\) 21.7050 + 37.5941i 0.967777 + 1.67624i 0.701962 + 0.712214i \(0.252308\pi\)
0.265814 + 0.964024i \(0.414359\pi\)
\(504\) 0.707988 + 1.22627i 0.0315363 + 0.0546225i
\(505\) −2.98406 −0.132789
\(506\) 0.148615 0.00660673
\(507\) 6.60915 + 11.4474i 0.293523 + 0.508396i
\(508\) 8.51322 14.7453i 0.377713 0.654218i
\(509\) −20.0017 34.6439i −0.886558 1.53556i −0.843917 0.536473i \(-0.819756\pi\)
−0.0426411 0.999090i \(-0.513577\pi\)
\(510\) −0.450441 + 0.780187i −0.0199459 + 0.0345473i
\(511\) −0.0440608 + 0.0763156i −0.00194914 + 0.00337600i
\(512\) 22.5442 0.996320
\(513\) −15.6783 + 18.5341i −0.692213 + 0.818303i
\(514\) −3.19715 −0.141020
\(515\) 2.18515 3.78479i 0.0962892 0.166778i
\(516\) −11.7111 + 20.2842i −0.515551 + 0.892960i
\(517\) 1.03598 + 1.79437i 0.0455623 + 0.0789162i
\(518\) 0.958465 1.66011i 0.0421125 0.0729410i
\(519\) 14.3372 + 24.8327i 0.629332 + 1.09004i
\(520\) −1.08043 −0.0473798
\(521\) −5.90795 −0.258832 −0.129416 0.991590i \(-0.541310\pi\)
−0.129416 + 0.991590i \(0.541310\pi\)
\(522\) −0.706629 1.22392i −0.0309283 0.0535694i
\(523\) −10.2888 17.8208i −0.449899 0.779249i 0.548480 0.836164i \(-0.315207\pi\)
−0.998379 + 0.0569153i \(0.981873\pi\)
\(524\) 27.2679 1.19120
\(525\) 4.06764 0.177526
\(526\) −4.45354 7.71376i −0.194184 0.336336i
\(527\) −18.2752 + 31.6536i −0.796080 + 1.37885i
\(528\) 1.95386 + 3.38418i 0.0850308 + 0.147278i
\(529\) 11.4297 19.7969i 0.496945 0.860734i
\(530\) 0.0285587 0.0494652i 0.00124051 0.00214863i
\(531\) 19.3197 0.838404
\(532\) −5.27791 0.952339i −0.228827 0.0412891i
\(533\) −8.16247 −0.353556
\(534\) −0.247801 + 0.429205i −0.0107234 + 0.0185735i
\(535\) −0.116692 + 0.202116i −0.00504502 + 0.00873822i
\(536\) −6.18512 10.7129i −0.267157 0.462729i
\(537\) 1.62268 2.81056i 0.0700237 0.121285i
\(538\) 2.87764 + 4.98422i 0.124064 + 0.214885i
\(539\) 6.55423 0.282311
\(540\) 4.53559 0.195181
\(541\) 0.749977 + 1.29900i 0.0322440 + 0.0558483i 0.881697 0.471816i \(-0.156401\pi\)
−0.849453 + 0.527664i \(0.823068\pi\)
\(542\) −3.87317 6.70852i −0.166367 0.288156i
\(543\) −3.36433 −0.144377
\(544\) 17.3107 0.742190
\(545\) 0.561730 + 0.972944i 0.0240619 + 0.0416764i
\(546\) 0.269304 0.466448i 0.0115252 0.0199621i
\(547\) 21.2762 + 36.8514i 0.909704 + 1.57565i 0.814475 + 0.580199i \(0.197025\pi\)
0.0952292 + 0.995455i \(0.469642\pi\)
\(548\) 2.31049 4.00189i 0.0986993 0.170952i
\(549\) −7.70184 + 13.3400i −0.328706 + 0.569336i
\(550\) 1.90471 0.0812172
\(551\) 10.9848 + 1.98208i 0.467968 + 0.0844394i
\(552\) 0.724165 0.0308225
\(553\) 0.0899048 0.155720i 0.00382314 0.00662188i
\(554\) −3.25192 + 5.63248i −0.138161 + 0.239301i
\(555\) −2.02921 3.51470i −0.0861352 0.149191i
\(556\) 2.98553 5.17109i 0.126615 0.219303i
\(557\) 16.8716 + 29.2224i 0.714872 + 1.23819i 0.963009 + 0.269469i \(0.0868482\pi\)
−0.248138 + 0.968725i \(0.579818\pi\)
\(558\) −4.97396 −0.210565
\(559\) −16.0861 −0.680368
\(560\) 0.454641 + 0.787462i 0.0192121 + 0.0332763i
\(561\) 2.57117 + 4.45340i 0.108555 + 0.188023i
\(562\) −4.18593 −0.176573
\(563\) −22.0555 −0.929530 −0.464765 0.885434i \(-0.653861\pi\)
−0.464765 + 0.885434i \(0.653861\pi\)
\(564\) 2.42082 + 4.19298i 0.101935 + 0.176556i
\(565\) 3.66351 6.34539i 0.154125 0.266953i
\(566\) 2.70157 + 4.67925i 0.113555 + 0.196684i
\(567\) −0.963246 + 1.66839i −0.0404525 + 0.0700659i
\(568\) 4.85985 8.41750i 0.203915 0.353191i
\(569\) −4.55061 −0.190772 −0.0953858 0.995440i \(-0.530408\pi\)
−0.0953858 + 0.995440i \(0.530408\pi\)
\(570\) 0.625357 0.739268i 0.0261933 0.0309645i
\(571\) −35.7886 −1.49770 −0.748852 0.662737i \(-0.769395\pi\)
−0.748852 + 0.662737i \(0.769395\pi\)
\(572\) −1.47875 + 2.56126i −0.0618295 + 0.107092i
\(573\) −4.37885 + 7.58440i −0.182929 + 0.316843i
\(574\) −0.673089 1.16582i −0.0280942 0.0486606i
\(575\) −0.900609 + 1.55990i −0.0375580 + 0.0650524i
\(576\) −3.11244 5.39090i −0.129685 0.224621i
\(577\) −16.7446 −0.697088 −0.348544 0.937292i \(-0.613324\pi\)
−0.348544 + 0.937292i \(0.613324\pi\)
\(578\) −0.219358 −0.00912408
\(579\) 3.71926 + 6.44194i 0.154567 + 0.267718i
\(580\) −1.04274 1.80608i −0.0432974 0.0749933i
\(581\) 3.84804 0.159644
\(582\) −1.69802 −0.0703850
\(583\) −0.163017 0.282353i −0.00675146 0.0116939i
\(584\) −0.100534 + 0.174131i −0.00416014 + 0.00720557i
\(585\) 0.493669 + 0.855061i 0.0204107 + 0.0353524i
\(586\) 5.82566 10.0903i 0.240656 0.416828i
\(587\) −6.95821 + 12.0520i −0.287196 + 0.497438i −0.973139 0.230217i \(-0.926056\pi\)
0.685943 + 0.727655i \(0.259390\pi\)
\(588\) 15.3156 0.631604
\(589\) 25.3718 29.9934i 1.04543 1.23586i
\(590\) −2.43120 −0.100091
\(591\) −12.6102 + 21.8415i −0.518714 + 0.898439i
\(592\) −11.1599 + 19.3295i −0.458670 + 0.794440i
\(593\) 6.53052 + 11.3112i 0.268176 + 0.464495i 0.968391 0.249437i \(-0.0802457\pi\)
−0.700215 + 0.713932i \(0.746912\pi\)
\(594\) −1.10391 + 1.91202i −0.0452938 + 0.0784512i
\(595\) 0.598283 + 1.03626i 0.0245272 + 0.0424824i
\(596\) −43.1229 −1.76638
\(597\) 17.8460 0.730388
\(598\) 0.119252 + 0.206551i 0.00487659 + 0.00844650i
\(599\) −1.92295 3.33064i −0.0785695 0.136086i 0.824063 0.566497i \(-0.191702\pi\)
−0.902633 + 0.430411i \(0.858369\pi\)
\(600\) 9.28121 0.378904
\(601\) −21.5715 −0.879921 −0.439960 0.898017i \(-0.645007\pi\)
−0.439960 + 0.898017i \(0.645007\pi\)
\(602\) −1.32648 2.29753i −0.0540633 0.0936404i
\(603\) −5.65223 + 9.78995i −0.230177 + 0.398678i
\(604\) −8.17094 14.1525i −0.332471 0.575857i
\(605\) −0.220960 + 0.382715i −0.00898332 + 0.0155596i
\(606\) 1.69714 2.93953i 0.0689416 0.119410i
\(607\) −12.6381 −0.512964 −0.256482 0.966549i \(-0.582563\pi\)
−0.256482 + 0.966549i \(0.582563\pi\)
\(608\) −18.3103 3.30388i −0.742581 0.133990i
\(609\) 2.16794 0.0878496
\(610\) 0.969202 1.67871i 0.0392418 0.0679689i
\(611\) −1.66259 + 2.87969i −0.0672613 + 0.116500i
\(612\) −5.20217 9.01043i −0.210285 0.364225i
\(613\) 0.675587 1.17015i 0.0272867 0.0472620i −0.852060 0.523445i \(-0.824647\pi\)
0.879346 + 0.476183i \(0.157980\pi\)
\(614\) −6.28013 10.8775i −0.253445 0.438980i
\(615\) −2.85006 −0.114925
\(616\) −1.01711 −0.0409806
\(617\) −12.5262 21.6960i −0.504285 0.873446i −0.999988 0.00495444i \(-0.998423\pi\)
0.495703 0.868492i \(-0.334910\pi\)
\(618\) 2.48554 + 4.30509i 0.0999832 + 0.173176i
\(619\) −3.72477 −0.149711 −0.0748556 0.997194i \(-0.523850\pi\)
−0.0748556 + 0.997194i \(0.523850\pi\)
\(620\) −7.33984 −0.294775
\(621\) −1.04393 1.80813i −0.0418913 0.0725578i
\(622\) −5.29466 + 9.17062i −0.212297 + 0.367708i
\(623\) 0.329134 + 0.570076i 0.0131865 + 0.0228396i
\(624\) −3.13565 + 5.43111i −0.125527 + 0.217418i
\(625\) −11.0544 + 19.1467i −0.442175 + 0.765869i
\(626\) 7.48052 0.298982
\(627\) −1.86968 5.20129i −0.0746677 0.207719i
\(628\) 11.9750 0.477856
\(629\) −14.6858 + 25.4366i −0.585563 + 1.01423i
\(630\) −0.0814174 + 0.141019i −0.00324375 + 0.00561834i
\(631\) 3.66665 + 6.35082i 0.145967 + 0.252822i 0.929733 0.368234i \(-0.120037\pi\)
−0.783766 + 0.621056i \(0.786704\pi\)
\(632\) 0.205137 0.355308i 0.00815993 0.0141334i
\(633\) 10.2476 + 17.7493i 0.407304 + 0.705472i
\(634\) −11.5095 −0.457102
\(635\) 4.08300 0.162029
\(636\) −0.380929 0.659788i −0.0151048 0.0261623i
\(637\) 5.25928 + 9.10935i 0.208380 + 0.360926i
\(638\) 1.01516 0.0401906
\(639\) −8.88228 −0.351377
\(640\) 2.27801 + 3.94563i 0.0900464 + 0.155965i
\(641\) −12.3107 + 21.3228i −0.486243 + 0.842198i −0.999875 0.0158126i \(-0.994966\pi\)
0.513632 + 0.858011i \(0.328300\pi\)
\(642\) −0.132733 0.229901i −0.00523856 0.00907346i
\(643\) 14.5028 25.1196i 0.571934 0.990619i −0.424433 0.905459i \(-0.639527\pi\)
0.996367 0.0851598i \(-0.0271401\pi\)
\(644\) 0.230628 0.399460i 0.00908802 0.0157409i
\(645\) −5.61671 −0.221158
\(646\) −6.89637 1.24437i −0.271334 0.0489591i
\(647\) −27.3908 −1.07684 −0.538421 0.842676i \(-0.680979\pi\)
−0.538421 + 0.842676i \(0.680979\pi\)
\(648\) −2.19786 + 3.80680i −0.0863399 + 0.149545i
\(649\) −6.93879 + 12.0183i −0.272371 + 0.471761i
\(650\) 1.52839 + 2.64725i 0.0599483 + 0.103834i
\(651\) 3.81504 6.60784i 0.149523 0.258982i
\(652\) −9.81842 17.0060i −0.384519 0.666006i
\(653\) −26.7799 −1.04798 −0.523990 0.851724i \(-0.675557\pi\)
−0.523990 + 0.851724i \(0.675557\pi\)
\(654\) −1.27790 −0.0499699
\(655\) 3.26947 + 5.66289i 0.127749 + 0.221267i
\(656\) 7.83714 + 13.5743i 0.305989 + 0.529988i
\(657\) 0.183745 0.00716858
\(658\) −0.548399 −0.0213788
\(659\) 9.75609 + 16.8981i 0.380043 + 0.658255i 0.991068 0.133357i \(-0.0425757\pi\)
−0.611025 + 0.791612i \(0.709242\pi\)
\(660\) −0.516328 + 0.894307i −0.0200981 + 0.0348109i
\(661\) −11.5103 19.9364i −0.447698 0.775436i 0.550538 0.834810i \(-0.314423\pi\)
−0.998236 + 0.0593743i \(0.981089\pi\)
\(662\) 3.67174 6.35964i 0.142706 0.247175i
\(663\) −4.12635 + 7.14705i −0.160254 + 0.277568i
\(664\) 8.78014 0.340736
\(665\) −0.435053 1.21028i −0.0168706 0.0469327i
\(666\) −3.99705 −0.154883
\(667\) −0.480001 + 0.831385i −0.0185857 + 0.0321914i
\(668\) 12.5739 21.7786i 0.486499 0.842641i
\(669\) −3.95874 6.85674i −0.153054 0.265097i
\(670\) 0.711279 1.23197i 0.0274791 0.0475952i
\(671\) −5.53232 9.58226i −0.213573 0.369919i
\(672\) −3.61370 −0.139401
\(673\) −4.62609 −0.178323 −0.0891614 0.996017i \(-0.528419\pi\)
−0.0891614 + 0.996017i \(0.528419\pi\)
\(674\) −1.26700 2.19451i −0.0488031 0.0845295i
\(675\) −13.3794 23.1738i −0.514973 0.891960i
\(676\) 19.2107 0.738872
\(677\) −31.2968 −1.20283 −0.601417 0.798935i \(-0.705397\pi\)
−0.601417 + 0.798935i \(0.705397\pi\)
\(678\) 4.16714 + 7.21769i 0.160038 + 0.277194i
\(679\) −1.12767 + 1.95317i −0.0432758 + 0.0749559i
\(680\) 1.36511 + 2.36445i 0.0523497 + 0.0906724i
\(681\) −3.64834 + 6.31911i −0.139805 + 0.242149i
\(682\) 1.78643 3.09418i 0.0684059 0.118482i
\(683\) 44.4872 1.70225 0.851127 0.524960i \(-0.175920\pi\)
0.851127 + 0.524960i \(0.175920\pi\)
\(684\) 3.78286 + 10.5236i 0.144641 + 0.402380i
\(685\) 1.10813 0.0423394
\(686\) −1.79375 + 3.10686i −0.0684855 + 0.118620i
\(687\) −8.92838 + 15.4644i −0.340639 + 0.590004i
\(688\) 15.4449 + 26.7514i 0.588832 + 1.01989i
\(689\) 0.261618 0.453135i 0.00996684 0.0172631i
\(690\) 0.0416389 + 0.0721206i 0.00158516 + 0.00274559i
\(691\) 15.7490 0.599121 0.299561 0.954077i \(-0.403160\pi\)
0.299561 + 0.954077i \(0.403160\pi\)
\(692\) 41.6736 1.58419
\(693\) 0.464740 + 0.804954i 0.0176540 + 0.0305777i
\(694\) 6.02490 + 10.4354i 0.228702 + 0.396123i
\(695\) 1.43188 0.0543144
\(696\) 4.94664 0.187502
\(697\) 10.3133 + 17.8631i 0.390642 + 0.676612i
\(698\) 4.33988 7.51690i 0.164267 0.284519i
\(699\) −12.4223 21.5161i −0.469855 0.813812i
\(700\) 2.95583 5.11965i 0.111720 0.193504i
\(701\) −14.8487 + 25.7187i −0.560829 + 0.971384i 0.436596 + 0.899658i \(0.356184\pi\)
−0.997424 + 0.0717259i \(0.977149\pi\)
\(702\) −3.54321 −0.133730
\(703\) 20.3887 24.1025i 0.768973 0.909045i
\(704\) 4.47140 0.168522
\(705\) −0.580521 + 1.00549i −0.0218637 + 0.0378690i
\(706\) −4.79965 + 8.31323i −0.180637 + 0.312873i
\(707\) −2.25417 3.90433i −0.0847767 0.146838i
\(708\) −16.2142 + 28.0838i −0.609366 + 1.05545i
\(709\) −20.6890 35.8343i −0.776990 1.34579i −0.933669 0.358137i \(-0.883412\pi\)
0.156679 0.987650i \(-0.449921\pi\)
\(710\) 1.11775 0.0419484
\(711\) −0.374927 −0.0140608
\(712\) 0.750990 + 1.30075i 0.0281445 + 0.0487478i
\(713\) 1.68936 + 2.92606i 0.0632671 + 0.109582i
\(714\) −1.36106 −0.0509364
\(715\) −0.709217 −0.0265232
\(716\) −2.35830 4.08470i −0.0881338 0.152652i
\(717\) 9.42110 16.3178i 0.351837 0.609400i
\(718\) −3.58671 6.21237i −0.133855 0.231843i
\(719\) 4.76409 8.25164i 0.177671 0.307734i −0.763412 0.645912i \(-0.776477\pi\)
0.941082 + 0.338178i \(0.109811\pi\)
\(720\) 0.947987 1.64196i 0.0353294 0.0611923i
\(721\) 6.60268 0.245896
\(722\) 7.05710 + 2.63245i 0.262638 + 0.0979698i
\(723\) 17.6922 0.657980
\(724\) −2.44476 + 4.23444i −0.0908587 + 0.157372i
\(725\) −6.15190 + 10.6554i −0.228476 + 0.395732i
\(726\) −0.251336 0.435327i −0.00932796 0.0161565i
\(727\) −22.6413 + 39.2159i −0.839719 + 1.45444i 0.0504100 + 0.998729i \(0.483947\pi\)
−0.890129 + 0.455708i \(0.849386\pi\)
\(728\) −0.816157 1.41363i −0.0302488 0.0523924i
\(729\) 25.2027 0.933434
\(730\) −0.0231226 −0.000855805
\(731\) 20.3247 + 35.2034i 0.751735 + 1.30204i
\(732\) −12.9276 22.3913i −0.477819 0.827607i
\(733\) 52.4798 1.93838 0.969192 0.246306i \(-0.0792169\pi\)
0.969192 + 0.246306i \(0.0792169\pi\)
\(734\) −7.19768 −0.265671
\(735\) 1.83636 + 3.18068i 0.0677353 + 0.117321i
\(736\) 0.800102 1.38582i 0.0294922 0.0510819i
\(737\) −4.06006 7.03224i −0.149554 0.259036i
\(738\) −1.40348 + 2.43090i −0.0516628 + 0.0894826i
\(739\) 15.6220 27.0581i 0.574665 0.995349i −0.421413 0.906869i \(-0.638466\pi\)
0.996078 0.0884802i \(-0.0282010\pi\)
\(740\) −5.89826 −0.216824
\(741\) 5.72869 6.77220i 0.210449 0.248783i
\(742\) 0.0862935 0.00316793
\(743\) 12.5085 21.6653i 0.458891 0.794822i −0.540012 0.841657i \(-0.681580\pi\)
0.998903 + 0.0468355i \(0.0149137\pi\)
\(744\) 8.70484 15.0772i 0.319135 0.552758i
\(745\) −5.17051 8.95558i −0.189433 0.328107i
\(746\) 5.00581 8.67031i 0.183276 0.317443i
\(747\) −4.01184 6.94870i −0.146785 0.254240i
\(748\) 7.47357 0.273261
\(749\) −0.352597 −0.0128836
\(750\) 1.08902 + 1.88623i 0.0397652 + 0.0688754i
\(751\) 25.1822 + 43.6169i 0.918912 + 1.59160i 0.801070 + 0.598570i \(0.204264\pi\)
0.117842 + 0.993032i \(0.462402\pi\)
\(752\) 6.38531 0.232848
\(753\) −17.4670 −0.636534
\(754\) 0.814591 + 1.41091i 0.0296656 + 0.0513824i
\(755\) 1.95942 3.39382i 0.0713106 0.123514i
\(756\) 3.42620 + 5.93435i 0.124610 + 0.215830i
\(757\) 9.47616 16.4132i 0.344417 0.596548i −0.640831 0.767682i \(-0.721410\pi\)
0.985248 + 0.171135i \(0.0547433\pi\)
\(758\) 4.10225 7.10530i 0.149000 0.258076i
\(759\) 0.475359 0.0172544
\(760\) −0.992668 2.76152i −0.0360079 0.100171i
\(761\) −44.4460 −1.61117 −0.805583 0.592484i \(-0.798148\pi\)
−0.805583 + 0.592484i \(0.798148\pi\)
\(762\) −2.32214 + 4.02207i −0.0841224 + 0.145704i
\(763\) −0.848665 + 1.46993i −0.0307237 + 0.0532151i
\(764\) 6.36396 + 11.0227i 0.230240 + 0.398787i
\(765\) 1.24750 2.16073i 0.0451034 0.0781215i
\(766\) 4.41721 + 7.65082i 0.159600 + 0.276436i
\(767\) −22.2714 −0.804175
\(768\) 6.15721 0.222179
\(769\) −12.3039 21.3110i −0.443691 0.768495i 0.554269 0.832337i \(-0.312998\pi\)
−0.997960 + 0.0638427i \(0.979664\pi\)
\(770\) −0.0584831