Properties

Label 209.2.e.b.144.3
Level $209$
Weight $2$
Character 209.144
Analytic conductor $1.669$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(45,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 14 x^{16} - 11 x^{15} + 130 x^{14} - 92 x^{13} + 629 x^{12} - 276 x^{11} + 2060 x^{10} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 144.3
Root \(-0.615930 + 1.06682i\) of defining polynomial
Character \(\chi\) \(=\) 209.144
Dual form 209.2.e.b.45.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.615930 + 1.06682i) q^{2} +(1.01385 - 1.75603i) q^{3} +(0.241261 + 0.417876i) q^{4} +(-1.31548 + 2.27848i) q^{5} +(1.24892 + 2.16319i) q^{6} +3.75846 q^{7} -3.05812 q^{8} +(-0.555768 - 0.962618i) q^{9} +O(q^{10})\) \(q+(-0.615930 + 1.06682i) q^{2} +(1.01385 - 1.75603i) q^{3} +(0.241261 + 0.417876i) q^{4} +(-1.31548 + 2.27848i) q^{5} +(1.24892 + 2.16319i) q^{6} +3.75846 q^{7} -3.05812 q^{8} +(-0.555768 - 0.962618i) q^{9} +(-1.62049 - 2.80677i) q^{10} -1.00000 q^{11} +0.978405 q^{12} +(0.824769 + 1.42854i) q^{13} +(-2.31495 + 4.00960i) q^{14} +(2.66739 + 4.62006i) q^{15} +(1.40107 - 2.42672i) q^{16} +(0.706020 - 1.22286i) q^{17} +1.36926 q^{18} +(4.29267 + 0.756939i) q^{19} -1.26950 q^{20} +(3.81050 - 6.59997i) q^{21} +(0.615930 - 1.06682i) q^{22} +(1.21304 + 2.10105i) q^{23} +(-3.10046 + 5.37016i) q^{24} +(-0.960983 - 1.66447i) q^{25} -2.03200 q^{26} +3.82922 q^{27} +(0.906768 + 1.57057i) q^{28} +(-3.60612 - 6.24598i) q^{29} -6.57171 q^{30} -9.66660 q^{31} +(-1.33220 - 2.30744i) q^{32} +(-1.01385 + 1.75603i) q^{33} +(0.869718 + 1.50640i) q^{34} +(-4.94418 + 8.56357i) q^{35} +(0.268170 - 0.464484i) q^{36} -9.68506 q^{37} +(-3.45151 + 4.11330i) q^{38} +3.34475 q^{39} +(4.02290 - 6.96786i) q^{40} +(6.11720 - 10.5953i) q^{41} +(4.69400 + 8.13024i) q^{42} +(2.96805 - 5.14081i) q^{43} +(-0.241261 - 0.417876i) q^{44} +2.92441 q^{45} -2.98859 q^{46} +(-0.0433317 - 0.0750526i) q^{47} +(-2.84093 - 4.92063i) q^{48} +7.12599 q^{49} +2.36759 q^{50} +(-1.43159 - 2.47959i) q^{51} +(-0.397969 + 0.689302i) q^{52} +(0.599395 + 1.03818i) q^{53} +(-2.35853 + 4.08510i) q^{54} +(1.31548 - 2.27848i) q^{55} -11.4938 q^{56} +(5.68132 - 6.77066i) q^{57} +8.88446 q^{58} +(1.36140 - 2.35801i) q^{59} +(-1.28707 + 2.22928i) q^{60} +(-5.87924 - 10.1831i) q^{61} +(5.95395 - 10.3125i) q^{62} +(-2.08883 - 3.61796i) q^{63} +8.88643 q^{64} -4.33987 q^{65} +(-1.24892 - 2.16319i) q^{66} +(-2.07783 - 3.59891i) q^{67} +0.681340 q^{68} +4.91935 q^{69} +(-6.09054 - 10.5491i) q^{70} +(-1.31934 + 2.28517i) q^{71} +(1.69960 + 2.94380i) q^{72} +(-6.11642 + 10.5939i) q^{73} +(5.96532 - 10.3322i) q^{74} -3.89716 q^{75} +(0.719347 + 1.97642i) q^{76} -3.75846 q^{77} +(-2.06013 + 3.56826i) q^{78} +(-1.58868 + 2.75167i) q^{79} +(3.68615 + 6.38460i) q^{80} +(5.54955 - 9.61210i) q^{81} +(7.53553 + 13.0519i) q^{82} -1.23059 q^{83} +3.67729 q^{84} +(1.85751 + 3.21731i) q^{85} +(3.65622 + 6.33276i) q^{86} -14.6242 q^{87} +3.05812 q^{88} +(7.60245 + 13.1678i) q^{89} +(-1.80123 + 3.11982i) q^{90} +(3.09986 + 5.36911i) q^{91} +(-0.585319 + 1.01380i) q^{92} +(-9.80044 + 16.9749i) q^{93} +0.106757 q^{94} +(-7.37160 + 8.78503i) q^{95} -5.40259 q^{96} +(1.66071 - 2.87643i) q^{97} +(-4.38911 + 7.60217i) q^{98} +(0.555768 + 0.962618i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9} + 21 q^{10} - 18 q^{11} + 16 q^{12} + 11 q^{13} + q^{14} + 7 q^{15} - 13 q^{16} + 6 q^{17} - 8 q^{18} + 4 q^{19} + 4 q^{20} + 24 q^{21} - q^{22} - q^{23} - 3 q^{24} - 7 q^{25} - 4 q^{26} + 6 q^{27} - 2 q^{28} + 13 q^{29} - 64 q^{30} - 32 q^{31} - 14 q^{32} + 8 q^{34} - 12 q^{35} + 10 q^{36} - 36 q^{37} - 20 q^{38} + 20 q^{39} + 32 q^{40} + 4 q^{41} + 11 q^{42} + q^{43} + 9 q^{44} + 22 q^{45} - 14 q^{46} - 14 q^{47} + 37 q^{48} - 12 q^{49} + 30 q^{50} - 16 q^{51} + 57 q^{52} - 4 q^{53} - 33 q^{54} - 34 q^{56} - 7 q^{57} + 8 q^{58} + 31 q^{59} + 9 q^{60} + 3 q^{61} + 5 q^{62} + 50 q^{63} + 64 q^{64} - 56 q^{65} + 3 q^{66} - 2 q^{67} - 96 q^{68} - 58 q^{70} - 12 q^{71} + 5 q^{72} - 26 q^{73} + 35 q^{74} + 50 q^{75} - 36 q^{76} + 6 q^{77} + 3 q^{78} + 31 q^{79} + 31 q^{80} - 21 q^{81} + 25 q^{82} + 36 q^{83} - 102 q^{84} - 11 q^{85} + 41 q^{86} - 124 q^{87} - 11 q^{89} + 51 q^{90} - 20 q^{91} - 33 q^{92} + 20 q^{93} - 86 q^{94} + 17 q^{95} + 60 q^{96} + 16 q^{97} + 4 q^{98} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.615930 + 1.06682i −0.435528 + 0.754357i −0.997339 0.0729090i \(-0.976772\pi\)
0.561810 + 0.827266i \(0.310105\pi\)
\(3\) 1.01385 1.75603i 0.585344 1.01385i −0.409488 0.912315i \(-0.634293\pi\)
0.994832 0.101531i \(-0.0323740\pi\)
\(4\) 0.241261 + 0.417876i 0.120630 + 0.208938i
\(5\) −1.31548 + 2.27848i −0.588301 + 1.01897i 0.406154 + 0.913805i \(0.366870\pi\)
−0.994455 + 0.105163i \(0.966464\pi\)
\(6\) 1.24892 + 2.16319i 0.509868 + 0.883117i
\(7\) 3.75846 1.42056 0.710281 0.703918i \(-0.248568\pi\)
0.710281 + 0.703918i \(0.248568\pi\)
\(8\) −3.05812 −1.08121
\(9\) −0.555768 0.962618i −0.185256 0.320873i
\(10\) −1.62049 2.80677i −0.512444 0.887578i
\(11\) −1.00000 −0.301511
\(12\) 0.978405 0.282441
\(13\) 0.824769 + 1.42854i 0.228750 + 0.396206i 0.957438 0.288640i \(-0.0932029\pi\)
−0.728688 + 0.684846i \(0.759870\pi\)
\(14\) −2.31495 + 4.00960i −0.618695 + 1.07161i
\(15\) 2.66739 + 4.62006i 0.688718 + 1.19289i
\(16\) 1.40107 2.42672i 0.350266 0.606679i
\(17\) 0.706020 1.22286i 0.171235 0.296588i −0.767617 0.640909i \(-0.778558\pi\)
0.938852 + 0.344321i \(0.111891\pi\)
\(18\) 1.36926 0.322737
\(19\) 4.29267 + 0.756939i 0.984807 + 0.173654i
\(20\) −1.26950 −0.283868
\(21\) 3.81050 6.59997i 0.831518 1.44023i
\(22\) 0.615930 1.06682i 0.131317 0.227447i
\(23\) 1.21304 + 2.10105i 0.252937 + 0.438099i 0.964333 0.264692i \(-0.0852702\pi\)
−0.711396 + 0.702791i \(0.751937\pi\)
\(24\) −3.10046 + 5.37016i −0.632879 + 1.09618i
\(25\) −0.960983 1.66447i −0.192197 0.332894i
\(26\) −2.03200 −0.398508
\(27\) 3.82922 0.736935
\(28\) 0.906768 + 1.57057i 0.171363 + 0.296809i
\(29\) −3.60612 6.24598i −0.669639 1.15985i −0.978005 0.208581i \(-0.933116\pi\)
0.308366 0.951268i \(-0.400218\pi\)
\(30\) −6.57171 −1.19982
\(31\) −9.66660 −1.73617 −0.868086 0.496413i \(-0.834650\pi\)
−0.868086 + 0.496413i \(0.834650\pi\)
\(32\) −1.33220 2.30744i −0.235502 0.407902i
\(33\) −1.01385 + 1.75603i −0.176488 + 0.305686i
\(34\) 0.869718 + 1.50640i 0.149155 + 0.258345i
\(35\) −4.94418 + 8.56357i −0.835719 + 1.44751i
\(36\) 0.268170 0.464484i 0.0446950 0.0774140i
\(37\) −9.68506 −1.59221 −0.796107 0.605156i \(-0.793111\pi\)
−0.796107 + 0.605156i \(0.793111\pi\)
\(38\) −3.45151 + 4.11330i −0.559908 + 0.667265i
\(39\) 3.34475 0.535589
\(40\) 4.02290 6.96786i 0.636076 1.10172i
\(41\) 6.11720 10.5953i 0.955346 1.65471i 0.221772 0.975099i \(-0.428816\pi\)
0.733574 0.679609i \(-0.237851\pi\)
\(42\) 4.69400 + 8.13024i 0.724299 + 1.25452i
\(43\) 2.96805 5.14081i 0.452623 0.783966i −0.545925 0.837834i \(-0.683822\pi\)
0.998548 + 0.0538678i \(0.0171549\pi\)
\(44\) −0.241261 0.417876i −0.0363714 0.0629971i
\(45\) 2.92441 0.435945
\(46\) −2.98859 −0.440644
\(47\) −0.0433317 0.0750526i −0.00632057 0.0109476i 0.862848 0.505464i \(-0.168679\pi\)
−0.869168 + 0.494516i \(0.835345\pi\)
\(48\) −2.84093 4.92063i −0.410053 0.710232i
\(49\) 7.12599 1.01800
\(50\) 2.36759 0.334828
\(51\) −1.43159 2.47959i −0.200463 0.347212i
\(52\) −0.397969 + 0.689302i −0.0551883 + 0.0955890i
\(53\) 0.599395 + 1.03818i 0.0823332 + 0.142605i 0.904252 0.427000i \(-0.140430\pi\)
−0.821919 + 0.569605i \(0.807096\pi\)
\(54\) −2.35853 + 4.08510i −0.320956 + 0.555912i
\(55\) 1.31548 2.27848i 0.177379 0.307230i
\(56\) −11.4938 −1.53592
\(57\) 5.68132 6.77066i 0.752509 0.896795i
\(58\) 8.88446 1.16659
\(59\) 1.36140 2.35801i 0.177239 0.306987i −0.763695 0.645577i \(-0.776617\pi\)
0.940934 + 0.338591i \(0.109950\pi\)
\(60\) −1.28707 + 2.22928i −0.166160 + 0.287798i
\(61\) −5.87924 10.1831i −0.752760 1.30382i −0.946480 0.322762i \(-0.895389\pi\)
0.193720 0.981057i \(-0.437945\pi\)
\(62\) 5.95395 10.3125i 0.756152 1.30969i
\(63\) −2.08883 3.61796i −0.263168 0.455820i
\(64\) 8.88643 1.11080
\(65\) −4.33987 −0.538295
\(66\) −1.24892 2.16319i −0.153731 0.266270i
\(67\) −2.07783 3.59891i −0.253847 0.439676i 0.710735 0.703460i \(-0.248363\pi\)
−0.964582 + 0.263784i \(0.915029\pi\)
\(68\) 0.681340 0.0826246
\(69\) 4.91935 0.592220
\(70\) −6.09054 10.5491i −0.727958 1.26086i
\(71\) −1.31934 + 2.28517i −0.156577 + 0.271199i −0.933632 0.358233i \(-0.883379\pi\)
0.777055 + 0.629433i \(0.216713\pi\)
\(72\) 1.69960 + 2.94380i 0.200300 + 0.346930i
\(73\) −6.11642 + 10.5939i −0.715873 + 1.23993i 0.246749 + 0.969079i \(0.420638\pi\)
−0.962622 + 0.270849i \(0.912696\pi\)
\(74\) 5.96532 10.3322i 0.693454 1.20110i
\(75\) −3.89716 −0.450005
\(76\) 0.719347 + 1.97642i 0.0825147 + 0.226711i
\(77\) −3.75846 −0.428316
\(78\) −2.06013 + 3.56826i −0.233264 + 0.404026i
\(79\) −1.58868 + 2.75167i −0.178740 + 0.309587i −0.941449 0.337155i \(-0.890535\pi\)
0.762709 + 0.646742i \(0.223869\pi\)
\(80\) 3.68615 + 6.38460i 0.412124 + 0.713820i
\(81\) 5.54955 9.61210i 0.616616 1.06801i
\(82\) 7.53553 + 13.0519i 0.832160 + 1.44134i
\(83\) −1.23059 −0.135075 −0.0675373 0.997717i \(-0.521514\pi\)
−0.0675373 + 0.997717i \(0.521514\pi\)
\(84\) 3.67729 0.401225
\(85\) 1.85751 + 3.21731i 0.201476 + 0.348966i
\(86\) 3.65622 + 6.33276i 0.394260 + 0.682879i
\(87\) −14.6242 −1.56788
\(88\) 3.05812 0.325997
\(89\) 7.60245 + 13.1678i 0.805858 + 1.39579i 0.915710 + 0.401839i \(0.131629\pi\)
−0.109853 + 0.993948i \(0.535038\pi\)
\(90\) −1.80123 + 3.11982i −0.189866 + 0.328858i
\(91\) 3.09986 + 5.36911i 0.324953 + 0.562836i
\(92\) −0.585319 + 1.01380i −0.0610237 + 0.105696i
\(93\) −9.80044 + 16.9749i −1.01626 + 1.76021i
\(94\) 0.106757 0.0110112
\(95\) −7.37160 + 8.78503i −0.756311 + 0.901325i
\(96\) −5.40259 −0.551400
\(97\) 1.66071 2.87643i 0.168619 0.292057i −0.769316 0.638869i \(-0.779403\pi\)
0.937935 + 0.346812i \(0.112736\pi\)
\(98\) −4.38911 + 7.60217i −0.443367 + 0.767935i
\(99\) 0.555768 + 0.962618i 0.0558568 + 0.0967467i
\(100\) 0.463695 0.803143i 0.0463695 0.0803143i
\(101\) 1.63545 + 2.83268i 0.162733 + 0.281862i 0.935848 0.352404i \(-0.114636\pi\)
−0.773115 + 0.634266i \(0.781302\pi\)
\(102\) 3.52704 0.349229
\(103\) −4.53533 −0.446879 −0.223439 0.974718i \(-0.571729\pi\)
−0.223439 + 0.974718i \(0.571729\pi\)
\(104\) −2.52224 4.36865i −0.247326 0.428381i
\(105\) 10.0253 + 17.3643i 0.978367 + 1.69458i
\(106\) −1.47674 −0.143434
\(107\) 4.59920 0.444621 0.222311 0.974976i \(-0.428640\pi\)
0.222311 + 0.974976i \(0.428640\pi\)
\(108\) 0.923841 + 1.60014i 0.0888967 + 0.153974i
\(109\) 6.10959 10.5821i 0.585192 1.01358i −0.409659 0.912239i \(-0.634352\pi\)
0.994851 0.101344i \(-0.0323143\pi\)
\(110\) 1.62049 + 2.80677i 0.154508 + 0.267615i
\(111\) −9.81916 + 17.0073i −0.931993 + 1.61426i
\(112\) 5.26584 9.12071i 0.497575 0.861826i
\(113\) 0.758905 0.0713918 0.0356959 0.999363i \(-0.488635\pi\)
0.0356959 + 0.999363i \(0.488635\pi\)
\(114\) 3.72379 + 10.2312i 0.348765 + 0.958240i
\(115\) −6.38294 −0.595212
\(116\) 1.74003 3.01382i 0.161558 0.279826i
\(117\) 0.916760 1.58787i 0.0847545 0.146799i
\(118\) 1.67705 + 2.90474i 0.154385 + 0.267403i
\(119\) 2.65355 4.59608i 0.243250 0.421322i
\(120\) −8.15720 14.1287i −0.744647 1.28977i
\(121\) 1.00000 0.0909091
\(122\) 14.4848 1.31139
\(123\) −12.4038 21.4840i −1.11841 1.93715i
\(124\) −2.33217 4.03944i −0.209435 0.362752i
\(125\) −8.09819 −0.724324
\(126\) 5.14629 0.458468
\(127\) 0.564676 + 0.978047i 0.0501069 + 0.0867876i 0.889991 0.455978i \(-0.150710\pi\)
−0.839884 + 0.542766i \(0.817377\pi\)
\(128\) −2.80902 + 4.86536i −0.248284 + 0.430041i
\(129\) −6.01829 10.4240i −0.529881 0.917781i
\(130\) 2.67306 4.62987i 0.234443 0.406066i
\(131\) −1.44107 + 2.49600i −0.125907 + 0.218077i −0.922087 0.386983i \(-0.873517\pi\)
0.796180 + 0.605059i \(0.206851\pi\)
\(132\) −0.978405 −0.0851592
\(133\) 16.1338 + 2.84492i 1.39898 + 0.246686i
\(134\) 5.11919 0.442231
\(135\) −5.03727 + 8.72482i −0.433540 + 0.750913i
\(136\) −2.15909 + 3.73966i −0.185141 + 0.320673i
\(137\) 11.3615 + 19.6786i 0.970674 + 1.68126i 0.693528 + 0.720429i \(0.256055\pi\)
0.277146 + 0.960828i \(0.410611\pi\)
\(138\) −3.02997 + 5.24807i −0.257929 + 0.446745i
\(139\) −0.653641 1.13214i −0.0554411 0.0960267i 0.836973 0.547244i \(-0.184323\pi\)
−0.892414 + 0.451218i \(0.850990\pi\)
\(140\) −4.77135 −0.403252
\(141\) −0.175727 −0.0147988
\(142\) −1.62524 2.81500i −0.136387 0.236230i
\(143\) −0.824769 1.42854i −0.0689706 0.119461i
\(144\) −3.11467 −0.259556
\(145\) 18.9751 1.57580
\(146\) −7.53457 13.0503i −0.623566 1.08005i
\(147\) 7.22466 12.5135i 0.595880 1.03209i
\(148\) −2.33662 4.04715i −0.192069 0.332674i
\(149\) −2.52861 + 4.37967i −0.207151 + 0.358797i −0.950816 0.309756i \(-0.899753\pi\)
0.743665 + 0.668553i \(0.233086\pi\)
\(150\) 2.40038 4.15757i 0.195990 0.339464i
\(151\) 8.85980 0.721000 0.360500 0.932759i \(-0.382606\pi\)
0.360500 + 0.932759i \(0.382606\pi\)
\(152\) −13.1275 2.31481i −1.06478 0.187756i
\(153\) −1.56953 −0.126889
\(154\) 2.31495 4.00960i 0.186544 0.323103i
\(155\) 12.7162 22.0252i 1.02139 1.76910i
\(156\) 0.806958 + 1.39769i 0.0646083 + 0.111905i
\(157\) 8.11188 14.0502i 0.647399 1.12133i −0.336343 0.941739i \(-0.609190\pi\)
0.983742 0.179588i \(-0.0574765\pi\)
\(158\) −1.95703 3.38967i −0.155693 0.269668i
\(159\) 2.43078 0.192773
\(160\) 7.00995 0.554185
\(161\) 4.55916 + 7.89670i 0.359312 + 0.622347i
\(162\) 6.83626 + 11.8408i 0.537108 + 0.930298i
\(163\) −21.9299 −1.71769 −0.858843 0.512239i \(-0.828816\pi\)
−0.858843 + 0.512239i \(0.828816\pi\)
\(164\) 5.90336 0.460975
\(165\) −2.66739 4.62006i −0.207656 0.359671i
\(166\) 0.757956 1.31282i 0.0588288 0.101894i
\(167\) 10.3598 + 17.9436i 0.801662 + 1.38852i 0.918521 + 0.395371i \(0.129384\pi\)
−0.116859 + 0.993148i \(0.537283\pi\)
\(168\) −11.6529 + 20.1835i −0.899044 + 1.55719i
\(169\) 5.13951 8.90190i 0.395347 0.684761i
\(170\) −4.57639 −0.350993
\(171\) −1.65709 4.55289i −0.126721 0.348168i
\(172\) 2.86429 0.218400
\(173\) −6.42086 + 11.1213i −0.488169 + 0.845534i −0.999907 0.0136076i \(-0.995668\pi\)
0.511738 + 0.859141i \(0.329002\pi\)
\(174\) 9.00747 15.6014i 0.682855 1.18274i
\(175\) −3.61181 6.25585i −0.273027 0.472897i
\(176\) −1.40107 + 2.42672i −0.105609 + 0.182921i
\(177\) −2.76049 4.78132i −0.207491 0.359386i
\(178\) −18.7303 −1.40390
\(179\) 0.801793 0.0599288 0.0299644 0.999551i \(-0.490461\pi\)
0.0299644 + 0.999551i \(0.490461\pi\)
\(180\) 0.705545 + 1.22204i 0.0525882 + 0.0910855i
\(181\) 5.64307 + 9.77409i 0.419446 + 0.726503i 0.995884 0.0906388i \(-0.0288909\pi\)
−0.576437 + 0.817141i \(0.695558\pi\)
\(182\) −7.63718 −0.566105
\(183\) −23.8426 −1.76250
\(184\) −3.70963 6.42526i −0.273477 0.473676i
\(185\) 12.7405 22.0672i 0.936701 1.62241i
\(186\) −12.0728 20.9107i −0.885219 1.53324i
\(187\) −0.706020 + 1.22286i −0.0516293 + 0.0894246i
\(188\) 0.0209085 0.0362145i 0.00152491 0.00264121i
\(189\) 14.3920 1.04686
\(190\) −4.83168 13.2752i −0.350527 0.963081i
\(191\) 7.65003 0.553536 0.276768 0.960937i \(-0.410737\pi\)
0.276768 + 0.960937i \(0.410737\pi\)
\(192\) 9.00948 15.6049i 0.650203 1.12618i
\(193\) −4.45684 + 7.71948i −0.320811 + 0.555660i −0.980656 0.195741i \(-0.937289\pi\)
0.659845 + 0.751402i \(0.270622\pi\)
\(194\) 2.04576 + 3.54335i 0.146877 + 0.254398i
\(195\) −4.39996 + 7.62096i −0.315088 + 0.545748i
\(196\) 1.71922 + 2.97778i 0.122802 + 0.212699i
\(197\) 2.10950 0.150296 0.0751480 0.997172i \(-0.476057\pi\)
0.0751480 + 0.997172i \(0.476057\pi\)
\(198\) −1.36926 −0.0973088
\(199\) −2.75546 4.77260i −0.195329 0.338321i 0.751679 0.659529i \(-0.229244\pi\)
−0.947008 + 0.321209i \(0.895911\pi\)
\(200\) 2.93880 + 5.09015i 0.207805 + 0.359928i
\(201\) −8.42640 −0.594352
\(202\) −4.02929 −0.283500
\(203\) −13.5534 23.4752i −0.951264 1.64764i
\(204\) 0.690773 1.19645i 0.0483638 0.0837686i
\(205\) 16.0941 + 27.8758i 1.12406 + 1.94693i
\(206\) 2.79344 4.83839i 0.194628 0.337106i
\(207\) 1.34834 2.33539i 0.0937160 0.162321i
\(208\) 4.62222 0.320493
\(209\) −4.29267 0.756939i −0.296930 0.0523586i
\(210\) −24.6995 −1.70443
\(211\) 7.98080 13.8231i 0.549421 0.951625i −0.448893 0.893585i \(-0.648182\pi\)
0.998314 0.0580396i \(-0.0184850\pi\)
\(212\) −0.289221 + 0.500945i −0.0198638 + 0.0344050i
\(213\) 2.67522 + 4.63361i 0.183303 + 0.317490i
\(214\) −2.83278 + 4.90653i −0.193645 + 0.335403i
\(215\) 7.80883 + 13.5253i 0.532558 + 0.922417i
\(216\) −11.7102 −0.796780
\(217\) −36.3315 −2.46634
\(218\) 7.52615 + 13.0357i 0.509735 + 0.882888i
\(219\) 12.4022 + 21.4813i 0.838064 + 1.45157i
\(220\) 1.26950 0.0855894
\(221\) 2.32921 0.156680
\(222\) −12.0958 20.9506i −0.811819 1.40611i
\(223\) −8.56464 + 14.8344i −0.573531 + 0.993384i 0.422669 + 0.906284i \(0.361093\pi\)
−0.996200 + 0.0870999i \(0.972240\pi\)
\(224\) −5.00702 8.67242i −0.334546 0.579451i
\(225\) −1.06817 + 1.85012i −0.0712111 + 0.123341i
\(226\) −0.467433 + 0.809617i −0.0310932 + 0.0538549i
\(227\) −22.3328 −1.48228 −0.741142 0.671349i \(-0.765715\pi\)
−0.741142 + 0.671349i \(0.765715\pi\)
\(228\) 4.19997 + 0.740593i 0.278150 + 0.0490470i
\(229\) −14.9912 −0.990645 −0.495322 0.868709i \(-0.664950\pi\)
−0.495322 + 0.868709i \(0.664950\pi\)
\(230\) 3.93144 6.80946i 0.259232 0.449002i
\(231\) −3.81050 + 6.59997i −0.250712 + 0.434246i
\(232\) 11.0279 + 19.1009i 0.724019 + 1.25404i
\(233\) −0.961968 + 1.66618i −0.0630206 + 0.109155i −0.895814 0.444429i \(-0.853407\pi\)
0.832794 + 0.553584i \(0.186740\pi\)
\(234\) 1.12932 + 1.95604i 0.0738259 + 0.127870i
\(235\) 0.228008 0.0148736
\(236\) 1.31381 0.0855215
\(237\) 3.22135 + 5.57953i 0.209249 + 0.362430i
\(238\) 3.26880 + 5.66172i 0.211885 + 0.366995i
\(239\) 3.30029 0.213478 0.106739 0.994287i \(-0.465959\pi\)
0.106739 + 0.994287i \(0.465959\pi\)
\(240\) 14.9488 0.964938
\(241\) 8.55724 + 14.8216i 0.551220 + 0.954741i 0.998187 + 0.0601907i \(0.0191709\pi\)
−0.446967 + 0.894551i \(0.647496\pi\)
\(242\) −0.615930 + 1.06682i −0.0395935 + 0.0685779i
\(243\) −5.50894 9.54176i −0.353398 0.612104i
\(244\) 2.83686 4.91359i 0.181611 0.314560i
\(245\) −9.37411 + 16.2364i −0.598890 + 1.03731i
\(246\) 30.5595 1.94840
\(247\) 2.45914 + 6.75656i 0.156472 + 0.429910i
\(248\) 29.5616 1.87716
\(249\) −1.24763 + 2.16095i −0.0790652 + 0.136945i
\(250\) 4.98792 8.63933i 0.315464 0.546399i
\(251\) −6.41010 11.1026i −0.404602 0.700791i 0.589673 0.807642i \(-0.299257\pi\)
−0.994275 + 0.106851i \(0.965923\pi\)
\(252\) 1.00790 1.74574i 0.0634920 0.109971i
\(253\) −1.21304 2.10105i −0.0762633 0.132092i
\(254\) −1.39120 −0.0872918
\(255\) 7.53293 0.471730
\(256\) 5.42612 + 9.39832i 0.339133 + 0.587395i
\(257\) −15.3049 26.5088i −0.954692 1.65358i −0.735071 0.677990i \(-0.762851\pi\)
−0.219621 0.975585i \(-0.570482\pi\)
\(258\) 14.8274 0.923112
\(259\) −36.4009 −2.26184
\(260\) −1.04704 1.81353i −0.0649347 0.112470i
\(261\) −4.00833 + 6.94262i −0.248109 + 0.429738i
\(262\) −1.77519 3.07472i −0.109672 0.189957i
\(263\) 13.9387 24.1426i 0.859498 1.48869i −0.0129096 0.999917i \(-0.504109\pi\)
0.872408 0.488778i \(-0.162557\pi\)
\(264\) 3.10046 5.37016i 0.190820 0.330510i
\(265\) −3.15397 −0.193747
\(266\) −12.9723 + 15.4596i −0.795385 + 0.947892i
\(267\) 30.8308 1.88682
\(268\) 1.00260 1.73655i 0.0612434 0.106077i
\(269\) 0.778866 1.34904i 0.0474883 0.0822522i −0.841304 0.540562i \(-0.818212\pi\)
0.888793 + 0.458310i \(0.151545\pi\)
\(270\) −6.20522 10.7477i −0.377637 0.654087i
\(271\) 3.00728 5.20875i 0.182679 0.316409i −0.760113 0.649791i \(-0.774856\pi\)
0.942792 + 0.333382i \(0.108190\pi\)
\(272\) −1.97836 3.42662i −0.119956 0.207769i
\(273\) 12.5711 0.760838
\(274\) −27.9914 −1.69102
\(275\) 0.960983 + 1.66447i 0.0579495 + 0.100371i
\(276\) 1.18685 + 2.05568i 0.0714397 + 0.123737i
\(277\) −16.1061 −0.967724 −0.483862 0.875144i \(-0.660766\pi\)
−0.483862 + 0.875144i \(0.660766\pi\)
\(278\) 1.61039 0.0965846
\(279\) 5.37238 + 9.30524i 0.321636 + 0.557090i
\(280\) 15.1199 26.1884i 0.903586 1.56506i
\(281\) −10.1622 17.6014i −0.606226 1.05001i −0.991856 0.127361i \(-0.959349\pi\)
0.385630 0.922653i \(-0.373984\pi\)
\(282\) 0.108235 0.187469i 0.00644532 0.0111636i
\(283\) −10.8959 + 18.8722i −0.647692 + 1.12184i 0.335981 + 0.941869i \(0.390932\pi\)
−0.983673 + 0.179967i \(0.942401\pi\)
\(284\) −1.27322 −0.0755517
\(285\) 7.95314 + 21.8515i 0.471103 + 1.29437i
\(286\) 2.03200 0.120155
\(287\) 22.9912 39.8220i 1.35713 2.35062i
\(288\) −1.48079 + 2.56480i −0.0872564 + 0.151133i
\(289\) 7.50307 + 12.9957i 0.441357 + 0.764453i
\(290\) −11.6873 + 20.2431i −0.686304 + 1.18871i
\(291\) −3.36740 5.83251i −0.197400 0.341908i
\(292\) −5.90261 −0.345424
\(293\) −1.41230 −0.0825073 −0.0412537 0.999149i \(-0.513135\pi\)
−0.0412537 + 0.999149i \(0.513135\pi\)
\(294\) 8.89977 + 15.4149i 0.519045 + 0.899012i
\(295\) 3.58179 + 6.20383i 0.208540 + 0.361201i
\(296\) 29.6181 1.72151
\(297\) −3.82922 −0.222194
\(298\) −3.11489 5.39514i −0.180441 0.312532i
\(299\) −2.00096 + 3.46576i −0.115718 + 0.200430i
\(300\) −0.940231 1.62853i −0.0542843 0.0940231i
\(301\) 11.1553 19.3215i 0.642980 1.11367i
\(302\) −5.45701 + 9.45183i −0.314016 + 0.543891i
\(303\) 6.63237 0.381020
\(304\) 7.85119 9.35658i 0.450297 0.536637i
\(305\) 30.9361 1.77140
\(306\) 0.966722 1.67441i 0.0552638 0.0957198i
\(307\) −14.4247 + 24.9844i −0.823264 + 1.42593i 0.0799756 + 0.996797i \(0.474516\pi\)
−0.903239 + 0.429137i \(0.858818\pi\)
\(308\) −0.906768 1.57057i −0.0516679 0.0894914i
\(309\) −4.59812 + 7.96418i −0.261578 + 0.453066i
\(310\) 15.6646 + 27.1319i 0.889690 + 1.54099i
\(311\) −14.9369 −0.846994 −0.423497 0.905897i \(-0.639198\pi\)
−0.423497 + 0.905897i \(0.639198\pi\)
\(312\) −10.2287 −0.579083
\(313\) −12.1615 21.0644i −0.687411 1.19063i −0.972673 0.232181i \(-0.925414\pi\)
0.285262 0.958450i \(-0.407919\pi\)
\(314\) 9.99270 + 17.3079i 0.563921 + 0.976739i
\(315\) 10.9913 0.619288
\(316\) −1.53314 −0.0862459
\(317\) 8.91090 + 15.4341i 0.500486 + 0.866867i 1.00000 0.000561061i \(0.000178591\pi\)
−0.499514 + 0.866306i \(0.666488\pi\)
\(318\) −1.49719 + 2.59320i −0.0839581 + 0.145420i
\(319\) 3.60612 + 6.24598i 0.201904 + 0.349708i
\(320\) −11.6899 + 20.2476i −0.653488 + 1.13187i
\(321\) 4.66288 8.07635i 0.260257 0.450778i
\(322\) −11.2325 −0.625963
\(323\) 3.95635 4.71494i 0.220137 0.262346i
\(324\) 5.35555 0.297531
\(325\) 1.58518 2.74561i 0.0879299 0.152299i
\(326\) 13.5073 23.3953i 0.748101 1.29575i
\(327\) −12.3884 21.4573i −0.685078 1.18659i
\(328\) −18.7071 + 32.4017i −1.03293 + 1.78908i
\(329\) −0.162860 0.282082i −0.00897877 0.0155517i
\(330\) 6.57171 0.361760
\(331\) 18.2121 1.00103 0.500513 0.865729i \(-0.333145\pi\)
0.500513 + 0.865729i \(0.333145\pi\)
\(332\) −0.296893 0.514233i −0.0162941 0.0282222i
\(333\) 5.38264 + 9.32301i 0.294967 + 0.510898i
\(334\) −25.5235 −1.39659
\(335\) 10.9334 0.597355
\(336\) −10.6775 18.4940i −0.582506 1.00893i
\(337\) 14.0095 24.2652i 0.763147 1.32181i −0.178073 0.984017i \(-0.556986\pi\)
0.941220 0.337793i \(-0.109680\pi\)
\(338\) 6.33116 + 10.9659i 0.344370 + 0.596466i
\(339\) 0.769413 1.33266i 0.0417888 0.0723803i
\(340\) −0.896290 + 1.55242i −0.0486081 + 0.0841918i
\(341\) 9.66660 0.523476
\(342\) 5.87777 + 1.03644i 0.317833 + 0.0560445i
\(343\) 0.473542 0.0255689
\(344\) −9.07664 + 15.7212i −0.489380 + 0.847631i
\(345\) −6.47131 + 11.2086i −0.348404 + 0.603453i
\(346\) −7.90960 13.6998i −0.425223 0.736508i
\(347\) −14.1815 + 24.5631i −0.761303 + 1.31862i 0.180876 + 0.983506i \(0.442107\pi\)
−0.942179 + 0.335110i \(0.891227\pi\)
\(348\) −3.52824 6.11109i −0.189134 0.327589i
\(349\) −4.77221 −0.255451 −0.127725 0.991810i \(-0.540768\pi\)
−0.127725 + 0.991810i \(0.540768\pi\)
\(350\) 8.89850 0.475645
\(351\) 3.15822 + 5.47021i 0.168574 + 0.291978i
\(352\) 1.33220 + 2.30744i 0.0710066 + 0.122987i
\(353\) −12.6727 −0.674498 −0.337249 0.941415i \(-0.609497\pi\)
−0.337249 + 0.941415i \(0.609497\pi\)
\(354\) 6.80108 0.361473
\(355\) −3.47114 6.01219i −0.184229 0.319094i
\(356\) −3.66834 + 6.35376i −0.194422 + 0.336748i
\(357\) −5.38057 9.31943i −0.284770 0.493236i
\(358\) −0.493848 + 0.855370i −0.0261007 + 0.0452077i
\(359\) −0.624108 + 1.08099i −0.0329391 + 0.0570523i −0.882025 0.471203i \(-0.843820\pi\)
0.849086 + 0.528255i \(0.177153\pi\)
\(360\) −8.94319 −0.471347
\(361\) 17.8541 + 6.49859i 0.939689 + 0.342031i
\(362\) −13.9030 −0.730723
\(363\) 1.01385 1.75603i 0.0532131 0.0921678i
\(364\) −1.49575 + 2.59071i −0.0783985 + 0.135790i
\(365\) −16.0921 27.8723i −0.842298 1.45890i
\(366\) 14.6854 25.4358i 0.767616 1.32955i
\(367\) 16.9582 + 29.3725i 0.885212 + 1.53323i 0.845471 + 0.534022i \(0.179320\pi\)
0.0397409 + 0.999210i \(0.487347\pi\)
\(368\) 6.79820 0.354381
\(369\) −13.5990 −0.707934
\(370\) 15.6945 + 27.1837i 0.815920 + 1.41321i
\(371\) 2.25280 + 3.90196i 0.116959 + 0.202580i
\(372\) −9.45785 −0.490367
\(373\) −10.3937 −0.538167 −0.269083 0.963117i \(-0.586721\pi\)
−0.269083 + 0.963117i \(0.586721\pi\)
\(374\) −0.869718 1.50640i −0.0449720 0.0778938i
\(375\) −8.21032 + 14.2207i −0.423979 + 0.734353i
\(376\) 0.132513 + 0.229520i 0.00683386 + 0.0118366i
\(377\) 5.94842 10.3030i 0.306359 0.530630i
\(378\) −8.86445 + 15.3537i −0.455938 + 0.789708i
\(379\) −0.456731 −0.0234607 −0.0117303 0.999931i \(-0.503734\pi\)
−0.0117303 + 0.999931i \(0.503734\pi\)
\(380\) −5.44953 0.960931i −0.279555 0.0492947i
\(381\) 2.28998 0.117319
\(382\) −4.71188 + 8.16121i −0.241081 + 0.417564i
\(383\) −10.5243 + 18.2287i −0.537768 + 0.931441i 0.461256 + 0.887267i \(0.347399\pi\)
−0.999024 + 0.0441741i \(0.985934\pi\)
\(384\) 5.69582 + 9.86545i 0.290664 + 0.503444i
\(385\) 4.94418 8.56357i 0.251979 0.436440i
\(386\) −5.49021 9.50932i −0.279444 0.484012i
\(387\) −6.59818 −0.335405
\(388\) 1.60265 0.0813623
\(389\) 3.03499 + 5.25676i 0.153880 + 0.266528i 0.932651 0.360781i \(-0.117490\pi\)
−0.778771 + 0.627309i \(0.784156\pi\)
\(390\) −5.42014 9.38795i −0.274459 0.475377i
\(391\) 3.42573 0.173246
\(392\) −21.7921 −1.10067
\(393\) 2.92204 + 5.06112i 0.147397 + 0.255300i
\(394\) −1.29931 + 2.25046i −0.0654581 + 0.113377i
\(395\) −4.17975 7.23953i −0.210306 0.364261i
\(396\) −0.268170 + 0.464484i −0.0134760 + 0.0233412i
\(397\) −9.91464 + 17.1727i −0.497601 + 0.861871i −0.999996 0.00276759i \(-0.999119\pi\)
0.502395 + 0.864638i \(0.332452\pi\)
\(398\) 6.78868 0.340286
\(399\) 21.3530 25.4472i 1.06899 1.27395i
\(400\) −5.38560 −0.269280
\(401\) 9.43503 16.3420i 0.471163 0.816079i −0.528293 0.849062i \(-0.677168\pi\)
0.999456 + 0.0329838i \(0.0105010\pi\)
\(402\) 5.19007 8.98946i 0.258857 0.448354i
\(403\) −7.97271 13.8091i −0.397149 0.687882i
\(404\) −0.789139 + 1.36683i −0.0392611 + 0.0680023i
\(405\) 14.6007 + 25.2891i 0.725512 + 1.25662i
\(406\) 33.3918 1.65721
\(407\) 9.68506 0.480071
\(408\) 4.37798 + 7.58288i 0.216742 + 0.375408i
\(409\) −16.3070 28.2445i −0.806328 1.39660i −0.915391 0.402566i \(-0.868118\pi\)
0.109063 0.994035i \(-0.465215\pi\)
\(410\) −39.6514 −1.95824
\(411\) 46.0751 2.27271
\(412\) −1.09420 1.89520i −0.0539072 0.0933699i
\(413\) 5.11675 8.86247i 0.251779 0.436094i
\(414\) 1.66096 + 2.87687i 0.0816320 + 0.141391i
\(415\) 1.61882 2.80387i 0.0794646 0.137637i
\(416\) 2.19752 3.80621i 0.107742 0.186615i
\(417\) −2.65076 −0.129808
\(418\) 3.45151 4.11330i 0.168819 0.201188i
\(419\) −39.3439 −1.92208 −0.961039 0.276414i \(-0.910854\pi\)
−0.961039 + 0.276414i \(0.910854\pi\)
\(420\) −4.83741 + 8.37864i −0.236041 + 0.408836i
\(421\) −0.302034 + 0.523138i −0.0147202 + 0.0254962i −0.873292 0.487198i \(-0.838019\pi\)
0.858571 + 0.512694i \(0.171352\pi\)
\(422\) 9.83123 + 17.0282i 0.478577 + 0.828919i
\(423\) −0.0481647 + 0.0834237i −0.00234185 + 0.00405620i
\(424\) −1.83302 3.17488i −0.0890193 0.154186i
\(425\) −2.71389 −0.131643
\(426\) −6.59099 −0.319334
\(427\) −22.0969 38.2729i −1.06934 1.85216i
\(428\) 1.10961 + 1.92189i 0.0536348 + 0.0928983i
\(429\) −3.34475 −0.161486
\(430\) −19.2388 −0.927775
\(431\) 7.06444 + 12.2360i 0.340282 + 0.589386i 0.984485 0.175469i \(-0.0561441\pi\)
−0.644203 + 0.764855i \(0.722811\pi\)
\(432\) 5.36499 9.29244i 0.258123 0.447083i
\(433\) 9.44524 + 16.3596i 0.453909 + 0.786194i 0.998625 0.0524268i \(-0.0166956\pi\)
−0.544715 + 0.838621i \(0.683362\pi\)
\(434\) 22.3777 38.7592i 1.07416 1.86050i
\(435\) 19.2378 33.3209i 0.922384 1.59762i
\(436\) 5.89601 0.282368
\(437\) 3.61682 + 9.93732i 0.173016 + 0.475366i
\(438\) −30.5556 −1.46000
\(439\) −17.4223 + 30.1763i −0.831521 + 1.44024i 0.0653111 + 0.997865i \(0.479196\pi\)
−0.896832 + 0.442371i \(0.854137\pi\)
\(440\) −4.02290 + 6.96786i −0.191784 + 0.332180i
\(441\) −3.96040 6.85961i −0.188590 0.326648i
\(442\) −1.43463 + 2.48486i −0.0682385 + 0.118193i
\(443\) 2.21272 + 3.83255i 0.105130 + 0.182090i 0.913791 0.406184i \(-0.133141\pi\)
−0.808662 + 0.588274i \(0.799808\pi\)
\(444\) −9.47591 −0.449707
\(445\) −40.0035 −1.89635
\(446\) −10.5504 18.2739i −0.499577 0.865294i
\(447\) 5.12723 + 8.88063i 0.242510 + 0.420039i
\(448\) 33.3993 1.57797
\(449\) 27.5536 1.30033 0.650166 0.759792i \(-0.274699\pi\)
0.650166 + 0.759792i \(0.274699\pi\)
\(450\) −1.31583 2.27909i −0.0620289 0.107437i
\(451\) −6.11720 + 10.5953i −0.288048 + 0.498913i
\(452\) 0.183094 + 0.317128i 0.00861202 + 0.0149165i
\(453\) 8.98247 15.5581i 0.422033 0.730983i
\(454\) 13.7555 23.8252i 0.645576 1.11817i
\(455\) −16.3112 −0.764682
\(456\) −17.3741 + 20.7055i −0.813619 + 0.969622i
\(457\) 30.7875 1.44018 0.720089 0.693881i \(-0.244101\pi\)
0.720089 + 0.693881i \(0.244101\pi\)
\(458\) 9.23351 15.9929i 0.431454 0.747300i
\(459\) 2.70351 4.68262i 0.126189 0.218566i
\(460\) −1.53995 2.66727i −0.0718006 0.124362i
\(461\) 12.3511 21.3927i 0.575248 0.996358i −0.420767 0.907169i \(-0.638239\pi\)
0.996015 0.0891896i \(-0.0284277\pi\)
\(462\) −4.69400 8.13024i −0.218385 0.378253i
\(463\) 13.4674 0.625885 0.312942 0.949772i \(-0.398685\pi\)
0.312942 + 0.949772i \(0.398685\pi\)
\(464\) −20.2096 −0.938208
\(465\) −25.7846 44.6602i −1.19573 2.07107i
\(466\) −1.18501 2.05250i −0.0548945 0.0950801i
\(467\) 23.5735 1.09085 0.545425 0.838159i \(-0.316368\pi\)
0.545425 + 0.838159i \(0.316368\pi\)
\(468\) 0.884712 0.0408958
\(469\) −7.80943 13.5263i −0.360606 0.624588i
\(470\) −0.140437 + 0.243244i −0.00647787 + 0.0112200i
\(471\) −16.4484 28.4895i −0.757902 1.31273i
\(472\) −4.16331 + 7.21107i −0.191632 + 0.331916i
\(473\) −2.96805 + 5.14081i −0.136471 + 0.236375i
\(474\) −7.93649 −0.364535
\(475\) −2.86528 7.87244i −0.131468 0.361212i
\(476\) 2.56079 0.117373
\(477\) 0.666248 1.15398i 0.0305054 0.0528369i
\(478\) −2.03275 + 3.52082i −0.0929757 + 0.161039i
\(479\) −9.28264 16.0780i −0.424135 0.734623i 0.572204 0.820111i \(-0.306088\pi\)
−0.996339 + 0.0854881i \(0.972755\pi\)
\(480\) 7.10701 12.3097i 0.324389 0.561859i
\(481\) −7.98793 13.8355i −0.364218 0.630845i
\(482\) −21.0826 −0.960288
\(483\) 18.4892 0.841286
\(484\) 0.241261 + 0.417876i 0.0109664 + 0.0189944i
\(485\) 4.36925 + 7.56777i 0.198398 + 0.343635i
\(486\) 13.5725 0.615660
\(487\) 1.97914 0.0896835 0.0448417 0.998994i \(-0.485722\pi\)
0.0448417 + 0.998994i \(0.485722\pi\)
\(488\) 17.9794 + 31.1413i 0.813890 + 1.40970i
\(489\) −22.2336 + 38.5097i −1.00544 + 1.74147i
\(490\) −11.5476 20.0010i −0.521667 0.903554i
\(491\) −10.6076 + 18.3729i −0.478715 + 0.829159i −0.999702 0.0244054i \(-0.992231\pi\)
0.520987 + 0.853565i \(0.325564\pi\)
\(492\) 5.98510 10.3665i 0.269829 0.467358i
\(493\) −10.1840 −0.458663
\(494\) −8.72271 1.53810i −0.392453 0.0692024i
\(495\) −2.92441 −0.131442
\(496\) −13.5435 + 23.4581i −0.608123 + 1.05330i
\(497\) −4.95869 + 8.58869i −0.222427 + 0.385256i
\(498\) −1.53690 2.66199i −0.0688702 0.119287i
\(499\) −12.5623 + 21.7586i −0.562368 + 0.974049i 0.434921 + 0.900468i \(0.356776\pi\)
−0.997289 + 0.0735811i \(0.976557\pi\)
\(500\) −1.95378 3.38404i −0.0873755 0.151339i
\(501\) 42.0128 1.87699
\(502\) 15.7927 0.704862
\(503\) 3.64230 + 6.30865i 0.162402 + 0.281289i 0.935730 0.352718i \(-0.114743\pi\)
−0.773328 + 0.634007i \(0.781409\pi\)
\(504\) 6.38789 + 11.0641i 0.284539 + 0.492836i
\(505\) −8.60561 −0.382945
\(506\) 2.98859 0.132859
\(507\) −10.4214 18.0503i −0.462828 0.801642i
\(508\) −0.272468 + 0.471929i −0.0120888 + 0.0209384i
\(509\) −15.1923 26.3138i −0.673385 1.16634i −0.976938 0.213523i \(-0.931506\pi\)
0.303553 0.952815i \(-0.401827\pi\)
\(510\) −4.63976 + 8.03629i −0.205452 + 0.355853i
\(511\) −22.9883 + 39.8169i −1.01694 + 1.76140i
\(512\) −24.6045 −1.08738
\(513\) 16.4376 + 2.89849i 0.725738 + 0.127971i
\(514\) 37.7069 1.66318
\(515\) 5.96614 10.3337i 0.262899 0.455355i
\(516\) 2.90395 5.02979i 0.127839 0.221424i
\(517\) 0.0433317 + 0.0750526i 0.00190572 + 0.00330081i
\(518\) 22.4204 38.8332i 0.985095 1.70623i
\(519\) 13.0195 + 22.5505i 0.571494 + 0.989857i
\(520\) 13.2718 0.582009
\(521\) −8.26667 −0.362169 −0.181085 0.983468i \(-0.557961\pi\)
−0.181085 + 0.983468i \(0.557961\pi\)
\(522\) −4.93770 8.55234i −0.216117 0.374326i
\(523\) 7.73795 + 13.4025i 0.338357 + 0.586052i 0.984124 0.177483i \(-0.0567955\pi\)
−0.645767 + 0.763535i \(0.723462\pi\)
\(524\) −1.39069 −0.0607526
\(525\) −14.6473 −0.639260
\(526\) 17.1706 + 29.7403i 0.748672 + 1.29674i
\(527\) −6.82481 + 11.8209i −0.297294 + 0.514927i
\(528\) 2.84093 + 4.92063i 0.123636 + 0.214143i
\(529\) 8.55706 14.8213i 0.372046 0.644403i
\(530\) 1.94262 3.36472i 0.0843822 0.146154i
\(531\) −3.02648 −0.131338
\(532\) 2.70363 + 7.42830i 0.117217 + 0.322058i
\(533\) 20.1811 0.874140
\(534\) −18.9896 + 32.8910i −0.821762 + 1.42333i
\(535\) −6.05016 + 10.4792i −0.261571 + 0.453055i
\(536\) 6.35425 + 11.0059i 0.274462 + 0.475382i
\(537\) 0.812894 1.40797i 0.0350790 0.0607586i
\(538\) 0.959454 + 1.66182i 0.0413650 + 0.0716463i
\(539\) −7.12599 −0.306938
\(540\) −4.86119 −0.209192
\(541\) −6.68307 11.5754i −0.287328 0.497666i 0.685843 0.727749i \(-0.259434\pi\)
−0.973171 + 0.230083i \(0.926100\pi\)
\(542\) 3.70454 + 6.41646i 0.159124 + 0.275610i
\(543\) 22.8848 0.982082
\(544\) −3.76225 −0.161305
\(545\) 16.0741 + 27.8411i 0.688539 + 1.19258i
\(546\) −7.74292 + 13.4111i −0.331367 + 0.573944i
\(547\) −1.47815 2.56024i −0.0632013 0.109468i 0.832693 0.553734i \(-0.186798\pi\)
−0.895895 + 0.444266i \(0.853464\pi\)
\(548\) −5.48214 + 9.49535i −0.234186 + 0.405621i
\(549\) −6.53499 + 11.3189i −0.278907 + 0.483080i
\(550\) −2.36759 −0.100955
\(551\) −10.7521 29.5415i −0.458053 1.25851i
\(552\) −15.0440 −0.640313
\(553\) −5.97097 + 10.3420i −0.253911 + 0.439787i
\(554\) 9.92025 17.1824i 0.421471 0.730009i
\(555\) −25.8338 44.7455i −1.09659 1.89934i
\(556\) 0.315396 0.546281i 0.0133758 0.0231675i
\(557\) −5.91940 10.2527i −0.250813 0.434421i 0.712937 0.701228i \(-0.247365\pi\)
−0.963750 + 0.266807i \(0.914031\pi\)
\(558\) −13.2360 −0.560327
\(559\) 9.79181 0.414150
\(560\) 13.8542 + 23.9962i 0.585448 + 1.01403i
\(561\) 1.43159 + 2.47959i 0.0604418 + 0.104688i
\(562\) 25.0368 1.05611
\(563\) 1.82512 0.0769194 0.0384597 0.999260i \(-0.487755\pi\)
0.0384597 + 0.999260i \(0.487755\pi\)
\(564\) −0.0423959 0.0734319i −0.00178519 0.00309204i
\(565\) −0.998326 + 1.72915i −0.0419999 + 0.0727460i
\(566\) −13.4222 23.2479i −0.564176 0.977182i
\(567\) 20.8577 36.1267i 0.875942 1.51718i
\(568\) 4.03470 6.98831i 0.169292 0.293223i
\(569\) −16.0290 −0.671971 −0.335986 0.941867i \(-0.609069\pi\)
−0.335986 + 0.941867i \(0.609069\pi\)
\(570\) −28.2102 4.97438i −1.18159 0.208354i
\(571\) 27.4663 1.14943 0.574714 0.818355i \(-0.305113\pi\)
0.574714 + 0.818355i \(0.305113\pi\)
\(572\) 0.397969 0.689302i 0.0166399 0.0288212i
\(573\) 7.75595 13.4337i 0.324009 0.561201i
\(574\) 28.3220 + 49.0551i 1.18214 + 2.04752i
\(575\) 2.33143 4.03815i 0.0972272 0.168402i
\(576\) −4.93879 8.55424i −0.205783 0.356427i
\(577\) 19.2841 0.802809 0.401405 0.915901i \(-0.368522\pi\)
0.401405 + 0.915901i \(0.368522\pi\)
\(578\) −18.4855 −0.768894
\(579\) 9.03711 + 15.6527i 0.375569 + 0.650505i
\(580\) 4.57795 + 7.92924i 0.190089 + 0.329244i
\(581\) −4.62511 −0.191882
\(582\) 8.29633 0.343894
\(583\) −0.599395 1.03818i −0.0248244 0.0429971i
\(584\) 18.7047 32.3975i 0.774007 1.34062i
\(585\) 2.41196 + 4.17764i 0.0997223 + 0.172724i
\(586\) 0.869877 1.50667i 0.0359343 0.0622400i
\(587\) 12.2148 21.1567i 0.504160 0.873231i −0.495828 0.868421i \(-0.665135\pi\)
0.999988 0.00481069i \(-0.00153130\pi\)
\(588\) 6.97211 0.287525
\(589\) −41.4955 7.31703i −1.70979 0.301493i
\(590\) −8.82451 −0.363299
\(591\) 2.13871 3.70436i 0.0879749 0.152377i
\(592\) −13.5694 + 23.5029i −0.557699 + 0.965963i
\(593\) −0.720344 1.24767i −0.0295810 0.0512358i 0.850856 0.525399i \(-0.176084\pi\)
−0.880437 + 0.474163i \(0.842751\pi\)
\(594\) 2.35853 4.08510i 0.0967718 0.167614i
\(595\) 6.98138 + 12.0921i 0.286209 + 0.495728i
\(596\) −2.44021 −0.0999550
\(597\) −11.1745 −0.457340
\(598\) −2.46490 4.26933i −0.100797 0.174586i
\(599\) −14.7109 25.4800i −0.601072 1.04109i −0.992659 0.120946i \(-0.961407\pi\)
0.391588 0.920141i \(-0.371926\pi\)
\(600\) 11.9180 0.486549
\(601\) −32.4389 −1.32321 −0.661605 0.749853i \(-0.730124\pi\)
−0.661605 + 0.749853i \(0.730124\pi\)
\(602\) 13.7417 + 23.8014i 0.560072 + 0.970073i
\(603\) −2.30958 + 4.00031i −0.0940534 + 0.162905i
\(604\) 2.13752 + 3.70229i 0.0869745 + 0.150644i
\(605\) −1.31548 + 2.27848i −0.0534819 + 0.0926334i
\(606\) −4.08508 + 7.07556i −0.165945 + 0.287425i
\(607\) 29.3851 1.19270 0.596352 0.802723i \(-0.296616\pi\)
0.596352 + 0.802723i \(0.296616\pi\)
\(608\) −3.97212 10.9135i −0.161091 0.442601i
\(609\) −54.9644 −2.22727
\(610\) −19.0545 + 33.0034i −0.771494 + 1.33627i
\(611\) 0.0714772 0.123802i 0.00289166 0.00500850i
\(612\) −0.378667 0.655870i −0.0153067 0.0265120i
\(613\) 10.4192 18.0466i 0.420827 0.728894i −0.575193 0.818017i \(-0.695073\pi\)
0.996021 + 0.0891234i \(0.0284066\pi\)
\(614\) −17.7693 30.7773i −0.717109 1.24207i
\(615\) 65.2679 2.63185
\(616\) 11.4938 0.463099
\(617\) 16.1696 + 28.0066i 0.650963 + 1.12750i 0.982890 + 0.184196i \(0.0589681\pi\)
−0.331926 + 0.943305i \(0.607699\pi\)
\(618\) −5.66424 9.81076i −0.227849 0.394646i
\(619\) 32.8773 1.32145 0.660725 0.750628i \(-0.270249\pi\)
0.660725 + 0.750628i \(0.270249\pi\)
\(620\) 12.2717 0.492844
\(621\) 4.64501 + 8.04539i 0.186398 + 0.322850i
\(622\) 9.20009 15.9350i 0.368890 0.638936i
\(623\) 28.5735 + 49.4907i 1.14477 + 1.98280i
\(624\) 4.68622 8.11677i 0.187599 0.324931i
\(625\) 15.4579 26.7739i 0.618318 1.07096i
\(626\) 29.9626 1.19755
\(627\) −5.68132 + 6.77066i −0.226890 + 0.270394i
\(628\) 7.82831 0.312384
\(629\) −6.83785 + 11.8435i −0.272643 + 0.472231i
\(630\) −6.76985 + 11.7257i −0.269717 + 0.467164i
\(631\) 13.6757 + 23.6871i 0.544422 + 0.942967i 0.998643 + 0.0520781i \(0.0165845\pi\)
−0.454221 + 0.890889i \(0.650082\pi\)
\(632\) 4.85836 8.41492i 0.193255 0.334728i
\(633\) −16.1826 28.0291i −0.643201 1.11406i
\(634\) −21.9540 −0.871903
\(635\) −2.97128 −0.117912
\(636\) 0.586451 + 1.01576i 0.0232543 + 0.0402776i
\(637\) 5.87730 + 10.1798i 0.232867 + 0.403337i
\(638\) −8.88446 −0.351739
\(639\) 2.93299 0.116027
\(640\) −7.39042 12.8006i −0.292132 0.505987i
\(641\) −23.1503 + 40.0975i −0.914383 + 1.58376i −0.106581 + 0.994304i \(0.533990\pi\)
−0.807802 + 0.589454i \(0.799343\pi\)
\(642\) 5.74402 + 9.94893i 0.226698 + 0.392653i
\(643\) −10.3684 + 17.9586i −0.408890 + 0.708218i −0.994766 0.102183i \(-0.967417\pi\)
0.585876 + 0.810401i \(0.300751\pi\)
\(644\) −2.19989 + 3.81033i −0.0866880 + 0.150148i
\(645\) 31.6678 1.24692
\(646\) 2.59316 + 7.12479i 0.102027 + 0.280321i
\(647\) 48.7337 1.91592 0.957959 0.286904i \(-0.0926262\pi\)
0.957959 + 0.286904i \(0.0926262\pi\)
\(648\) −16.9712 + 29.3949i −0.666691 + 1.15474i
\(649\) −1.36140 + 2.35801i −0.0534395 + 0.0925599i
\(650\) 1.95272 + 3.38221i 0.0765919 + 0.132661i
\(651\) −36.8345 + 63.7993i −1.44366 + 2.50049i
\(652\) −5.29083 9.16399i −0.207205 0.358890i
\(653\) −33.5147 −1.31153 −0.655765 0.754965i \(-0.727654\pi\)
−0.655765 + 0.754965i \(0.727654\pi\)
\(654\) 30.5214 1.19348
\(655\) −3.79139 6.56689i −0.148142 0.256589i
\(656\) −17.1412 29.6894i −0.669251 1.15918i
\(657\) 13.5972 0.530479
\(658\) 0.401242 0.0156420
\(659\) −11.1783 19.3614i −0.435446 0.754215i 0.561886 0.827215i \(-0.310076\pi\)
−0.997332 + 0.0729999i \(0.976743\pi\)
\(660\) 1.28707 2.22928i 0.0500993 0.0867745i
\(661\) 8.55175 + 14.8121i 0.332625 + 0.576123i 0.983026 0.183468i \(-0.0587325\pi\)
−0.650401 + 0.759591i \(0.725399\pi\)
\(662\) −11.2174 + 19.4290i −0.435975 + 0.755131i
\(663\) 2.36146 4.09017i 0.0917116 0.158849i
\(664\) 3.76329 0.146044
\(665\) −27.7059 + 33.0182i −1.07439 + 1.28039i
\(666\) −13.2613 −0.513866
\(667\) 8.74874 15.1533i 0.338752 0.586737i
\(668\) −4.99880 + 8.65818i −0.193410 + 0.334995i
\(669\) 17.3664 + 30.0796i 0.671426 + 1.16294i
\(670\) −6.73420 + 11.6640i −0.260165 + 0.450619i
\(671\) 5.87924 + 10.1831i 0.226966 + 0.393116i
\(672\) −20.3054 −0.783298
\(673\) 14.4175 0.555752 0.277876 0.960617i \(-0.410370\pi\)
0.277876 + 0.960617i \(0.410370\pi\)
\(674\) 17.2578 + 29.8913i 0.664744 + 1.15137i
\(675\) −3.67982 6.37364i −0.141636 0.245321i
\(676\) 4.95985 0.190763
\(677\) 26.4020 1.01471 0.507355 0.861737i \(-0.330623\pi\)
0.507355 + 0.861737i \(0.330623\pi\)
\(678\) 0.947809 + 1.64165i 0.0364004 + 0.0630473i
\(679\) 6.24169 10.8109i 0.239534 0.414885i
\(680\) −5.68049 9.83890i −0.217837 0.377305i
\(681\) −22.6421 + 39.2172i −0.867646 + 1.50281i
\(682\) −5.95395 + 10.3125i −0.227988 + 0.394888i
\(683\) 7.65175 0.292786 0.146393 0.989226i \(-0.453234\pi\)
0.146393 + 0.989226i \(0.453234\pi\)
\(684\) 1.50275 1.79089i 0.0574591 0.0684763i
\(685\) −59.7831 −2.28420
\(686\) −0.291669 + 0.505185i −0.0111360 + 0.0192881i
\(687\) −15.1987 + 26.3250i −0.579868 + 1.00436i
\(688\) −8.31686 14.4052i −0.317077 0.549194i
\(689\) −0.988724 + 1.71252i −0.0376674 + 0.0652418i
\(690\) −7.97175 13.8075i −0.303479 0.525642i
\(691\) −4.11843 −0.156672 −0.0783362 0.996927i \(-0.524961\pi\)
−0.0783362 + 0.996927i \(0.524961\pi\)
\(692\) −6.19641 −0.235552
\(693\) 2.08883 + 3.61796i 0.0793480 + 0.137435i
\(694\) −17.4696 30.2583i −0.663138 1.14859i
\(695\) 3.43941 0.130464
\(696\) 44.7225 1.69520
\(697\) −8.63773 14.9610i −0.327177 0.566688i
\(698\) 2.93935 5.09110i 0.111256 0.192701i
\(699\) 1.95058 + 3.37850i 0.0737775 + 0.127786i
\(700\) 1.74278 3.01858i 0.0658708 0.114092i
\(701\) 1.74971 3.03060i 0.0660858 0.114464i −0.831089 0.556139i \(-0.812282\pi\)
0.897175 + 0.441675i \(0.145616\pi\)
\(702\) −7.78098 −0.293674
\(703\) −41.5748 7.33100i −1.56802 0.276494i
\(704\) −8.88643 −0.334920
\(705\) 0.231165 0.400390i 0.00870618 0.0150795i
\(706\) 7.80548 13.5195i 0.293763 0.508813i
\(707\) 6.14676 + 10.6465i 0.231173 + 0.400403i
\(708\) 1.33200 2.30709i 0.0500595 0.0867056i
\(709\) −9.66080 16.7330i −0.362819 0.628421i 0.625605 0.780140i \(-0.284852\pi\)
−0.988424 + 0.151719i \(0.951519\pi\)
\(710\) 8.55191 0.320947
\(711\) 3.53174 0.132451
\(712\) −23.2492 40.2688i −0.871300 1.50914i
\(713\) −11.7260 20.3100i −0.439142 0.760616i
\(714\) 13.2562 0.496102
\(715\) 4.33987 0.162302
\(716\) 0.193441 + 0.335050i 0.00722923 + 0.0125214i
\(717\) 3.34599 5.79542i 0.124958 0.216434i
\(718\) −0.768813 1.33162i −0.0286919 0.0496958i
\(719\) −3.81014 + 6.59935i −0.142094 + 0.246114i −0.928285 0.371869i \(-0.878717\pi\)
0.786191 + 0.617984i \(0.212050\pi\)
\(720\) 4.09729 7.09671i 0.152697 0.264479i
\(721\) −17.0458 −0.634820
\(722\) −17.9297 + 15.0445i −0.667274 + 0.559897i
\(723\) 34.7029 1.29061
\(724\) −2.72290 + 4.71621i −0.101196 + 0.175277i
\(725\) −6.93084 + 12.0046i −0.257405 + 0.445838i
\(726\) 1.24892 + 2.16319i 0.0463516 + 0.0802834i
\(727\) 3.72926 6.45928i 0.138311 0.239561i −0.788547 0.614975i \(-0.789166\pi\)
0.926857 + 0.375414i \(0.122499\pi\)
\(728\) −9.47973 16.4194i −0.351342 0.608542i
\(729\) 10.9564 0.405794
\(730\) 39.6464 1.46738
\(731\) −4.19100 7.25903i −0.155010 0.268485i
\(732\) −5.75228 9.96324i −0.212610 0.368252i
\(733\) 25.8079 0.953237 0.476618 0.879110i \(-0.341862\pi\)
0.476618 + 0.879110i \(0.341862\pi\)
\(734\) −41.7803 −1.54214
\(735\) 19.0078 + 32.9225i 0.701114 + 1.21436i
\(736\) 3.23203 5.59805i 0.119134 0.206347i
\(737\) 2.07783 + 3.59891i 0.0765378 + 0.132567i
\(738\) 8.37601 14.5077i 0.308325 0.534035i
\(739\) 9.10928 15.7777i 0.335090 0.580393i −0.648412 0.761290i \(-0.724567\pi\)
0.983502 + 0.180896i \(0.0578999\pi\)
\(740\) 12.2951 0.451978
\(741\) 14.3579 + 2.53178i 0.527452 + 0.0930071i
\(742\) −5.55026 −0.203757
\(743\) −13.6303 + 23.6083i −0.500047 + 0.866106i 0.499953 + 0.866052i \(0.333350\pi\)
−1.00000 5.38747e-5i \(0.999983\pi\)
\(744\) 29.9709 51.9111i 1.09879 1.90316i
\(745\) −6.65267 11.5228i −0.243735 0.422161i
\(746\) 6.40181 11.0883i 0.234387 0.405970i
\(747\) 0.683921 + 1.18459i 0.0250234 + 0.0433418i
\(748\) −0.681340 −0.0249122
\(749\) 17.2859 0.631613
\(750\) −10.1140 17.5179i −0.369310 0.639663i
\(751\) −5.93882 10.2863i −0.216711 0.375354i 0.737090 0.675795i \(-0.236200\pi\)
−0.953800 + 0.300441i \(0.902866\pi\)
\(752\) −0.242842 −0.00885553
\(753\) −25.9954 −0.947326
\(754\) 7.32762 + 12.6918i 0.266856 + 0.462209i
\(755\) −11.6549 + 20.1869i −0.424165 + 0.734676i
\(756\) 3.47222 + 6.01406i 0.126283 + 0.218729i
\(757\) 11.7417 20.3371i 0.426758 0.739166i −0.569825 0.821766i \(-0.692989\pi\)
0.996583 + 0.0825999i \(0.0263223\pi\)
\(758\) 0.281314 0.487250i 0.0102178 0.0176977i
\(759\) −4.91935 −0.178561
\(760\) 22.5432 26.8657i 0.817729 0.974520i
\(761\) −13.7958 −0.500097 −0.250049 0.968233i \(-0.580447\pi\)
−0.250049 + 0.968233i \(0.580447\pi\)
\(762\) −1.41047 + 2.44300i −0.0510958 + 0.0885005i
\(763\) 22.9626 39.7724i 0.831302 1.43986i
\(764\) 1.84565 + 3.19676i 0.0667733 + 0.115655i
\(765\) 2.06469 3.57615i 0.0746491 0.129296i
\(766\) −12.9645 22.4552i −0.468426 0.811338i
\(767\) 4.49135 0.162173
\(768\) 22.0050 0.794037
\(769\) −17.9720 31.1284i −0.648087 1.12252i −0.983579 0.180477i \(-0.942236\pi\)
0.335492 0.942043i \(-0.391097\pi\)
\(770\) 6.09054 + 10.5491i 0.219488 + 0.380164i
\(771\)