Properties

Label 209.2.e.b.144.2
Level $209$
Weight $2$
Character 209.144
Analytic conductor $1.669$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(45,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 14 x^{16} - 11 x^{15} + 130 x^{14} - 92 x^{13} + 629 x^{12} - 276 x^{11} + 2060 x^{10} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 144.2
Root \(-0.918695 + 1.59123i\) of defining polynomial
Character \(\chi\) \(=\) 209.144
Dual form 209.2.e.b.45.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.918695 + 1.59123i) q^{2} +(-1.56355 + 2.70815i) q^{3} +(-0.688002 - 1.19165i) q^{4} +(1.63491 - 2.83176i) q^{5} +(-2.87286 - 4.97594i) q^{6} -3.63195 q^{7} -1.14653 q^{8} +(-3.38940 - 5.87061i) q^{9} +O(q^{10})\) \(q+(-0.918695 + 1.59123i) q^{2} +(-1.56355 + 2.70815i) q^{3} +(-0.688002 - 1.19165i) q^{4} +(1.63491 - 2.83176i) q^{5} +(-2.87286 - 4.97594i) q^{6} -3.63195 q^{7} -1.14653 q^{8} +(-3.38940 - 5.87061i) q^{9} +(3.00398 + 5.20304i) q^{10} -1.00000 q^{11} +4.30291 q^{12} +(0.224204 + 0.388333i) q^{13} +(3.33666 - 5.77926i) q^{14} +(5.11255 + 8.85520i) q^{15} +(2.42931 - 4.20769i) q^{16} +(-2.11349 + 3.66068i) q^{17} +12.4553 q^{18} +(-3.96002 + 1.82160i) q^{19} -4.49930 q^{20} +(5.67875 - 9.83588i) q^{21} +(0.918695 - 1.59123i) q^{22} +(0.506437 + 0.877175i) q^{23} +(1.79265 - 3.10497i) q^{24} +(-2.84589 - 4.92923i) q^{25} -0.823900 q^{26} +11.8167 q^{27} +(2.49879 + 4.32803i) q^{28} +(3.37309 + 5.84237i) q^{29} -18.7875 q^{30} -7.00544 q^{31} +(3.31707 + 5.74533i) q^{32} +(1.56355 - 2.70815i) q^{33} +(-3.88331 - 6.72610i) q^{34} +(-5.93793 + 10.2848i) q^{35} +(-4.66382 + 8.07798i) q^{36} -10.8857 q^{37} +(0.739482 - 7.97479i) q^{38} -1.40222 q^{39} +(-1.87447 + 3.24668i) q^{40} +(0.641035 - 1.11031i) q^{41} +(10.4341 + 18.0723i) q^{42} +(2.08321 - 3.60823i) q^{43} +(0.688002 + 1.19165i) q^{44} -22.1655 q^{45} -1.86105 q^{46} +(3.38128 + 5.85655i) q^{47} +(7.59671 + 13.1579i) q^{48} +6.19106 q^{49} +10.4580 q^{50} +(-6.60912 - 11.4473i) q^{51} +(0.308505 - 0.534347i) q^{52} +(-1.19500 - 2.06979i) q^{53} +(-10.8559 + 18.8030i) q^{54} +(-1.63491 + 2.83176i) q^{55} +4.16412 q^{56} +(1.25855 - 13.5725i) q^{57} -12.3954 q^{58} +(4.75456 - 8.23514i) q^{59} +(7.03489 - 12.1848i) q^{60} +(-2.33126 - 4.03785i) q^{61} +(6.43586 - 11.1472i) q^{62} +(12.3101 + 21.3218i) q^{63} -2.47225 q^{64} +1.46622 q^{65} +(2.87286 + 4.97594i) q^{66} +(0.718518 + 1.24451i) q^{67} +5.81635 q^{68} -3.16737 q^{69} +(-10.9103 - 18.8972i) q^{70} +(-5.28163 + 9.14804i) q^{71} +(3.88603 + 6.73080i) q^{72} +(-1.32658 + 2.29770i) q^{73} +(10.0006 - 17.3216i) q^{74} +17.7988 q^{75} +(4.89521 + 3.46572i) q^{76} +3.63195 q^{77} +(1.28821 - 2.23125i) q^{78} +(0.230487 - 0.399216i) q^{79} +(-7.94343 - 13.7584i) q^{80} +(-8.30783 + 14.3896i) q^{81} +(1.17783 + 2.04006i) q^{82} -3.09057 q^{83} -15.6280 q^{84} +(6.91077 + 11.9698i) q^{85} +(3.82767 + 6.62972i) q^{86} -21.0960 q^{87} +1.14653 q^{88} +(2.31283 + 4.00593i) q^{89} +(20.3633 - 35.2703i) q^{90} +(-0.814298 - 1.41040i) q^{91} +(0.696859 - 1.20700i) q^{92} +(10.9534 - 18.9718i) q^{93} -12.4255 q^{94} +(-1.31599 + 14.1920i) q^{95} -20.7456 q^{96} +(-4.62983 + 8.01910i) q^{97} +(-5.68770 + 9.85139i) q^{98} +(3.38940 + 5.87061i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9} + 21 q^{10} - 18 q^{11} + 16 q^{12} + 11 q^{13} + q^{14} + 7 q^{15} - 13 q^{16} + 6 q^{17} - 8 q^{18} + 4 q^{19} + 4 q^{20} + 24 q^{21} - q^{22} - q^{23} - 3 q^{24} - 7 q^{25} - 4 q^{26} + 6 q^{27} - 2 q^{28} + 13 q^{29} - 64 q^{30} - 32 q^{31} - 14 q^{32} + 8 q^{34} - 12 q^{35} + 10 q^{36} - 36 q^{37} - 20 q^{38} + 20 q^{39} + 32 q^{40} + 4 q^{41} + 11 q^{42} + q^{43} + 9 q^{44} + 22 q^{45} - 14 q^{46} - 14 q^{47} + 37 q^{48} - 12 q^{49} + 30 q^{50} - 16 q^{51} + 57 q^{52} - 4 q^{53} - 33 q^{54} - 34 q^{56} - 7 q^{57} + 8 q^{58} + 31 q^{59} + 9 q^{60} + 3 q^{61} + 5 q^{62} + 50 q^{63} + 64 q^{64} - 56 q^{65} + 3 q^{66} - 2 q^{67} - 96 q^{68} - 58 q^{70} - 12 q^{71} + 5 q^{72} - 26 q^{73} + 35 q^{74} + 50 q^{75} - 36 q^{76} + 6 q^{77} + 3 q^{78} + 31 q^{79} + 31 q^{80} - 21 q^{81} + 25 q^{82} + 36 q^{83} - 102 q^{84} - 11 q^{85} + 41 q^{86} - 124 q^{87} - 11 q^{89} + 51 q^{90} - 20 q^{91} - 33 q^{92} + 20 q^{93} - 86 q^{94} + 17 q^{95} + 60 q^{96} + 16 q^{97} + 4 q^{98} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.918695 + 1.59123i −0.649616 + 1.12517i 0.333599 + 0.942715i \(0.391737\pi\)
−0.983215 + 0.182452i \(0.941597\pi\)
\(3\) −1.56355 + 2.70815i −0.902718 + 1.56355i −0.0787662 + 0.996893i \(0.525098\pi\)
−0.823952 + 0.566660i \(0.808235\pi\)
\(4\) −0.688002 1.19165i −0.344001 0.595827i
\(5\) 1.63491 2.83176i 0.731156 1.26640i −0.225233 0.974305i \(-0.572314\pi\)
0.956389 0.292095i \(-0.0943523\pi\)
\(6\) −2.87286 4.97594i −1.17284 2.03142i
\(7\) −3.63195 −1.37275 −0.686374 0.727249i \(-0.740799\pi\)
−0.686374 + 0.727249i \(0.740799\pi\)
\(8\) −1.14653 −0.405358
\(9\) −3.38940 5.87061i −1.12980 1.95687i
\(10\) 3.00398 + 5.20304i 0.949941 + 1.64535i
\(11\) −1.00000 −0.301511
\(12\) 4.30291 1.24214
\(13\) 0.224204 + 0.388333i 0.0621830 + 0.107704i 0.895441 0.445180i \(-0.146860\pi\)
−0.833258 + 0.552884i \(0.813527\pi\)
\(14\) 3.33666 5.77926i 0.891759 1.54457i
\(15\) 5.11255 + 8.85520i 1.32006 + 2.28640i
\(16\) 2.42931 4.20769i 0.607328 1.05192i
\(17\) −2.11349 + 3.66068i −0.512598 + 0.887845i 0.487296 + 0.873237i \(0.337983\pi\)
−0.999893 + 0.0146081i \(0.995350\pi\)
\(18\) 12.4553 2.93574
\(19\) −3.96002 + 1.82160i −0.908492 + 0.417903i
\(20\) −4.49930 −1.00607
\(21\) 5.67875 9.83588i 1.23920 2.14636i
\(22\) 0.918695 1.59123i 0.195866 0.339251i
\(23\) 0.506437 + 0.877175i 0.105599 + 0.182904i 0.913983 0.405753i \(-0.132991\pi\)
−0.808384 + 0.588656i \(0.799657\pi\)
\(24\) 1.79265 3.10497i 0.365924 0.633799i
\(25\) −2.84589 4.92923i −0.569179 0.985846i
\(26\) −0.823900 −0.161580
\(27\) 11.8167 2.27412
\(28\) 2.49879 + 4.32803i 0.472227 + 0.817920i
\(29\) 3.37309 + 5.84237i 0.626367 + 1.08490i 0.988275 + 0.152686i \(0.0487923\pi\)
−0.361907 + 0.932214i \(0.617874\pi\)
\(30\) −18.7875 −3.43011
\(31\) −7.00544 −1.25821 −0.629107 0.777319i \(-0.716579\pi\)
−0.629107 + 0.777319i \(0.716579\pi\)
\(32\) 3.31707 + 5.74533i 0.586380 + 1.01564i
\(33\) 1.56355 2.70815i 0.272180 0.471429i
\(34\) −3.88331 6.72610i −0.665983 1.15352i
\(35\) −5.93793 + 10.2848i −1.00369 + 1.73845i
\(36\) −4.66382 + 8.07798i −0.777304 + 1.34633i
\(37\) −10.8857 −1.78960 −0.894799 0.446470i \(-0.852681\pi\)
−0.894799 + 0.446470i \(0.852681\pi\)
\(38\) 0.739482 7.97479i 0.119960 1.29368i
\(39\) −1.40222 −0.224535
\(40\) −1.87447 + 3.24668i −0.296380 + 0.513345i
\(41\) 0.641035 1.11031i 0.100113 0.173401i −0.811618 0.584188i \(-0.801413\pi\)
0.911731 + 0.410788i \(0.134746\pi\)
\(42\) 10.4341 + 18.0723i 1.61001 + 2.78862i
\(43\) 2.08321 3.60823i 0.317687 0.550249i −0.662318 0.749223i \(-0.730427\pi\)
0.980005 + 0.198973i \(0.0637607\pi\)
\(44\) 0.688002 + 1.19165i 0.103720 + 0.179649i
\(45\) −22.1655 −3.30424
\(46\) −1.86105 −0.274396
\(47\) 3.38128 + 5.85655i 0.493210 + 0.854266i 0.999969 0.00782218i \(-0.00248990\pi\)
−0.506759 + 0.862088i \(0.669157\pi\)
\(48\) 7.59671 + 13.1579i 1.09649 + 1.89918i
\(49\) 6.19106 0.884438
\(50\) 10.4580 1.47899
\(51\) −6.60912 11.4473i −0.925462 1.60295i
\(52\) 0.308505 0.534347i 0.0427820 0.0741006i
\(53\) −1.19500 2.06979i −0.164145 0.284308i 0.772206 0.635372i \(-0.219153\pi\)
−0.936351 + 0.351064i \(0.885820\pi\)
\(54\) −10.8559 + 18.8030i −1.47731 + 2.55877i
\(55\) −1.63491 + 2.83176i −0.220452 + 0.381834i
\(56\) 4.16412 0.556454
\(57\) 1.25855 13.5725i 0.166698 1.79772i
\(58\) −12.3954 −1.62759
\(59\) 4.75456 8.23514i 0.618991 1.07212i −0.370679 0.928761i \(-0.620875\pi\)
0.989670 0.143363i \(-0.0457917\pi\)
\(60\) 7.03489 12.1848i 0.908200 1.57305i
\(61\) −2.33126 4.03785i −0.298487 0.516994i 0.677303 0.735704i \(-0.263149\pi\)
−0.975790 + 0.218710i \(0.929815\pi\)
\(62\) 6.43586 11.1472i 0.817355 1.41570i
\(63\) 12.3101 + 21.3218i 1.55093 + 2.68629i
\(64\) −2.47225 −0.309031
\(65\) 1.46622 0.181862
\(66\) 2.87286 + 4.97594i 0.353624 + 0.612495i
\(67\) 0.718518 + 1.24451i 0.0877809 + 0.152041i 0.906573 0.422049i \(-0.138689\pi\)
−0.818792 + 0.574090i \(0.805356\pi\)
\(68\) 5.81635 0.705336
\(69\) −3.16737 −0.381306
\(70\) −10.9103 18.8972i −1.30403 2.25865i
\(71\) −5.28163 + 9.14804i −0.626814 + 1.08567i 0.361373 + 0.932421i \(0.382308\pi\)
−0.988187 + 0.153252i \(0.951025\pi\)
\(72\) 3.88603 + 6.73080i 0.457973 + 0.793233i
\(73\) −1.32658 + 2.29770i −0.155264 + 0.268926i −0.933155 0.359474i \(-0.882956\pi\)
0.777891 + 0.628399i \(0.216290\pi\)
\(74\) 10.0006 17.3216i 1.16255 2.01360i
\(75\) 17.7988 2.05523
\(76\) 4.89521 + 3.46572i 0.561520 + 0.397545i
\(77\) 3.63195 0.413899
\(78\) 1.28821 2.23125i 0.145861 0.252639i
\(79\) 0.230487 0.399216i 0.0259319 0.0449153i −0.852768 0.522290i \(-0.825078\pi\)
0.878700 + 0.477374i \(0.158411\pi\)
\(80\) −7.94343 13.7584i −0.888103 1.53824i
\(81\) −8.30783 + 14.3896i −0.923093 + 1.59884i
\(82\) 1.17783 + 2.04006i 0.130070 + 0.225287i
\(83\) −3.09057 −0.339234 −0.169617 0.985510i \(-0.554253\pi\)
−0.169617 + 0.985510i \(0.554253\pi\)
\(84\) −15.6280 −1.70515
\(85\) 6.91077 + 11.9698i 0.749578 + 1.29831i
\(86\) 3.82767 + 6.62972i 0.412748 + 0.714901i
\(87\) −21.0960 −2.26173
\(88\) 1.14653 0.122220
\(89\) 2.31283 + 4.00593i 0.245159 + 0.424628i 0.962176 0.272427i \(-0.0878265\pi\)
−0.717017 + 0.697055i \(0.754493\pi\)
\(90\) 20.3633 35.2703i 2.14648 3.71782i
\(91\) −0.814298 1.41040i −0.0853616 0.147851i
\(92\) 0.696859 1.20700i 0.0726526 0.125838i
\(93\) 10.9534 18.9718i 1.13581 1.96728i
\(94\) −12.4255 −1.28159
\(95\) −1.31599 + 14.1920i −0.135017 + 1.45607i
\(96\) −20.7456 −2.11734
\(97\) −4.62983 + 8.01910i −0.470088 + 0.814216i −0.999415 0.0342017i \(-0.989111\pi\)
0.529327 + 0.848418i \(0.322444\pi\)
\(98\) −5.68770 + 9.85139i −0.574544 + 0.995140i
\(99\) 3.38940 + 5.87061i 0.340647 + 0.590018i
\(100\) −3.91596 + 6.78264i −0.391596 + 0.678264i
\(101\) 4.25105 + 7.36304i 0.422995 + 0.732649i 0.996231 0.0867412i \(-0.0276453\pi\)
−0.573236 + 0.819391i \(0.694312\pi\)
\(102\) 24.2871 2.40478
\(103\) 5.53668 0.545545 0.272772 0.962079i \(-0.412059\pi\)
0.272772 + 0.962079i \(0.412059\pi\)
\(104\) −0.257056 0.445233i −0.0252064 0.0436587i
\(105\) −18.5685 32.1617i −1.81210 3.13866i
\(106\) 4.39135 0.426525
\(107\) −2.28330 −0.220735 −0.110368 0.993891i \(-0.535203\pi\)
−0.110368 + 0.993891i \(0.535203\pi\)
\(108\) −8.12990 14.0814i −0.782300 1.35498i
\(109\) −5.28080 + 9.14661i −0.505809 + 0.876087i 0.494168 + 0.869366i \(0.335473\pi\)
−0.999977 + 0.00672062i \(0.997861\pi\)
\(110\) −3.00398 5.20304i −0.286418 0.496090i
\(111\) 17.0204 29.4801i 1.61550 2.79813i
\(112\) −8.82314 + 15.2821i −0.833708 + 1.44402i
\(113\) 11.5083 1.08261 0.541304 0.840827i \(-0.317931\pi\)
0.541304 + 0.840827i \(0.317931\pi\)
\(114\) 20.4407 + 14.4716i 1.91445 + 1.35539i
\(115\) 3.31193 0.308839
\(116\) 4.64138 8.03911i 0.430942 0.746413i
\(117\) 1.51983 2.63243i 0.140509 0.243368i
\(118\) 8.73598 + 15.1312i 0.804213 + 1.39294i
\(119\) 7.67611 13.2954i 0.703667 1.21879i
\(120\) −5.86167 10.1527i −0.535095 0.926812i
\(121\) 1.00000 0.0909091
\(122\) 8.56685 0.775606
\(123\) 2.00458 + 3.47204i 0.180747 + 0.313063i
\(124\) 4.81975 + 8.34805i 0.432826 + 0.749677i
\(125\) −2.26202 −0.202322
\(126\) −45.2370 −4.03003
\(127\) −6.68896 11.5856i −0.593549 1.02806i −0.993750 0.111630i \(-0.964393\pi\)
0.400201 0.916428i \(-0.368940\pi\)
\(128\) −4.36289 + 7.55675i −0.385629 + 0.667928i
\(129\) 6.51442 + 11.2833i 0.573563 + 0.993440i
\(130\) −1.34701 + 2.33308i −0.118140 + 0.204625i
\(131\) −2.00208 + 3.46770i −0.174922 + 0.302974i −0.940134 0.340804i \(-0.889301\pi\)
0.765212 + 0.643778i \(0.222634\pi\)
\(132\) −4.30291 −0.374520
\(133\) 14.3826 6.61595i 1.24713 0.573675i
\(134\) −2.64040 −0.228095
\(135\) 19.3193 33.4620i 1.66274 2.87995i
\(136\) 2.42317 4.19706i 0.207786 0.359895i
\(137\) −2.71647 4.70506i −0.232084 0.401980i 0.726338 0.687338i \(-0.241221\pi\)
−0.958421 + 0.285358i \(0.907888\pi\)
\(138\) 2.90984 5.04000i 0.247702 0.429033i
\(139\) −2.97766 5.15747i −0.252562 0.437451i 0.711668 0.702516i \(-0.247940\pi\)
−0.964231 + 0.265065i \(0.914607\pi\)
\(140\) 16.3412 1.38109
\(141\) −21.1472 −1.78092
\(142\) −9.70441 16.8085i −0.814376 1.41054i
\(143\) −0.224204 0.388333i −0.0187489 0.0324740i
\(144\) −32.9356 −2.74463
\(145\) 22.0589 1.83189
\(146\) −2.43744 4.22178i −0.201724 0.349397i
\(147\) −9.68006 + 16.7663i −0.798398 + 1.38287i
\(148\) 7.48938 + 12.9720i 0.615623 + 1.06629i
\(149\) −7.87700 + 13.6434i −0.645309 + 1.11771i 0.338921 + 0.940815i \(0.389938\pi\)
−0.984230 + 0.176893i \(0.943395\pi\)
\(150\) −16.3517 + 28.3220i −1.33511 + 2.31248i
\(151\) −6.79678 −0.553114 −0.276557 0.960997i \(-0.589193\pi\)
−0.276557 + 0.960997i \(0.589193\pi\)
\(152\) 4.54027 2.08851i 0.368264 0.169400i
\(153\) 28.6539 2.31653
\(154\) −3.33666 + 5.77926i −0.268875 + 0.465706i
\(155\) −11.4533 + 19.8377i −0.919950 + 1.59340i
\(156\) 0.964729 + 1.67096i 0.0772402 + 0.133784i
\(157\) −9.51624 + 16.4826i −0.759479 + 1.31546i 0.183638 + 0.982994i \(0.441213\pi\)
−0.943117 + 0.332462i \(0.892121\pi\)
\(158\) 0.423495 + 0.733515i 0.0336915 + 0.0583554i
\(159\) 7.47376 0.592707
\(160\) 21.6925 1.71494
\(161\) −1.83935 3.18586i −0.144961 0.251081i
\(162\) −15.2647 26.4393i −1.19931 2.07727i
\(163\) 5.43398 0.425622 0.212811 0.977093i \(-0.431738\pi\)
0.212811 + 0.977093i \(0.431738\pi\)
\(164\) −1.76413 −0.137756
\(165\) −5.11255 8.85520i −0.398012 0.689376i
\(166\) 2.83929 4.91779i 0.220371 0.381695i
\(167\) −0.239099 0.414132i −0.0185020 0.0320465i 0.856626 0.515938i \(-0.172556\pi\)
−0.875128 + 0.483891i \(0.839223\pi\)
\(168\) −6.51083 + 11.2771i −0.502321 + 0.870046i
\(169\) 6.39947 11.0842i 0.492267 0.852631i
\(170\) −25.3956 −1.94775
\(171\) 24.1160 + 17.0736i 1.84419 + 1.30565i
\(172\) −5.73301 −0.437138
\(173\) 6.94749 12.0334i 0.528208 0.914883i −0.471251 0.881999i \(-0.656198\pi\)
0.999459 0.0328837i \(-0.0104691\pi\)
\(174\) 19.3808 33.5686i 1.46926 2.54483i
\(175\) 10.3361 + 17.9027i 0.781339 + 1.35332i
\(176\) −2.42931 + 4.20769i −0.183116 + 0.317167i
\(177\) 14.8680 + 25.7522i 1.11755 + 1.93565i
\(178\) −8.49913 −0.637037
\(179\) 0.571498 0.0427158 0.0213579 0.999772i \(-0.493201\pi\)
0.0213579 + 0.999772i \(0.493201\pi\)
\(180\) 15.2499 + 26.4136i 1.13666 + 1.96875i
\(181\) 11.4762 + 19.8774i 0.853020 + 1.47747i 0.878469 + 0.477799i \(0.158565\pi\)
−0.0254489 + 0.999676i \(0.508102\pi\)
\(182\) 2.99237 0.221809
\(183\) 14.5802 1.07780
\(184\) −0.580643 1.00570i −0.0428056 0.0741414i
\(185\) −17.7972 + 30.8256i −1.30848 + 2.26635i
\(186\) 20.1256 + 34.8586i 1.47568 + 2.55596i
\(187\) 2.11349 3.66068i 0.154554 0.267695i
\(188\) 4.65265 8.05863i 0.339330 0.587736i
\(189\) −42.9176 −3.12180
\(190\) −21.3737 15.1321i −1.55061 1.09780i
\(191\) −0.326161 −0.0236002 −0.0118001 0.999930i \(-0.503756\pi\)
−0.0118001 + 0.999930i \(0.503756\pi\)
\(192\) 3.86549 6.69523i 0.278968 0.483187i
\(193\) 5.12184 8.87128i 0.368678 0.638569i −0.620681 0.784063i \(-0.713144\pi\)
0.989359 + 0.145494i \(0.0464773\pi\)
\(194\) −8.50680 14.7342i −0.610753 1.05786i
\(195\) −2.29251 + 3.97074i −0.164170 + 0.284351i
\(196\) −4.25946 7.37760i −0.304247 0.526972i
\(197\) −24.1974 −1.72399 −0.861996 0.506915i \(-0.830786\pi\)
−0.861996 + 0.506915i \(0.830786\pi\)
\(198\) −12.4553 −0.885159
\(199\) −11.2945 19.5627i −0.800646 1.38676i −0.919191 0.393811i \(-0.871156\pi\)
0.118545 0.992949i \(-0.462177\pi\)
\(200\) 3.26289 + 5.65149i 0.230721 + 0.399621i
\(201\) −4.49376 −0.316966
\(202\) −15.6217 −1.09914
\(203\) −12.2509 21.2192i −0.859845 1.48929i
\(204\) −9.09417 + 15.7516i −0.636719 + 1.10283i
\(205\) −2.09608 3.63051i −0.146396 0.253566i
\(206\) −5.08652 + 8.81011i −0.354394 + 0.613829i
\(207\) 3.43303 5.94619i 0.238612 0.413289i
\(208\) 2.17864 0.151062
\(209\) 3.96002 1.82160i 0.273921 0.126002i
\(210\) 68.2353 4.70868
\(211\) 1.67742 2.90538i 0.115479 0.200015i −0.802492 0.596662i \(-0.796493\pi\)
0.917971 + 0.396648i \(0.129827\pi\)
\(212\) −1.64432 + 2.84804i −0.112932 + 0.195604i
\(213\) −16.5162 28.6069i −1.13167 1.96011i
\(214\) 2.09766 3.63325i 0.143393 0.248364i
\(215\) −6.81174 11.7983i −0.464557 0.804636i
\(216\) −13.5481 −0.921834
\(217\) 25.4434 1.72721
\(218\) −9.70289 16.8059i −0.657163 1.13824i
\(219\) −4.14835 7.18516i −0.280320 0.485528i
\(220\) 4.49930 0.303343
\(221\) −1.89542 −0.127499
\(222\) 31.2731 + 54.1665i 2.09891 + 3.63542i
\(223\) −4.58218 + 7.93658i −0.306846 + 0.531472i −0.977671 0.210143i \(-0.932607\pi\)
0.670825 + 0.741616i \(0.265940\pi\)
\(224\) −12.0474 20.8667i −0.804952 1.39422i
\(225\) −19.2917 + 33.4142i −1.28612 + 2.22762i
\(226\) −10.5726 + 18.3123i −0.703280 + 1.21812i
\(227\) −4.60133 −0.305401 −0.152700 0.988273i \(-0.548797\pi\)
−0.152700 + 0.988273i \(0.548797\pi\)
\(228\) −17.0396 + 7.83816i −1.12848 + 0.519095i
\(229\) 0.909324 0.0600898 0.0300449 0.999549i \(-0.490435\pi\)
0.0300449 + 0.999549i \(0.490435\pi\)
\(230\) −3.04265 + 5.27003i −0.200626 + 0.347495i
\(231\) −5.67875 + 9.83588i −0.373634 + 0.647153i
\(232\) −3.86733 6.69842i −0.253903 0.439773i
\(233\) 14.0929 24.4096i 0.923256 1.59913i 0.128915 0.991656i \(-0.458851\pi\)
0.794342 0.607471i \(-0.207816\pi\)
\(234\) 2.79253 + 4.83680i 0.182553 + 0.316191i
\(235\) 22.1124 1.44246
\(236\) −13.0846 −0.851734
\(237\) 0.720759 + 1.24839i 0.0468183 + 0.0810917i
\(238\) 14.1040 + 24.4288i 0.914227 + 1.58349i
\(239\) 4.51955 0.292346 0.146173 0.989259i \(-0.453304\pi\)
0.146173 + 0.989259i \(0.453304\pi\)
\(240\) 49.6799 3.20682
\(241\) 13.9673 + 24.1921i 0.899714 + 1.55835i 0.827860 + 0.560935i \(0.189558\pi\)
0.0718544 + 0.997415i \(0.477108\pi\)
\(242\) −0.918695 + 1.59123i −0.0590560 + 0.102288i
\(243\) −8.25444 14.2971i −0.529523 0.917160i
\(244\) −3.20782 + 5.55610i −0.205359 + 0.355693i
\(245\) 10.1219 17.5316i 0.646662 1.12005i
\(246\) −7.36641 −0.469665
\(247\) −1.59524 1.12940i −0.101503 0.0718618i
\(248\) 8.03191 0.510027
\(249\) 4.83226 8.36973i 0.306232 0.530410i
\(250\) 2.07811 3.59939i 0.131431 0.227646i
\(251\) 10.3038 + 17.8467i 0.650370 + 1.12647i 0.983033 + 0.183429i \(0.0587196\pi\)
−0.332663 + 0.943046i \(0.607947\pi\)
\(252\) 16.9388 29.3388i 1.06704 1.84817i
\(253\) −0.506437 0.877175i −0.0318394 0.0551475i
\(254\) 24.5805 1.54232
\(255\) −43.2214 −2.70663
\(256\) −10.4886 18.1668i −0.655536 1.13542i
\(257\) −7.65242 13.2544i −0.477345 0.826786i 0.522318 0.852751i \(-0.325068\pi\)
−0.999663 + 0.0259649i \(0.991734\pi\)
\(258\) −23.9391 −1.49038
\(259\) 39.5363 2.45667
\(260\) −1.00876 1.74722i −0.0625607 0.108358i
\(261\) 22.8655 39.6042i 1.41534 2.45144i
\(262\) −3.67860 6.37152i −0.227264 0.393634i
\(263\) 8.46297 14.6583i 0.521849 0.903869i −0.477828 0.878454i \(-0.658576\pi\)
0.999677 0.0254157i \(-0.00809095\pi\)
\(264\) −1.79265 + 3.10497i −0.110330 + 0.191098i
\(265\) −7.81486 −0.480063
\(266\) −2.68576 + 28.9640i −0.164675 + 1.77590i
\(267\) −14.4649 −0.885238
\(268\) 0.988683 1.71245i 0.0603934 0.104605i
\(269\) −3.71528 + 6.43505i −0.226525 + 0.392352i −0.956776 0.290827i \(-0.906070\pi\)
0.730251 + 0.683179i \(0.239403\pi\)
\(270\) 35.4971 + 61.4827i 2.16028 + 3.74172i
\(271\) 3.32194 5.75376i 0.201793 0.349516i −0.747313 0.664472i \(-0.768656\pi\)
0.949106 + 0.314956i \(0.101990\pi\)
\(272\) 10.2687 + 17.7859i 0.622629 + 1.07843i
\(273\) 5.09279 0.308230
\(274\) 9.98242 0.603060
\(275\) 2.84589 + 4.92923i 0.171614 + 0.297244i
\(276\) 2.17915 + 3.77440i 0.131170 + 0.227192i
\(277\) −30.6874 −1.84383 −0.921913 0.387396i \(-0.873375\pi\)
−0.921913 + 0.387396i \(0.873375\pi\)
\(278\) 10.9423 0.656273
\(279\) 23.7442 + 41.1262i 1.42153 + 2.46216i
\(280\) 6.80799 11.7918i 0.406855 0.704694i
\(281\) −15.5452 26.9250i −0.927346 1.60621i −0.787744 0.616003i \(-0.788751\pi\)
−0.139602 0.990208i \(-0.544582\pi\)
\(282\) 19.4279 33.6501i 1.15691 2.00383i
\(283\) −6.14534 + 10.6440i −0.365303 + 0.632723i −0.988825 0.149083i \(-0.952368\pi\)
0.623522 + 0.781806i \(0.285701\pi\)
\(284\) 14.5351 0.862498
\(285\) −36.3764 25.7538i −2.15475 1.52552i
\(286\) 0.823900 0.0487183
\(287\) −2.32821 + 4.03257i −0.137430 + 0.238035i
\(288\) 22.4857 38.9464i 1.32498 2.29494i
\(289\) −0.433715 0.751217i −0.0255127 0.0441892i
\(290\) −20.2654 + 35.1007i −1.19002 + 2.06118i
\(291\) −14.4780 25.0766i −0.848714 1.47001i
\(292\) 3.65075 0.213644
\(293\) −25.3174 −1.47906 −0.739529 0.673125i \(-0.764952\pi\)
−0.739529 + 0.673125i \(0.764952\pi\)
\(294\) −17.7860 30.8063i −1.03730 1.79666i
\(295\) −15.5466 26.9275i −0.905158 1.56778i
\(296\) 12.4807 0.725428
\(297\) −11.8167 −0.685674
\(298\) −14.4731 25.0682i −0.838405 1.45216i
\(299\) −0.227090 + 0.393332i −0.0131330 + 0.0227470i
\(300\) −12.2456 21.2100i −0.707001 1.22456i
\(301\) −7.56612 + 13.1049i −0.436104 + 0.755354i
\(302\) 6.24417 10.8152i 0.359312 0.622346i
\(303\) −26.5870 −1.52738
\(304\) −1.95542 + 21.0878i −0.112151 + 1.20947i
\(305\) −15.2456 −0.872961
\(306\) −26.3242 + 45.5948i −1.50485 + 2.60648i
\(307\) −3.57560 + 6.19313i −0.204070 + 0.353460i −0.949836 0.312748i \(-0.898750\pi\)
0.745766 + 0.666208i \(0.232084\pi\)
\(308\) −2.49879 4.32803i −0.142382 0.246612i
\(309\) −8.65689 + 14.9942i −0.492473 + 0.852988i
\(310\) −21.0442 36.4496i −1.19523 2.07020i
\(311\) 26.9033 1.52555 0.762773 0.646666i \(-0.223837\pi\)
0.762773 + 0.646666i \(0.223837\pi\)
\(312\) 1.60768 0.0910170
\(313\) 8.02641 + 13.9022i 0.453680 + 0.785796i 0.998611 0.0526842i \(-0.0167777\pi\)
−0.544931 + 0.838481i \(0.683444\pi\)
\(314\) −17.4850 30.2850i −0.986738 1.70908i
\(315\) 80.5040 4.53589
\(316\) −0.634303 −0.0356823
\(317\) 7.01143 + 12.1441i 0.393801 + 0.682083i 0.992947 0.118556i \(-0.0378266\pi\)
−0.599146 + 0.800640i \(0.704493\pi\)
\(318\) −6.86610 + 11.8924i −0.385032 + 0.666895i
\(319\) −3.37309 5.84237i −0.188857 0.327110i
\(320\) −4.04192 + 7.00081i −0.225950 + 0.391357i
\(321\) 3.57006 6.18353i 0.199262 0.345131i
\(322\) 6.75923 0.376677
\(323\) 1.70121 18.3463i 0.0946578 1.02082i
\(324\) 22.8632 1.27018
\(325\) 1.27612 2.21031i 0.0707865 0.122606i
\(326\) −4.99217 + 8.64670i −0.276491 + 0.478896i
\(327\) −16.5136 28.6024i −0.913206 1.58172i
\(328\) −0.734963 + 1.27299i −0.0405815 + 0.0702893i
\(329\) −12.2806 21.2707i −0.677054 1.17269i
\(330\) 18.7875 1.03422
\(331\) −33.2840 −1.82946 −0.914728 0.404070i \(-0.867595\pi\)
−0.914728 + 0.404070i \(0.867595\pi\)
\(332\) 2.12631 + 3.68288i 0.116697 + 0.202125i
\(333\) 36.8960 + 63.9057i 2.02189 + 3.50201i
\(334\) 0.878636 0.0480768
\(335\) 4.69886 0.256726
\(336\) −27.5909 47.7888i −1.50521 2.60709i
\(337\) 12.6200 21.8584i 0.687453 1.19070i −0.285206 0.958466i \(-0.592062\pi\)
0.972659 0.232237i \(-0.0746046\pi\)
\(338\) 11.7583 + 20.3660i 0.639568 + 1.10776i
\(339\) −17.9938 + 31.1662i −0.977290 + 1.69272i
\(340\) 9.50924 16.4705i 0.515711 0.893237i
\(341\) 7.00544 0.379366
\(342\) −49.3232 + 22.6885i −2.66710 + 1.22685i
\(343\) 2.93802 0.158638
\(344\) −2.38845 + 4.13692i −0.128777 + 0.223048i
\(345\) −5.17837 + 8.96921i −0.278794 + 0.482886i
\(346\) 12.7652 + 22.1101i 0.686264 + 1.18864i
\(347\) 8.48667 14.6994i 0.455589 0.789102i −0.543133 0.839646i \(-0.682762\pi\)
0.998722 + 0.0505440i \(0.0160955\pi\)
\(348\) 14.5141 + 25.1392i 0.778038 + 1.34760i
\(349\) 7.75434 0.415080 0.207540 0.978226i \(-0.433454\pi\)
0.207540 + 0.978226i \(0.433454\pi\)
\(350\) −37.9831 −2.03028
\(351\) 2.64935 + 4.58881i 0.141412 + 0.244932i
\(352\) −3.31707 5.74533i −0.176800 0.306227i
\(353\) −0.614650 −0.0327145 −0.0163573 0.999866i \(-0.505207\pi\)
−0.0163573 + 0.999866i \(0.505207\pi\)
\(354\) −54.6367 −2.90391
\(355\) 17.2700 + 29.9125i 0.916597 + 1.58759i
\(356\) 3.18246 5.51218i 0.168670 0.292145i
\(357\) 24.0040 + 41.5761i 1.27043 + 2.20044i
\(358\) −0.525033 + 0.909383i −0.0277488 + 0.0480624i
\(359\) 3.94116 6.82629i 0.208006 0.360278i −0.743080 0.669203i \(-0.766636\pi\)
0.951086 + 0.308925i \(0.0999692\pi\)
\(360\) 25.4133 1.33940
\(361\) 12.3636 14.4271i 0.650715 0.759322i
\(362\) −42.1726 −2.21654
\(363\) −1.56355 + 2.70815i −0.0820653 + 0.142141i
\(364\) −1.12048 + 1.94072i −0.0587289 + 0.101721i
\(365\) 4.33769 + 7.51310i 0.227045 + 0.393253i
\(366\) −13.3947 + 23.2004i −0.700154 + 1.21270i
\(367\) −13.4107 23.2281i −0.700034 1.21249i −0.968454 0.249193i \(-0.919835\pi\)
0.268420 0.963302i \(-0.413499\pi\)
\(368\) 4.92117 0.256534
\(369\) −8.69089 −0.452430
\(370\) −32.7004 56.6387i −1.70001 2.94451i
\(371\) 4.34016 + 7.51738i 0.225330 + 0.390283i
\(372\) −30.1437 −1.56288
\(373\) −3.31474 −0.171630 −0.0858152 0.996311i \(-0.527349\pi\)
−0.0858152 + 0.996311i \(0.527349\pi\)
\(374\) 3.88331 + 6.72610i 0.200801 + 0.347798i
\(375\) 3.53680 6.12591i 0.182639 0.316341i
\(376\) −3.87672 6.71468i −0.199927 0.346283i
\(377\) −1.51252 + 2.61976i −0.0778988 + 0.134925i
\(378\) 39.4282 68.2917i 2.02797 3.51255i
\(379\) 16.6615 0.855845 0.427922 0.903815i \(-0.359246\pi\)
0.427922 + 0.903815i \(0.359246\pi\)
\(380\) 17.8173 8.19590i 0.914009 0.420441i
\(381\) 41.8342 2.14323
\(382\) 0.299643 0.518996i 0.0153310 0.0265542i
\(383\) −12.0861 + 20.9337i −0.617569 + 1.06966i 0.372359 + 0.928089i \(0.378549\pi\)
−0.989928 + 0.141572i \(0.954784\pi\)
\(384\) −13.6432 23.6307i −0.696228 1.20590i
\(385\) 5.93793 10.2848i 0.302625 0.524162i
\(386\) 9.41081 + 16.3000i 0.478998 + 0.829648i
\(387\) −28.2433 −1.43569
\(388\) 12.7413 0.646843
\(389\) −3.44383 5.96489i −0.174609 0.302432i 0.765417 0.643535i \(-0.222533\pi\)
−0.940026 + 0.341103i \(0.889199\pi\)
\(390\) −4.21223 7.29580i −0.213295 0.369437i
\(391\) −4.28141 −0.216520
\(392\) −7.09821 −0.358514
\(393\) −6.26071 10.8439i −0.315811 0.547000i
\(394\) 22.2300 38.5035i 1.11993 1.93978i
\(395\) −0.753655 1.30537i −0.0379205 0.0656802i
\(396\) 4.66382 8.07798i 0.234366 0.405934i
\(397\) −12.2800 + 21.2695i −0.616314 + 1.06749i 0.373839 + 0.927494i \(0.378041\pi\)
−0.990153 + 0.139993i \(0.955292\pi\)
\(398\) 41.5048 2.08045
\(399\) −4.57098 + 49.2947i −0.228835 + 2.46782i
\(400\) −27.6542 −1.38271
\(401\) −6.79438 + 11.7682i −0.339295 + 0.587677i −0.984300 0.176502i \(-0.943522\pi\)
0.645005 + 0.764178i \(0.276855\pi\)
\(402\) 4.12840 7.15060i 0.205906 0.356639i
\(403\) −1.57065 2.72044i −0.0782395 0.135515i
\(404\) 5.84946 10.1316i 0.291022 0.504064i
\(405\) 27.1652 + 47.0515i 1.34985 + 2.33801i
\(406\) 45.0194 2.23427
\(407\) 10.8857 0.539584
\(408\) 7.57753 + 13.1247i 0.375143 + 0.649767i
\(409\) 11.3229 + 19.6119i 0.559883 + 0.969746i 0.997506 + 0.0705869i \(0.0224872\pi\)
−0.437623 + 0.899159i \(0.644179\pi\)
\(410\) 7.70262 0.380405
\(411\) 16.9894 0.838024
\(412\) −3.80924 6.59780i −0.187668 0.325050i
\(413\) −17.2683 + 29.9096i −0.849719 + 1.47176i
\(414\) 6.30782 + 10.9255i 0.310013 + 0.536958i
\(415\) −5.05281 + 8.75173i −0.248033 + 0.429605i
\(416\) −1.48740 + 2.57625i −0.0729257 + 0.126311i
\(417\) 18.6229 0.911970
\(418\) −0.739482 + 7.97479i −0.0361693 + 0.390060i
\(419\) −0.250165 −0.0122213 −0.00611067 0.999981i \(-0.501945\pi\)
−0.00611067 + 0.999981i \(0.501945\pi\)
\(420\) −25.5504 + 44.2545i −1.24673 + 2.15940i
\(421\) 9.86401 17.0850i 0.480742 0.832670i −0.519013 0.854766i \(-0.673701\pi\)
0.999756 + 0.0220957i \(0.00703386\pi\)
\(422\) 3.08208 + 5.33832i 0.150033 + 0.259865i
\(423\) 22.9210 39.7003i 1.11446 1.93030i
\(424\) 1.37009 + 2.37307i 0.0665376 + 0.115246i
\(425\) 24.0591 1.16704
\(426\) 60.6934 2.94061
\(427\) 8.46700 + 14.6653i 0.409747 + 0.709703i
\(428\) 1.57092 + 2.72091i 0.0759331 + 0.131520i
\(429\) 1.40222 0.0676998
\(430\) 25.0317 1.20713
\(431\) −5.91317 10.2419i −0.284827 0.493336i 0.687740 0.725957i \(-0.258603\pi\)
−0.972567 + 0.232622i \(0.925270\pi\)
\(432\) 28.7064 49.7210i 1.38114 2.39220i
\(433\) −5.74963 9.95866i −0.276310 0.478583i 0.694155 0.719826i \(-0.255778\pi\)
−0.970465 + 0.241243i \(0.922445\pi\)
\(434\) −23.3747 + 40.4862i −1.12202 + 1.94340i
\(435\) −34.4902 + 59.7388i −1.65368 + 2.86426i
\(436\) 14.5328 0.695995
\(437\) −3.60336 2.55111i −0.172372 0.122036i
\(438\) 15.2443 0.728400
\(439\) 0.319770 0.553858i 0.0152618 0.0264342i −0.858294 0.513159i \(-0.828475\pi\)
0.873555 + 0.486725i \(0.161808\pi\)
\(440\) 1.87447 3.24668i 0.0893619 0.154779i
\(441\) −20.9840 36.3453i −0.999237 1.73073i
\(442\) 1.74131 3.01604i 0.0828256 0.143458i
\(443\) 5.98464 + 10.3657i 0.284339 + 0.492489i 0.972449 0.233117i \(-0.0748926\pi\)
−0.688110 + 0.725607i \(0.741559\pi\)
\(444\) −46.8402 −2.22294
\(445\) 15.1251 0.716998
\(446\) −8.41926 14.5826i −0.398664 0.690506i
\(447\) −24.6322 42.6642i −1.16506 2.01795i
\(448\) 8.97909 0.424222
\(449\) −1.69999 −0.0802277 −0.0401139 0.999195i \(-0.512772\pi\)
−0.0401139 + 0.999195i \(0.512772\pi\)
\(450\) −35.4464 61.3950i −1.67096 2.89419i
\(451\) −0.641035 + 1.11031i −0.0301852 + 0.0522822i
\(452\) −7.91772 13.7139i −0.372418 0.645047i
\(453\) 10.6271 18.4067i 0.499306 0.864824i
\(454\) 4.22722 7.32176i 0.198393 0.343627i
\(455\) −5.32523 −0.249651
\(456\) −1.44295 + 15.5612i −0.0675726 + 0.728721i
\(457\) −0.527953 −0.0246966 −0.0123483 0.999924i \(-0.503931\pi\)
−0.0123483 + 0.999924i \(0.503931\pi\)
\(458\) −0.835392 + 1.44694i −0.0390353 + 0.0676111i
\(459\) −24.9745 + 43.2571i −1.16571 + 2.01907i
\(460\) −2.27861 3.94667i −0.106241 0.184014i
\(461\) 9.25578 16.0315i 0.431085 0.746661i −0.565882 0.824486i \(-0.691464\pi\)
0.996967 + 0.0778255i \(0.0247977\pi\)
\(462\) −10.4341 18.0723i −0.485437 0.840802i
\(463\) 10.2924 0.478328 0.239164 0.970979i \(-0.423127\pi\)
0.239164 + 0.970979i \(0.423127\pi\)
\(464\) 32.7771 1.52164
\(465\) −35.8157 62.0345i −1.66091 2.87678i
\(466\) 25.8942 + 44.8500i 1.19952 + 2.07764i
\(467\) 21.2473 0.983206 0.491603 0.870820i \(-0.336411\pi\)
0.491603 + 0.870820i \(0.336411\pi\)
\(468\) −4.18259 −0.193340
\(469\) −2.60962 4.52000i −0.120501 0.208714i
\(470\) −20.3146 + 35.1859i −0.937042 + 1.62300i
\(471\) −29.7583 51.5429i −1.37119 2.37497i
\(472\) −5.45123 + 9.44180i −0.250913 + 0.434594i
\(473\) −2.08321 + 3.60823i −0.0957861 + 0.165906i
\(474\) −2.64863 −0.121656
\(475\) 20.2489 + 14.3358i 0.929082 + 0.657772i
\(476\) −21.1247 −0.968249
\(477\) −8.10063 + 14.0307i −0.370902 + 0.642422i
\(478\) −4.15209 + 7.19164i −0.189912 + 0.328938i
\(479\) 18.9448 + 32.8134i 0.865612 + 1.49928i 0.866438 + 0.499284i \(0.166404\pi\)
−0.000826387 1.00000i \(0.500263\pi\)
\(480\) −33.9174 + 58.7466i −1.54811 + 2.68140i
\(481\) −2.44062 4.22727i −0.111283 0.192747i
\(482\) −51.3268 −2.33787
\(483\) 11.5037 0.523437
\(484\) −0.688002 1.19165i −0.0312728 0.0541661i
\(485\) 15.1388 + 26.2211i 0.687415 + 1.19064i
\(486\) 30.3333 1.37595
\(487\) −41.2440 −1.86895 −0.934473 0.356034i \(-0.884129\pi\)
−0.934473 + 0.356034i \(0.884129\pi\)
\(488\) 2.67284 + 4.62950i 0.120994 + 0.209568i
\(489\) −8.49632 + 14.7161i −0.384217 + 0.665483i
\(490\) 18.5978 + 32.2124i 0.840163 + 1.45521i
\(491\) −8.93476 + 15.4755i −0.403220 + 0.698397i −0.994112 0.108353i \(-0.965442\pi\)
0.590893 + 0.806750i \(0.298776\pi\)
\(492\) 2.75831 4.77754i 0.124354 0.215388i
\(493\) −28.5160 −1.28430
\(494\) 3.26267 1.50081i 0.146794 0.0675248i
\(495\) 22.1655 0.996265
\(496\) −17.0184 + 29.4767i −0.764148 + 1.32354i
\(497\) 19.1826 33.2252i 0.860457 1.49036i
\(498\) 8.87876 + 15.3785i 0.397867 + 0.689125i
\(499\) −18.3064 + 31.7075i −0.819505 + 1.41942i 0.0865428 + 0.996248i \(0.472418\pi\)
−0.906048 + 0.423176i \(0.860915\pi\)
\(500\) 1.55628 + 2.69555i 0.0695988 + 0.120549i
\(501\) 1.49538 0.0668085
\(502\) −37.8642 −1.68996
\(503\) 5.76329 + 9.98231i 0.256972 + 0.445089i 0.965429 0.260665i \(-0.0839418\pi\)
−0.708457 + 0.705754i \(0.750608\pi\)
\(504\) −14.1139 24.4459i −0.628682 1.08891i
\(505\) 27.8004 1.23710
\(506\) 1.86105 0.0827336
\(507\) 20.0118 + 34.6615i 0.888756 + 1.53937i
\(508\) −9.20403 + 15.9418i −0.408363 + 0.707305i
\(509\) −21.0739 36.5010i −0.934082 1.61788i −0.776262 0.630410i \(-0.782887\pi\)
−0.157820 0.987468i \(-0.550447\pi\)
\(510\) 39.7073 68.7751i 1.75827 3.04541i
\(511\) 4.81807 8.34514i 0.213139 0.369167i
\(512\) 21.0917 0.932129
\(513\) −46.7944 + 21.5252i −2.06602 + 0.950362i
\(514\) 28.1210 1.24036
\(515\) 9.05199 15.6785i 0.398879 0.690878i
\(516\) 8.96386 15.5259i 0.394612 0.683488i
\(517\) −3.38128 5.85655i −0.148709 0.257571i
\(518\) −36.3218 + 62.9112i −1.59589 + 2.76416i
\(519\) 21.7255 + 37.6297i 0.953645 + 1.65176i
\(520\) −1.68106 −0.0737192
\(521\) 6.47680 0.283754 0.141877 0.989884i \(-0.454686\pi\)
0.141877 + 0.989884i \(0.454686\pi\)
\(522\) 42.0128 + 72.7684i 1.83885 + 3.18498i
\(523\) 9.59425 + 16.6177i 0.419527 + 0.726643i 0.995892 0.0905501i \(-0.0288625\pi\)
−0.576365 + 0.817193i \(0.695529\pi\)
\(524\) 5.50973 0.240694
\(525\) −64.6444 −2.82131
\(526\) 15.5498 + 26.9330i 0.678003 + 1.17434i
\(527\) 14.8059 25.6447i 0.644957 1.11710i
\(528\) −7.59671 13.1579i −0.330605 0.572624i
\(529\) 10.9870 19.0301i 0.477698 0.827396i
\(530\) 7.17948 12.4352i 0.311857 0.540151i
\(531\) −64.4604 −2.79734
\(532\) −17.7792 12.5873i −0.770825 0.545729i
\(533\) 0.574890 0.0249013
\(534\) 13.2888 23.0169i 0.575064 0.996041i
\(535\) −3.73300 + 6.46575i −0.161392 + 0.279539i
\(536\) −0.823799 1.42686i −0.0355827 0.0616311i
\(537\) −0.893568 + 1.54770i −0.0385603 + 0.0667884i
\(538\) −6.82642 11.8237i −0.294308 0.509756i
\(539\) −6.19106 −0.266668
\(540\) −53.1668 −2.28793
\(541\) 10.0254 + 17.3645i 0.431026 + 0.746558i 0.996962 0.0778907i \(-0.0248185\pi\)
−0.565936 + 0.824449i \(0.691485\pi\)
\(542\) 6.10370 + 10.5719i 0.262176 + 0.454103i
\(543\) −71.7747 −3.08015
\(544\) −28.0424 −1.20231
\(545\) 17.2673 + 29.9079i 0.739651 + 1.28111i
\(546\) −4.67872 + 8.10379i −0.200231 + 0.346810i
\(547\) −5.43160 9.40781i −0.232239 0.402249i 0.726228 0.687454i \(-0.241272\pi\)
−0.958467 + 0.285205i \(0.907938\pi\)
\(548\) −3.73787 + 6.47418i −0.159674 + 0.276563i
\(549\) −15.8031 + 27.3718i −0.674460 + 1.16820i
\(550\) −10.4580 −0.445932
\(551\) −24.0000 16.9915i −1.02243 0.723862i
\(552\) 3.63147 0.154565
\(553\) −0.837119 + 1.44993i −0.0355979 + 0.0616574i
\(554\) 28.1924 48.8306i 1.19778 2.07461i
\(555\) −55.6537 96.3950i −2.36237 4.09174i
\(556\) −4.09728 + 7.09669i −0.173763 + 0.300967i
\(557\) −2.37017 4.10525i −0.100427 0.173945i 0.811433 0.584445i \(-0.198688\pi\)
−0.911861 + 0.410500i \(0.865354\pi\)
\(558\) −87.2547 −3.69379
\(559\) 1.86826 0.0790188
\(560\) 28.8502 + 49.9699i 1.21914 + 2.11161i
\(561\) 6.60912 + 11.4473i 0.279037 + 0.483307i
\(562\) 57.1250 2.40967
\(563\) −14.2016 −0.598528 −0.299264 0.954170i \(-0.596741\pi\)
−0.299264 + 0.954170i \(0.596741\pi\)
\(564\) 14.5493 + 25.2002i 0.612638 + 1.06112i
\(565\) 18.8151 32.5887i 0.791556 1.37102i
\(566\) −11.2914 19.5573i −0.474612 0.822053i
\(567\) 30.1736 52.2623i 1.26717 2.19481i
\(568\) 6.05552 10.4885i 0.254084 0.440086i
\(569\) −8.58534 −0.359916 −0.179958 0.983674i \(-0.557596\pi\)
−0.179958 + 0.983674i \(0.557596\pi\)
\(570\) 74.3990 34.2233i 3.11623 1.43345i
\(571\) −39.3847 −1.64820 −0.824099 0.566446i \(-0.808318\pi\)
−0.824099 + 0.566446i \(0.808318\pi\)
\(572\) −0.308505 + 0.534347i −0.0128993 + 0.0223422i
\(573\) 0.509970 0.883294i 0.0213043 0.0369001i
\(574\) −4.27783 7.40941i −0.178553 0.309263i
\(575\) 2.88253 4.99269i 0.120210 0.208210i
\(576\) 8.37944 + 14.5136i 0.349143 + 0.604734i
\(577\) −25.1063 −1.04519 −0.522594 0.852582i \(-0.675036\pi\)
−0.522594 + 0.852582i \(0.675036\pi\)
\(578\) 1.59381 0.0662937
\(579\) 16.0165 + 27.7414i 0.665624 + 1.15289i
\(580\) −15.1765 26.2865i −0.630171 1.09149i
\(581\) 11.2248 0.465682
\(582\) 53.2034 2.20535
\(583\) 1.19500 + 2.06979i 0.0494917 + 0.0857221i
\(584\) 1.52096 2.63437i 0.0629376 0.109011i
\(585\) −4.96959 8.60759i −0.205467 0.355880i
\(586\) 23.2590 40.2857i 0.960819 1.66419i
\(587\) −9.03750 + 15.6534i −0.373018 + 0.646086i −0.990028 0.140869i \(-0.955010\pi\)
0.617011 + 0.786955i \(0.288344\pi\)
\(588\) 26.6396 1.09860
\(589\) 27.7417 12.7611i 1.14308 0.525811i
\(590\) 57.1304 2.35202
\(591\) 37.8339 65.5302i 1.55628 2.69555i
\(592\) −26.4447 + 45.8036i −1.08687 + 1.88252i
\(593\) 10.5463 + 18.2667i 0.433084 + 0.750123i 0.997137 0.0756152i \(-0.0240921\pi\)
−0.564053 + 0.825738i \(0.690759\pi\)
\(594\) 10.8559 18.8030i 0.445425 0.771498i
\(595\) −25.0996 43.4737i −1.02898 1.78225i
\(596\) 21.6775 0.887947
\(597\) 70.6382 2.89103
\(598\) −0.417254 0.722705i −0.0170628 0.0295536i
\(599\) 19.8016 + 34.2974i 0.809073 + 1.40136i 0.913507 + 0.406823i \(0.133364\pi\)
−0.104434 + 0.994532i \(0.533303\pi\)
\(600\) −20.4068 −0.833104
\(601\) −7.17190 −0.292548 −0.146274 0.989244i \(-0.546728\pi\)
−0.146274 + 0.989244i \(0.546728\pi\)
\(602\) −13.9019 24.0788i −0.566600 0.981379i
\(603\) 4.87069 8.43628i 0.198350 0.343552i
\(604\) 4.67620 + 8.09941i 0.190272 + 0.329560i
\(605\) 1.63491 2.83176i 0.0664687 0.115127i
\(606\) 24.4253 42.3059i 0.992211 1.71856i
\(607\) 30.7320 1.24737 0.623687 0.781674i \(-0.285634\pi\)
0.623687 + 0.781674i \(0.285634\pi\)
\(608\) −23.6013 16.7093i −0.957160 0.677651i
\(609\) 76.6197 3.10479
\(610\) 14.0061 24.2592i 0.567089 0.982228i
\(611\) −1.51619 + 2.62612i −0.0613386 + 0.106242i
\(612\) −19.7139 34.1455i −0.796888 1.38025i
\(613\) −7.17238 + 12.4229i −0.289690 + 0.501757i −0.973736 0.227682i \(-0.926885\pi\)
0.684046 + 0.729439i \(0.260219\pi\)
\(614\) −6.56978 11.3792i −0.265135 0.459227i
\(615\) 13.1093 0.528618
\(616\) −4.16412 −0.167777
\(617\) 0.208687 + 0.361456i 0.00840142 + 0.0145517i 0.870196 0.492707i \(-0.163992\pi\)
−0.861794 + 0.507258i \(0.830659\pi\)
\(618\) −15.9061 27.5501i −0.639836 1.10823i
\(619\) −29.5736 −1.18866 −0.594331 0.804221i \(-0.702583\pi\)
−0.594331 + 0.804221i \(0.702583\pi\)
\(620\) 31.5195 1.26585
\(621\) 5.98441 + 10.3653i 0.240146 + 0.415945i
\(622\) −24.7159 + 42.8093i −0.991019 + 1.71650i
\(623\) −8.40007 14.5493i −0.336542 0.582907i
\(624\) −3.40643 + 5.90010i −0.136366 + 0.236193i
\(625\) 10.5312 18.2407i 0.421250 0.729626i
\(626\) −29.4953 −1.17887
\(627\) −1.25855 + 13.5725i −0.0502615 + 0.542034i
\(628\) 26.1888 1.04505
\(629\) 23.0069 39.8490i 0.917343 1.58889i
\(630\) −73.9586 + 128.100i −2.94658 + 5.10363i
\(631\) 0.207771 + 0.359869i 0.00827122 + 0.0143262i 0.870131 0.492820i \(-0.164034\pi\)
−0.861860 + 0.507146i \(0.830700\pi\)
\(632\) −0.264260 + 0.457711i −0.0105117 + 0.0182068i
\(633\) 5.24548 + 9.08544i 0.208489 + 0.361114i
\(634\) −25.7655 −1.02328
\(635\) −43.7435 −1.73591
\(636\) −5.14196 8.90613i −0.203892 0.353151i
\(637\) 1.38806 + 2.40419i 0.0549970 + 0.0952576i
\(638\) 12.3954 0.490737
\(639\) 71.6061 2.83269
\(640\) 14.2659 + 24.7093i 0.563909 + 0.976720i
\(641\) −18.8044 + 32.5702i −0.742729 + 1.28644i 0.208519 + 0.978018i \(0.433136\pi\)
−0.951248 + 0.308426i \(0.900198\pi\)
\(642\) 6.55960 + 11.3616i 0.258887 + 0.448405i
\(643\) 21.4787 37.2022i 0.847037 1.46711i −0.0368035 0.999323i \(-0.511718\pi\)
0.883840 0.467788i \(-0.154949\pi\)
\(644\) −2.53096 + 4.38375i −0.0997337 + 0.172744i
\(645\) 42.6021 1.67746
\(646\) 27.6302 + 19.5617i 1.08710 + 0.769644i
\(647\) −2.19443 −0.0862721 −0.0431361 0.999069i \(-0.513735\pi\)
−0.0431361 + 0.999069i \(0.513735\pi\)
\(648\) 9.52514 16.4980i 0.374183 0.648104i
\(649\) −4.75456 + 8.23514i −0.186633 + 0.323258i
\(650\) 2.34473 + 4.06120i 0.0919680 + 0.159293i
\(651\) −39.7821 + 68.9046i −1.55918 + 2.70058i
\(652\) −3.73859 6.47543i −0.146414 0.253597i
\(653\) 7.16482 0.280381 0.140191 0.990125i \(-0.455228\pi\)
0.140191 + 0.990125i \(0.455228\pi\)
\(654\) 60.6839 2.37293
\(655\) 6.54645 + 11.3388i 0.255791 + 0.443043i
\(656\) −3.11455 5.39455i −0.121603 0.210622i
\(657\) 17.9852 0.701670
\(658\) 45.1287 1.75930
\(659\) −21.4610 37.1715i −0.836000 1.44799i −0.893214 0.449633i \(-0.851555\pi\)
0.0572135 0.998362i \(-0.481778\pi\)
\(660\) −7.03489 + 12.1848i −0.273833 + 0.474292i
\(661\) 10.4812 + 18.1540i 0.407673 + 0.706109i 0.994628 0.103509i \(-0.0330072\pi\)
−0.586956 + 0.809619i \(0.699674\pi\)
\(662\) 30.5779 52.9625i 1.18844 2.05844i
\(663\) 2.96358 5.13308i 0.115096 0.199352i
\(664\) 3.54341 0.137511
\(665\) 4.77960 51.5445i 0.185345 1.99881i
\(666\) −135.585 −5.25379
\(667\) −3.41652 + 5.91758i −0.132288 + 0.229130i
\(668\) −0.329001 + 0.569846i −0.0127294 + 0.0220480i
\(669\) −14.3290 24.8185i −0.553990 0.959539i
\(670\) −4.31682 + 7.47696i −0.166773 + 0.288860i
\(671\) 2.33126 + 4.03785i 0.0899971 + 0.155880i
\(672\) 75.3471 2.90658
\(673\) −43.0413 −1.65912 −0.829561 0.558417i \(-0.811409\pi\)
−0.829561 + 0.558417i \(0.811409\pi\)
\(674\) 23.1878 + 40.1624i 0.893160 + 1.54700i
\(675\) −33.6290 58.2472i −1.29438 2.24194i
\(676\) −17.6114 −0.677360
\(677\) −17.2885 −0.664453 −0.332226 0.943200i \(-0.607800\pi\)
−0.332226 + 0.943200i \(0.607800\pi\)
\(678\) −33.0617 57.2645i −1.26973 2.19923i
\(679\) 16.8153 29.1250i 0.645312 1.11771i
\(680\) −7.92337 13.7237i −0.303847 0.526279i
\(681\) 7.19442 12.4611i 0.275691 0.477510i
\(682\) −6.43586 + 11.1472i −0.246442 + 0.426850i
\(683\) −27.6316 −1.05729 −0.528647 0.848842i \(-0.677300\pi\)
−0.528647 + 0.848842i \(0.677300\pi\)
\(684\) 3.75404 40.4846i 0.143539 1.54797i
\(685\) −17.7648 −0.678757
\(686\) −2.69914 + 4.67505i −0.103054 + 0.178494i
\(687\) −1.42178 + 2.46259i −0.0542442 + 0.0939536i
\(688\) −10.1215 17.5310i −0.385880 0.668363i
\(689\) 0.535845 0.928112i 0.0204141 0.0353582i
\(690\) −9.51469 16.4799i −0.362218 0.627380i
\(691\) 0.0348336 0.00132513 0.000662566 1.00000i \(-0.499789\pi\)
0.000662566 1.00000i \(0.499789\pi\)
\(692\) −19.1195 −0.726816
\(693\) −12.3101 21.3218i −0.467623 0.809947i
\(694\) 15.5933 + 27.0084i 0.591915 + 1.02523i
\(695\) −19.4729 −0.738650
\(696\) 24.1871 0.916811
\(697\) 2.70965 + 4.69325i 0.102635 + 0.177769i
\(698\) −7.12388 + 12.3389i −0.269643 + 0.467035i
\(699\) 44.0700 + 76.3315i 1.66688 + 2.88712i
\(700\) 14.2226 24.6342i 0.537563 0.931086i
\(701\) 6.71538 11.6314i 0.253636 0.439311i −0.710888 0.703305i \(-0.751707\pi\)
0.964524 + 0.263994i \(0.0850400\pi\)
\(702\) −9.73578 −0.367453
\(703\) 43.1076 19.8293i 1.62583 0.747878i
\(704\) 2.47225 0.0931764
\(705\) −34.5740 + 59.8838i −1.30213 + 2.25536i
\(706\) 0.564676 0.978048i 0.0212519 0.0368093i
\(707\) −15.4396 26.7422i −0.580666 1.00574i
\(708\) 20.4584 35.4351i 0.768875 1.33173i
\(709\) 3.62993 + 6.28722i 0.136325 + 0.236121i 0.926103 0.377271i \(-0.123138\pi\)
−0.789778 + 0.613393i \(0.789804\pi\)
\(710\) −63.4635 −2.38174
\(711\) −3.12485 −0.117191
\(712\) −2.65171 4.59290i −0.0993772 0.172126i
\(713\) −3.54781 6.14499i −0.132867 0.230132i
\(714\) −88.2094 −3.30116
\(715\) −1.46622 −0.0548334
\(716\) −0.393192 0.681028i −0.0146943 0.0254512i
\(717\) −7.06656 + 12.2396i −0.263906 + 0.457098i
\(718\) 7.24144 + 12.5426i 0.270248 + 0.468084i
\(719\) −24.5397 + 42.5041i −0.915178 + 1.58513i −0.108537 + 0.994092i \(0.534617\pi\)
−0.806641 + 0.591042i \(0.798717\pi\)
\(720\) −53.8469 + 93.2656i −2.00676 + 3.47580i
\(721\) −20.1089 −0.748896
\(722\) 11.5985 + 32.9274i 0.431650 + 1.22543i
\(723\) −87.3546 −3.24875
\(724\) 15.7913 27.3514i 0.586880 1.01651i
\(725\) 19.1989 33.2535i 0.713030 1.23500i
\(726\) −2.87286 4.97594i −0.106622 0.184674i
\(727\) −8.10168 + 14.0325i −0.300475 + 0.520437i −0.976244 0.216676i \(-0.930478\pi\)
0.675769 + 0.737114i \(0.263812\pi\)
\(728\) 0.933613 + 1.61707i 0.0346020 + 0.0599324i
\(729\) 1.77804 0.0658535
\(730\) −15.9401 −0.589968
\(731\) 8.80571 + 15.2519i 0.325691 + 0.564113i
\(732\) −10.0312 17.3745i −0.370763 0.642180i
\(733\) −11.9920 −0.442933 −0.221467 0.975168i \(-0.571084\pi\)
−0.221467 + 0.975168i \(0.571084\pi\)
\(734\) 49.2815 1.81901
\(735\) 31.6521 + 54.8231i 1.16751 + 2.02218i
\(736\) −3.35977 + 5.81930i −0.123843 + 0.214502i
\(737\) −0.718518 1.24451i −0.0264670 0.0458421i
\(738\) 7.98428 13.8292i 0.293905 0.509059i
\(739\) 13.4414 23.2812i 0.494451 0.856414i −0.505528 0.862810i \(-0.668702\pi\)
0.999980 + 0.00639547i \(0.00203575\pi\)
\(740\) 48.9780 1.80047
\(741\) 5.55282 2.55428i 0.203988 0.0938337i
\(742\) −15.9492 −0.585512
\(743\) −11.2382 + 19.4651i −0.412290 + 0.714107i −0.995140 0.0984729i \(-0.968604\pi\)
0.582850 + 0.812580i \(0.301938\pi\)
\(744\) −12.5583 + 21.7516i −0.460410 + 0.797454i
\(745\) 25.7564 + 44.6115i 0.943643 + 1.63444i
\(746\) 3.04523 5.27450i 0.111494 0.193113i
\(747\) 10.4752 + 18.1435i 0.383266 + 0.663836i
\(748\) −5.81635 −0.212667
\(749\) 8.29284 0.303014
\(750\) 6.49847 + 11.2557i 0.237291 + 0.411000i
\(751\) −15.8768 27.4994i −0.579352 1.00347i −0.995554 0.0941951i \(-0.969972\pi\)
0.416202 0.909272i \(-0.363361\pi\)
\(752\) 32.8567 1.19816
\(753\) −64.4422 −2.34840
\(754\) −2.77909 4.81353i −0.101209 0.175298i
\(755\) −11.1122 + 19.2468i −0.404413 + 0.700464i
\(756\) 29.5274 + 51.1430i 1.07390 + 1.86005i
\(757\) 11.9071 20.6236i 0.432769 0.749578i −0.564342 0.825541i \(-0.690870\pi\)
0.997111 + 0.0759634i \(0.0242032\pi\)
\(758\) −15.3069 + 26.5123i −0.555970 + 0.962969i
\(759\) 3.16737 0.114968
\(760\) 1.50881 16.2715i 0.0547304 0.590228i
\(761\) 40.4398 1.46594 0.732971 0.680260i \(-0.238133\pi\)
0.732971 + 0.680260i \(0.238133\pi\)
\(762\) −38.4329 + 66.5677i −1.39228 + 2.41149i
\(763\) 19.1796 33.2200i 0.694348 1.20265i
\(764\) 0.224399 + 0.388671i 0.00811848 + 0.0140616i
\(765\) 46.8467 81.1408i 1.69374 2.93365i
\(766\) −22.2068 38.4633i −0.802365 1.38974i
\(767\) 4.26397 0.153963
\(768\) 65.5978 2.36706
\(769\) 0.491657 + 0.851575i 0.0177296 + 0.0307086i 0.874754 0.484567i \(-0.161023\pi\)
−0.857024 + 0.515276i \(0.827690\pi\)
\(770\) 10.9103 + 18.8972i 0.393180 + 0.681007i
\(771\) 47.8599