Properties

Label 209.2.e.b.144.1
Level $209$
Weight $2$
Character 209.144
Analytic conductor $1.669$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(45,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 14 x^{16} - 11 x^{15} + 130 x^{14} - 92 x^{13} + 629 x^{12} - 276 x^{11} + 2060 x^{10} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 144.1
Root \(-1.34782 + 2.33450i\) of defining polynomial
Character \(\chi\) \(=\) 209.144
Dual form 209.2.e.b.45.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34782 + 2.33450i) q^{2} +(0.0468836 - 0.0812047i) q^{3} +(-2.63325 - 4.56093i) q^{4} +(1.12231 - 1.94390i) q^{5} +(0.126382 + 0.218899i) q^{6} +0.215810 q^{7} +8.80535 q^{8} +(1.49560 + 2.59046i) q^{9} +O(q^{10})\) \(q+(-1.34782 + 2.33450i) q^{2} +(0.0468836 - 0.0812047i) q^{3} +(-2.63325 - 4.56093i) q^{4} +(1.12231 - 1.94390i) q^{5} +(0.126382 + 0.218899i) q^{6} +0.215810 q^{7} +8.80535 q^{8} +(1.49560 + 2.59046i) q^{9} +(3.02535 + 5.24006i) q^{10} -1.00000 q^{11} -0.493826 q^{12} +(2.79775 + 4.84584i) q^{13} +(-0.290874 + 0.503808i) q^{14} +(-0.105236 - 0.182274i) q^{15} +(-6.60155 + 11.4342i) q^{16} +(3.92883 - 6.80493i) q^{17} -8.06324 q^{18} +(4.31293 - 0.631370i) q^{19} -11.8213 q^{20} +(0.0101179 - 0.0175248i) q^{21} +(1.34782 - 2.33450i) q^{22} +(-1.86718 - 3.23406i) q^{23} +(0.412826 - 0.715036i) q^{24} +(-0.0191576 - 0.0331819i) q^{25} -15.0835 q^{26} +0.561778 q^{27} +(-0.568283 - 0.984295i) q^{28} +(2.21240 + 3.83198i) q^{29} +0.567357 q^{30} -2.53830 q^{31} +(-8.99009 - 15.5713i) q^{32} +(-0.0468836 + 0.0812047i) q^{33} +(10.5907 + 18.3437i) q^{34} +(0.242206 - 0.419512i) q^{35} +(7.87661 - 13.6427i) q^{36} +1.18058 q^{37} +(-4.33914 + 10.9195i) q^{38} +0.524673 q^{39} +(9.88233 - 17.1167i) q^{40} +(-2.15267 + 3.72853i) q^{41} +(0.0272744 + 0.0472406i) q^{42} +(0.239243 - 0.414382i) q^{43} +(2.63325 + 4.56093i) q^{44} +6.71412 q^{45} +10.0665 q^{46} +(0.115048 + 0.199269i) q^{47} +(0.619009 + 1.07215i) q^{48} -6.95343 q^{49} +0.103284 q^{50} +(-0.368395 - 0.638079i) q^{51} +(14.7344 - 25.5207i) q^{52} +(-4.78073 - 8.28047i) q^{53} +(-0.757178 + 1.31147i) q^{54} +(-1.12231 + 1.94390i) q^{55} +1.90028 q^{56} +(0.150935 - 0.379831i) q^{57} -11.9277 q^{58} +(4.86482 - 8.42612i) q^{59} +(-0.554225 + 0.959946i) q^{60} +(3.73333 + 6.46632i) q^{61} +(3.42117 - 5.92565i) q^{62} +(0.322766 + 0.559048i) q^{63} +22.0620 q^{64} +12.5598 q^{65} +(-0.126382 - 0.218899i) q^{66} +(-4.29770 - 7.44384i) q^{67} -41.3824 q^{68} -0.350161 q^{69} +(0.652901 + 1.13086i) q^{70} +(-3.03066 + 5.24926i) q^{71} +(13.1693 + 22.8099i) q^{72} +(-2.53780 + 4.39560i) q^{73} +(-1.59121 + 2.75605i) q^{74} -0.00359270 q^{75} +(-14.2367 - 18.0084i) q^{76} -0.215810 q^{77} +(-0.707167 + 1.22485i) q^{78} +(1.16317 - 2.01467i) q^{79} +(14.8180 + 25.6655i) q^{80} +(-4.46047 + 7.72577i) q^{81} +(-5.80283 - 10.0508i) q^{82} -11.9076 q^{83} -0.106572 q^{84} +(-8.81873 - 15.2745i) q^{85} +(0.644916 + 1.11703i) q^{86} +0.414900 q^{87} -8.80535 q^{88} +(0.252381 + 0.437137i) q^{89} +(-9.04945 + 15.6741i) q^{90} +(0.603782 + 1.04578i) q^{91} +(-9.83354 + 17.0322i) q^{92} +(-0.119004 + 0.206122i) q^{93} -0.620259 q^{94} +(3.61313 - 9.09249i) q^{95} -1.68595 q^{96} +(1.84449 - 3.19476i) q^{97} +(9.37199 - 16.2328i) q^{98} +(-1.49560 - 2.59046i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + q^{2} - 9 q^{4} - 3 q^{6} - 6 q^{7} - 11 q^{9} + 21 q^{10} - 18 q^{11} + 16 q^{12} + 11 q^{13} + q^{14} + 7 q^{15} - 13 q^{16} + 6 q^{17} - 8 q^{18} + 4 q^{19} + 4 q^{20} + 24 q^{21} - q^{22} - q^{23} - 3 q^{24} - 7 q^{25} - 4 q^{26} + 6 q^{27} - 2 q^{28} + 13 q^{29} - 64 q^{30} - 32 q^{31} - 14 q^{32} + 8 q^{34} - 12 q^{35} + 10 q^{36} - 36 q^{37} - 20 q^{38} + 20 q^{39} + 32 q^{40} + 4 q^{41} + 11 q^{42} + q^{43} + 9 q^{44} + 22 q^{45} - 14 q^{46} - 14 q^{47} + 37 q^{48} - 12 q^{49} + 30 q^{50} - 16 q^{51} + 57 q^{52} - 4 q^{53} - 33 q^{54} - 34 q^{56} - 7 q^{57} + 8 q^{58} + 31 q^{59} + 9 q^{60} + 3 q^{61} + 5 q^{62} + 50 q^{63} + 64 q^{64} - 56 q^{65} + 3 q^{66} - 2 q^{67} - 96 q^{68} - 58 q^{70} - 12 q^{71} + 5 q^{72} - 26 q^{73} + 35 q^{74} + 50 q^{75} - 36 q^{76} + 6 q^{77} + 3 q^{78} + 31 q^{79} + 31 q^{80} - 21 q^{81} + 25 q^{82} + 36 q^{83} - 102 q^{84} - 11 q^{85} + 41 q^{86} - 124 q^{87} - 11 q^{89} + 51 q^{90} - 20 q^{91} - 33 q^{92} + 20 q^{93} - 86 q^{94} + 17 q^{95} + 60 q^{96} + 16 q^{97} + 4 q^{98} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(134\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34782 + 2.33450i −0.953055 + 1.65074i −0.214297 + 0.976769i \(0.568746\pi\)
−0.738758 + 0.673971i \(0.764587\pi\)
\(3\) 0.0468836 0.0812047i 0.0270682 0.0468836i −0.852174 0.523259i \(-0.824716\pi\)
0.879242 + 0.476375i \(0.158050\pi\)
\(4\) −2.63325 4.56093i −1.31663 2.28047i
\(5\) 1.12231 1.94390i 0.501912 0.869337i −0.498085 0.867128i \(-0.665963\pi\)
0.999998 0.00220931i \(-0.000703246\pi\)
\(6\) 0.126382 + 0.218899i 0.0515950 + 0.0893652i
\(7\) 0.215810 0.0815685 0.0407843 0.999168i \(-0.487014\pi\)
0.0407843 + 0.999168i \(0.487014\pi\)
\(8\) 8.80535 3.11316
\(9\) 1.49560 + 2.59046i 0.498535 + 0.863487i
\(10\) 3.02535 + 5.24006i 0.956700 + 1.65705i
\(11\) −1.00000 −0.301511
\(12\) −0.493826 −0.142555
\(13\) 2.79775 + 4.84584i 0.775955 + 1.34399i 0.934256 + 0.356603i \(0.116065\pi\)
−0.158301 + 0.987391i \(0.550601\pi\)
\(14\) −0.290874 + 0.503808i −0.0777393 + 0.134648i
\(15\) −0.105236 0.182274i −0.0271718 0.0470629i
\(16\) −6.60155 + 11.4342i −1.65039 + 2.85856i
\(17\) 3.92883 6.80493i 0.952881 1.65044i 0.213737 0.976891i \(-0.431436\pi\)
0.739144 0.673547i \(-0.235230\pi\)
\(18\) −8.06324 −1.90052
\(19\) 4.31293 0.631370i 0.989454 0.144846i
\(20\) −11.8213 −2.64332
\(21\) 0.0101179 0.0175248i 0.00220792 0.00382422i
\(22\) 1.34782 2.33450i 0.287357 0.497717i
\(23\) −1.86718 3.23406i −0.389335 0.674348i 0.603025 0.797722i \(-0.293962\pi\)
−0.992360 + 0.123374i \(0.960628\pi\)
\(24\) 0.412826 0.715036i 0.0842678 0.145956i
\(25\) −0.0191576 0.0331819i −0.00383151 0.00663637i
\(26\) −15.0835 −2.95811
\(27\) 0.561778 0.108114
\(28\) −0.568283 0.984295i −0.107395 0.186014i
\(29\) 2.21240 + 3.83198i 0.410832 + 0.711581i 0.994981 0.100065i \(-0.0319051\pi\)
−0.584149 + 0.811646i \(0.698572\pi\)
\(30\) 0.567357 0.103585
\(31\) −2.53830 −0.455891 −0.227946 0.973674i \(-0.573201\pi\)
−0.227946 + 0.973674i \(0.573201\pi\)
\(32\) −8.99009 15.5713i −1.58924 2.75264i
\(33\) −0.0468836 + 0.0812047i −0.00816138 + 0.0141359i
\(34\) 10.5907 + 18.3437i 1.81630 + 3.14592i
\(35\) 0.242206 0.419512i 0.0409402 0.0709105i
\(36\) 7.87661 13.6427i 1.31277 2.27378i
\(37\) 1.18058 0.194086 0.0970428 0.995280i \(-0.469062\pi\)
0.0970428 + 0.995280i \(0.469062\pi\)
\(38\) −4.33914 + 10.9195i −0.703901 + 1.77138i
\(39\) 0.524673 0.0840150
\(40\) 9.88233 17.1167i 1.56253 2.70639i
\(41\) −2.15267 + 3.72853i −0.336190 + 0.582298i −0.983713 0.179748i \(-0.942472\pi\)
0.647523 + 0.762046i \(0.275805\pi\)
\(42\) 0.0272744 + 0.0472406i 0.00420853 + 0.00728939i
\(43\) 0.239243 0.414382i 0.0364843 0.0631926i −0.847207 0.531263i \(-0.821717\pi\)
0.883691 + 0.468071i \(0.155051\pi\)
\(44\) 2.63325 + 4.56093i 0.396978 + 0.687586i
\(45\) 6.71412 1.00088
\(46\) 10.0665 1.48423
\(47\) 0.115048 + 0.199269i 0.0167815 + 0.0290664i 0.874294 0.485396i \(-0.161325\pi\)
−0.857513 + 0.514463i \(0.827991\pi\)
\(48\) 0.619009 + 1.07215i 0.0893462 + 0.154752i
\(49\) −6.95343 −0.993347
\(50\) 0.103284 0.0146066
\(51\) −0.368395 0.638079i −0.0515856 0.0893489i
\(52\) 14.7344 25.5207i 2.04329 3.53908i
\(53\) −4.78073 8.28047i −0.656684 1.13741i −0.981469 0.191622i \(-0.938625\pi\)
0.324785 0.945788i \(-0.394708\pi\)
\(54\) −0.757178 + 1.31147i −0.103039 + 0.178469i
\(55\) −1.12231 + 1.94390i −0.151332 + 0.262115i
\(56\) 1.90028 0.253936
\(57\) 0.150935 0.379831i 0.0199919 0.0503099i
\(58\) −11.9277 −1.56618
\(59\) 4.86482 8.42612i 0.633346 1.09699i −0.353517 0.935428i \(-0.615014\pi\)
0.986863 0.161559i \(-0.0516523\pi\)
\(60\) −0.554225 + 0.959946i −0.0715502 + 0.123929i
\(61\) 3.73333 + 6.46632i 0.478004 + 0.827927i 0.999682 0.0252154i \(-0.00802716\pi\)
−0.521678 + 0.853142i \(0.674694\pi\)
\(62\) 3.42117 5.92565i 0.434489 0.752558i
\(63\) 0.322766 + 0.559048i 0.0406647 + 0.0704334i
\(64\) 22.0620 2.75775
\(65\) 12.5598 1.55785
\(66\) −0.126382 0.218899i −0.0155565 0.0269446i
\(67\) −4.29770 7.44384i −0.525048 0.909410i −0.999575 0.0291686i \(-0.990714\pi\)
0.474527 0.880241i \(-0.342619\pi\)
\(68\) −41.3824 −5.01836
\(69\) −0.350161 −0.0421544
\(70\) 0.652901 + 1.13086i 0.0780366 + 0.135163i
\(71\) −3.03066 + 5.24926i −0.359674 + 0.622973i −0.987906 0.155053i \(-0.950445\pi\)
0.628233 + 0.778026i \(0.283779\pi\)
\(72\) 13.1693 + 22.8099i 1.55202 + 2.68818i
\(73\) −2.53780 + 4.39560i −0.297027 + 0.514466i −0.975454 0.220202i \(-0.929328\pi\)
0.678427 + 0.734667i \(0.262662\pi\)
\(74\) −1.59121 + 2.75605i −0.184974 + 0.320385i
\(75\) −0.00359270 −0.000414849
\(76\) −14.2367 18.0084i −1.63306 2.06571i
\(77\) −0.215810 −0.0245938
\(78\) −0.707167 + 1.22485i −0.0800709 + 0.138687i
\(79\) 1.16317 2.01467i 0.130867 0.226668i −0.793144 0.609034i \(-0.791557\pi\)
0.924011 + 0.382366i \(0.124891\pi\)
\(80\) 14.8180 + 25.6655i 1.65670 + 2.86949i
\(81\) −4.46047 + 7.72577i −0.495608 + 0.858419i
\(82\) −5.80283 10.0508i −0.640815 1.10992i
\(83\) −11.9076 −1.30703 −0.653515 0.756914i \(-0.726706\pi\)
−0.653515 + 0.756914i \(0.726706\pi\)
\(84\) −0.106572 −0.0116280
\(85\) −8.81873 15.2745i −0.956525 1.65675i
\(86\) 0.644916 + 1.11703i 0.0695430 + 0.120452i
\(87\) 0.414900 0.0444820
\(88\) −8.80535 −0.938654
\(89\) 0.252381 + 0.437137i 0.0267524 + 0.0463364i 0.879092 0.476653i \(-0.158150\pi\)
−0.852339 + 0.522989i \(0.824817\pi\)
\(90\) −9.04945 + 15.6741i −0.953896 + 1.65220i
\(91\) 0.603782 + 1.04578i 0.0632935 + 0.109628i
\(92\) −9.83354 + 17.0322i −1.02522 + 1.77573i
\(93\) −0.119004 + 0.206122i −0.0123402 + 0.0213738i
\(94\) −0.620259 −0.0639748
\(95\) 3.61313 9.09249i 0.370699 0.932869i
\(96\) −1.68595 −0.172072
\(97\) 1.84449 3.19476i 0.187280 0.324378i −0.757062 0.653342i \(-0.773366\pi\)
0.944342 + 0.328964i \(0.106700\pi\)
\(98\) 9.37199 16.2328i 0.946714 1.63976i
\(99\) −1.49560 2.59046i −0.150314 0.260351i
\(100\) −0.100893 + 0.174753i −0.0100893 + 0.0174753i
\(101\) −1.14428 1.98196i −0.113860 0.197212i 0.803463 0.595354i \(-0.202988\pi\)
−0.917324 + 0.398142i \(0.869655\pi\)
\(102\) 1.98613 0.196656
\(103\) 8.94629 0.881504 0.440752 0.897629i \(-0.354712\pi\)
0.440752 + 0.897629i \(0.354712\pi\)
\(104\) 24.6352 + 42.6693i 2.41568 + 4.18407i
\(105\) −0.0227109 0.0393365i −0.00221636 0.00383885i
\(106\) 25.7743 2.50342
\(107\) −19.2128 −1.85737 −0.928684 0.370871i \(-0.879059\pi\)
−0.928684 + 0.370871i \(0.879059\pi\)
\(108\) −1.47931 2.56223i −0.142346 0.246551i
\(109\) −5.91744 + 10.2493i −0.566788 + 0.981706i 0.430092 + 0.902785i \(0.358481\pi\)
−0.996881 + 0.0789214i \(0.974852\pi\)
\(110\) −3.02535 5.24006i −0.288456 0.499620i
\(111\) 0.0553497 0.0958684i 0.00525356 0.00909943i
\(112\) −1.42468 + 2.46762i −0.134620 + 0.233168i
\(113\) 6.37283 0.599506 0.299753 0.954017i \(-0.403096\pi\)
0.299753 + 0.954017i \(0.403096\pi\)
\(114\) 0.683281 + 0.864304i 0.0639951 + 0.0809495i
\(115\) −8.38224 −0.781648
\(116\) 11.6516 20.1812i 1.08182 1.87377i
\(117\) −8.36864 + 14.4949i −0.773681 + 1.34006i
\(118\) 13.1138 + 22.7138i 1.20723 + 2.09098i
\(119\) 0.847881 1.46857i 0.0777251 0.134624i
\(120\) −0.926638 1.60498i −0.0845901 0.146514i
\(121\) 1.00000 0.0909091
\(122\) −20.1275 −1.82226
\(123\) 0.201849 + 0.349613i 0.0182001 + 0.0315236i
\(124\) 6.68398 + 11.5770i 0.600239 + 1.03964i
\(125\) 11.1371 0.996132
\(126\) −1.74013 −0.155023
\(127\) 6.11579 + 10.5929i 0.542688 + 0.939964i 0.998748 + 0.0500148i \(0.0159269\pi\)
−0.456060 + 0.889949i \(0.650740\pi\)
\(128\) −11.7555 + 20.3612i −1.03905 + 1.79969i
\(129\) −0.0224332 0.0388554i −0.00197513 0.00342103i
\(130\) −16.9283 + 29.3207i −1.48471 + 2.57160i
\(131\) −9.04738 + 15.6705i −0.790473 + 1.36914i 0.135201 + 0.990818i \(0.456832\pi\)
−0.925674 + 0.378322i \(0.876501\pi\)
\(132\) 0.493826 0.0429820
\(133\) 0.930774 0.136256i 0.0807083 0.0118149i
\(134\) 23.1702 2.00160
\(135\) 0.630489 1.09204i 0.0542639 0.0939878i
\(136\) 34.5947 59.9198i 2.96647 5.13808i
\(137\) −6.82791 11.8263i −0.583348 1.01039i −0.995079 0.0990826i \(-0.968409\pi\)
0.411732 0.911305i \(-0.364924\pi\)
\(138\) 0.471955 0.817450i 0.0401755 0.0695860i
\(139\) −4.47118 7.74432i −0.379241 0.656865i 0.611711 0.791081i \(-0.290482\pi\)
−0.990952 + 0.134217i \(0.957148\pi\)
\(140\) −2.55116 −0.215612
\(141\) 0.0215755 0.00181698
\(142\) −8.16960 14.1502i −0.685577 1.18745i
\(143\) −2.79775 4.84584i −0.233959 0.405229i
\(144\) −39.4932 −3.29110
\(145\) 9.93197 0.824805
\(146\) −6.84101 11.8490i −0.566166 0.980628i
\(147\) −0.326001 + 0.564651i −0.0268881 + 0.0465716i
\(148\) −3.10876 5.38453i −0.255538 0.442606i
\(149\) 10.1240 17.5353i 0.829389 1.43654i −0.0691284 0.997608i \(-0.522022\pi\)
0.898518 0.438937i \(-0.144645\pi\)
\(150\) 0.00484232 0.00838715i 0.000395374 0.000684808i
\(151\) −19.2844 −1.56934 −0.784670 0.619914i \(-0.787167\pi\)
−0.784670 + 0.619914i \(0.787167\pi\)
\(152\) 37.9769 5.55943i 3.08033 0.450930i
\(153\) 23.5039 1.90018
\(154\) 0.290874 0.503808i 0.0234393 0.0405980i
\(155\) −2.84875 + 4.93419i −0.228817 + 0.396323i
\(156\) −1.38160 2.39300i −0.110616 0.191593i
\(157\) 3.90071 6.75623i 0.311311 0.539206i −0.667336 0.744757i \(-0.732565\pi\)
0.978646 + 0.205551i \(0.0658987\pi\)
\(158\) 3.13550 + 5.43084i 0.249447 + 0.432055i
\(159\) −0.896551 −0.0711011
\(160\) −40.3587 −3.19063
\(161\) −0.402957 0.697942i −0.0317575 0.0550055i
\(162\) −12.0239 20.8259i −0.944684 1.63624i
\(163\) −15.4013 −1.20633 −0.603163 0.797618i \(-0.706093\pi\)
−0.603163 + 0.797618i \(0.706093\pi\)
\(164\) 22.6741 1.77055
\(165\) 0.105236 + 0.182274i 0.00819259 + 0.0141900i
\(166\) 16.0494 27.7983i 1.24567 2.15757i
\(167\) 2.23653 + 3.87378i 0.173068 + 0.299762i 0.939491 0.342574i \(-0.111299\pi\)
−0.766423 + 0.642336i \(0.777965\pi\)
\(168\) 0.0890921 0.154312i 0.00687360 0.0119054i
\(169\) −9.15478 + 15.8565i −0.704214 + 1.21973i
\(170\) 47.5443 3.64648
\(171\) 8.08597 + 10.2282i 0.618350 + 0.782170i
\(172\) −2.51995 −0.192145
\(173\) −0.717913 + 1.24346i −0.0545819 + 0.0945386i −0.892025 0.451985i \(-0.850716\pi\)
0.837443 + 0.546524i \(0.184049\pi\)
\(174\) −0.559212 + 0.968583i −0.0423937 + 0.0734281i
\(175\) −0.00413439 0.00716098i −0.000312531 0.000541319i
\(176\) 6.60155 11.4342i 0.497611 0.861887i
\(177\) −0.456160 0.790093i −0.0342871 0.0593870i
\(178\) −1.36066 −0.101986
\(179\) −4.79509 −0.358402 −0.179201 0.983813i \(-0.557351\pi\)
−0.179201 + 0.983813i \(0.557351\pi\)
\(180\) −17.6800 30.6226i −1.31779 2.28248i
\(181\) −3.65848 6.33668i −0.271933 0.471002i 0.697424 0.716659i \(-0.254330\pi\)
−0.969357 + 0.245657i \(0.920996\pi\)
\(182\) −3.25516 −0.241289
\(183\) 0.700127 0.0517549
\(184\) −16.4412 28.4770i −1.21206 2.09935i
\(185\) 1.32497 2.29492i 0.0974139 0.168726i
\(186\) −0.320794 0.555631i −0.0235217 0.0407408i
\(187\) −3.92883 + 6.80493i −0.287304 + 0.497626i
\(188\) 0.605903 1.04945i 0.0441900 0.0765393i
\(189\) 0.121237 0.00881872
\(190\) 16.3565 + 20.6899i 1.18663 + 1.50100i
\(191\) 3.04093 0.220034 0.110017 0.993930i \(-0.464909\pi\)
0.110017 + 0.993930i \(0.464909\pi\)
\(192\) 1.03435 1.79154i 0.0746475 0.129293i
\(193\) −6.28497 + 10.8859i −0.452402 + 0.783584i −0.998535 0.0541151i \(-0.982766\pi\)
0.546132 + 0.837699i \(0.316100\pi\)
\(194\) 4.97210 + 8.61193i 0.356976 + 0.618301i
\(195\) 0.588846 1.01991i 0.0421681 0.0730374i
\(196\) 18.3101 + 31.7141i 1.30787 + 2.26529i
\(197\) −4.33412 −0.308793 −0.154397 0.988009i \(-0.549343\pi\)
−0.154397 + 0.988009i \(0.549343\pi\)
\(198\) 8.06324 0.573029
\(199\) 11.0464 + 19.1329i 0.783057 + 1.35629i 0.930153 + 0.367172i \(0.119674\pi\)
−0.147097 + 0.989122i \(0.546993\pi\)
\(200\) −0.168689 0.292178i −0.0119281 0.0206601i
\(201\) −0.805967 −0.0568485
\(202\) 6.16916 0.434061
\(203\) 0.477457 + 0.826980i 0.0335109 + 0.0580426i
\(204\) −1.94016 + 3.36045i −0.135838 + 0.235279i
\(205\) 4.83191 + 8.36912i 0.337476 + 0.584525i
\(206\) −12.0580 + 20.8851i −0.840122 + 1.45513i
\(207\) 5.58514 9.67374i 0.388194 0.672371i
\(208\) −73.8779 −5.12251
\(209\) −4.31293 + 0.631370i −0.298332 + 0.0436727i
\(210\) 0.122441 0.00844925
\(211\) 1.21252 2.10015i 0.0834736 0.144580i −0.821266 0.570545i \(-0.806732\pi\)
0.904740 + 0.425965i \(0.140065\pi\)
\(212\) −25.1778 + 43.6092i −1.72922 + 2.99509i
\(213\) 0.284177 + 0.492208i 0.0194715 + 0.0337256i
\(214\) 25.8954 44.8522i 1.77017 3.06603i
\(215\) −0.537010 0.930129i −0.0366238 0.0634343i
\(216\) 4.94666 0.336577
\(217\) −0.547790 −0.0371864
\(218\) −15.9513 27.6285i −1.08036 1.87124i
\(219\) 0.237962 + 0.412163i 0.0160800 + 0.0278514i
\(220\) 11.8213 0.796992
\(221\) 43.9675 2.95757
\(222\) 0.149203 + 0.258427i 0.0100139 + 0.0173445i
\(223\) −2.32182 + 4.02151i −0.155480 + 0.269300i −0.933234 0.359269i \(-0.883026\pi\)
0.777753 + 0.628570i \(0.216359\pi\)
\(224\) −1.94015 3.36044i −0.129632 0.224529i
\(225\) 0.0573042 0.0992538i 0.00382028 0.00661692i
\(226\) −8.58945 + 14.8774i −0.571362 + 0.989627i
\(227\) −9.52294 −0.632060 −0.316030 0.948749i \(-0.602350\pi\)
−0.316030 + 0.948749i \(0.602350\pi\)
\(228\) −2.12984 + 0.311786i −0.141052 + 0.0206486i
\(229\) −7.67584 −0.507234 −0.253617 0.967305i \(-0.581620\pi\)
−0.253617 + 0.967305i \(0.581620\pi\)
\(230\) 11.2978 19.5683i 0.744953 1.29030i
\(231\) −0.0101179 + 0.0175248i −0.000665712 + 0.00115305i
\(232\) 19.4809 + 33.7420i 1.27899 + 2.21527i
\(233\) 9.54325 16.5294i 0.625199 1.08288i −0.363303 0.931671i \(-0.618351\pi\)
0.988502 0.151206i \(-0.0483156\pi\)
\(234\) −22.5589 39.0732i −1.47472 2.55429i
\(235\) 0.516479 0.0336914
\(236\) −51.2413 −3.33552
\(237\) −0.109067 0.188910i −0.00708468 0.0122710i
\(238\) 2.28559 + 3.95875i 0.148153 + 0.256608i
\(239\) 20.7710 1.34356 0.671782 0.740749i \(-0.265529\pi\)
0.671782 + 0.740749i \(0.265529\pi\)
\(240\) 2.77888 0.179376
\(241\) 7.44802 + 12.9003i 0.479769 + 0.830984i 0.999731 0.0232053i \(-0.00738713\pi\)
−0.519962 + 0.854190i \(0.674054\pi\)
\(242\) −1.34782 + 2.33450i −0.0866414 + 0.150067i
\(243\) 1.26091 + 2.18397i 0.0808876 + 0.140101i
\(244\) 19.6616 34.0549i 1.25871 2.18014i
\(245\) −7.80390 + 13.5167i −0.498573 + 0.863553i
\(246\) −1.08823 −0.0693829
\(247\) 15.1260 + 19.1334i 0.962445 + 1.21743i
\(248\) −22.3506 −1.41926
\(249\) −0.558271 + 0.966954i −0.0353790 + 0.0612782i
\(250\) −15.0108 + 25.9995i −0.949368 + 1.64435i
\(251\) −10.8893 18.8608i −0.687326 1.19048i −0.972700 0.232068i \(-0.925451\pi\)
0.285373 0.958416i \(-0.407882\pi\)
\(252\) 1.69985 2.94423i 0.107081 0.185469i
\(253\) 1.86718 + 3.23406i 0.117389 + 0.203324i
\(254\) −32.9720 −2.06885
\(255\) −1.65381 −0.103566
\(256\) −9.62670 16.6739i −0.601669 1.04212i
\(257\) 6.17242 + 10.6909i 0.385025 + 0.666882i 0.991773 0.128012i \(-0.0408596\pi\)
−0.606748 + 0.794894i \(0.707526\pi\)
\(258\) 0.120944 0.00752963
\(259\) 0.254780 0.0158313
\(260\) −33.0730 57.2842i −2.05110 3.55261i
\(261\) −6.61774 + 11.4623i −0.409628 + 0.709496i
\(262\) −24.3885 42.2422i −1.50673 2.60973i
\(263\) 0.558866 0.967985i 0.0344612 0.0596885i −0.848280 0.529547i \(-0.822362\pi\)
0.882742 + 0.469859i \(0.155695\pi\)
\(264\) −0.412826 + 0.715036i −0.0254077 + 0.0440074i
\(265\) −21.4618 −1.31839
\(266\) −0.936429 + 2.35654i −0.0574162 + 0.144489i
\(267\) 0.0473301 0.00289656
\(268\) −22.6339 + 39.2031i −1.38259 + 2.39471i
\(269\) −10.1111 + 17.5129i −0.616484 + 1.06778i 0.373638 + 0.927575i \(0.378110\pi\)
−0.990122 + 0.140207i \(0.955223\pi\)
\(270\) 1.69958 + 2.94375i 0.103433 + 0.179151i
\(271\) −8.45255 + 14.6402i −0.513456 + 0.889332i 0.486422 + 0.873724i \(0.338302\pi\)
−0.999878 + 0.0156079i \(0.995032\pi\)
\(272\) 51.8727 + 89.8462i 3.14525 + 5.44773i
\(273\) 0.113230 0.00685298
\(274\) 36.8113 2.22385
\(275\) 0.0191576 + 0.0331819i 0.00115524 + 0.00200094i
\(276\) 0.922063 + 1.59706i 0.0555017 + 0.0961317i
\(277\) 15.7092 0.943872 0.471936 0.881633i \(-0.343555\pi\)
0.471936 + 0.881633i \(0.343555\pi\)
\(278\) 24.1055 1.44575
\(279\) −3.79628 6.57536i −0.227278 0.393656i
\(280\) 2.13271 3.69396i 0.127454 0.220756i
\(281\) 10.6152 + 18.3860i 0.633247 + 1.09682i 0.986884 + 0.161434i \(0.0516118\pi\)
−0.353636 + 0.935383i \(0.615055\pi\)
\(282\) −0.0290800 + 0.0503680i −0.00173169 + 0.00299937i
\(283\) 8.88606 15.3911i 0.528221 0.914906i −0.471237 0.882006i \(-0.656193\pi\)
0.999459 0.0328996i \(-0.0104742\pi\)
\(284\) 31.9220 1.89422
\(285\) −0.568957 0.719691i −0.0337021 0.0426308i
\(286\) 15.0835 0.891904
\(287\) −0.464567 + 0.804653i −0.0274225 + 0.0474972i
\(288\) 26.8912 46.5770i 1.58458 2.74458i
\(289\) −22.3714 38.7484i −1.31596 2.27932i
\(290\) −13.3865 + 23.1862i −0.786085 + 1.36154i
\(291\) −0.172953 0.299563i −0.0101387 0.0175607i
\(292\) 26.7307 1.56430
\(293\) −21.1727 −1.23692 −0.618461 0.785816i \(-0.712243\pi\)
−0.618461 + 0.785816i \(0.712243\pi\)
\(294\) −0.878785 1.52210i −0.0512518 0.0887706i
\(295\) −10.9197 18.9134i −0.635768 1.10118i
\(296\) 10.3954 0.604220
\(297\) −0.561778 −0.0325977
\(298\) 27.2907 + 47.2689i 1.58091 + 2.73821i
\(299\) 10.4478 18.0962i 0.604213 1.04653i
\(300\) 0.00946049 + 0.0163860i 0.000546202 + 0.000946049i
\(301\) 0.0516311 0.0894277i 0.00297597 0.00515453i
\(302\) 25.9919 45.0193i 1.49567 2.59057i
\(303\) −0.214592 −0.0123280
\(304\) −21.2528 + 53.4830i −1.21893 + 3.06746i
\(305\) 16.7598 0.959664
\(306\) −31.6791 + 54.8698i −1.81097 + 3.13670i
\(307\) 12.4528 21.5688i 0.710717 1.23100i −0.253871 0.967238i \(-0.581704\pi\)
0.964588 0.263760i \(-0.0849627\pi\)
\(308\) 0.568283 + 0.984295i 0.0323809 + 0.0560854i
\(309\) 0.419434 0.726481i 0.0238608 0.0413281i
\(310\) −7.67923 13.3008i −0.436151 0.755436i
\(311\) −10.1103 −0.573300 −0.286650 0.958035i \(-0.592542\pi\)
−0.286650 + 0.958035i \(0.592542\pi\)
\(312\) 4.61994 0.261552
\(313\) −0.540548 0.936256i −0.0305536 0.0529203i 0.850344 0.526227i \(-0.176394\pi\)
−0.880898 + 0.473306i \(0.843060\pi\)
\(314\) 10.5149 + 18.2124i 0.593392 + 1.02779i
\(315\) 1.44897 0.0816405
\(316\) −12.2517 −0.689212
\(317\) 1.49176 + 2.58381i 0.0837858 + 0.145121i 0.904873 0.425681i \(-0.139966\pi\)
−0.821087 + 0.570803i \(0.806632\pi\)
\(318\) 1.20839 2.09300i 0.0677633 0.117369i
\(319\) −2.21240 3.83198i −0.123870 0.214550i
\(320\) 24.7604 42.8863i 1.38415 2.39742i
\(321\) −0.900763 + 1.56017i −0.0502757 + 0.0870801i
\(322\) 2.17246 0.121066
\(323\) 12.6483 31.8297i 0.703773 1.77105i
\(324\) 46.9823 2.61013
\(325\) 0.107196 0.185669i 0.00594616 0.0102991i
\(326\) 20.7583 35.9544i 1.14970 1.99133i
\(327\) 0.554862 + 0.961049i 0.0306839 + 0.0531461i
\(328\) −18.9550 + 32.8310i −1.04661 + 1.81279i
\(329\) 0.0248286 + 0.0430043i 0.00136884 + 0.00237091i
\(330\) −0.567357 −0.0312320
\(331\) 7.10403 0.390473 0.195236 0.980756i \(-0.437453\pi\)
0.195236 + 0.980756i \(0.437453\pi\)
\(332\) 31.3558 + 54.3098i 1.72087 + 2.98064i
\(333\) 1.76568 + 3.05824i 0.0967584 + 0.167590i
\(334\) −12.0578 −0.659773
\(335\) −19.2934 −1.05411
\(336\) 0.133588 + 0.231382i 0.00728784 + 0.0126229i
\(337\) 8.13599 14.0919i 0.443196 0.767637i −0.554729 0.832031i \(-0.687178\pi\)
0.997925 + 0.0643939i \(0.0205114\pi\)
\(338\) −24.6780 42.7436i −1.34231 2.32495i
\(339\) 0.298781 0.517504i 0.0162276 0.0281070i
\(340\) −46.4439 + 80.4432i −2.51877 + 4.36265i
\(341\) 2.53830 0.137456
\(342\) −34.7762 + 5.09088i −1.88048 + 0.275283i
\(343\) −3.01129 −0.162594
\(344\) 2.10662 3.64878i 0.113581 0.196729i
\(345\) −0.392989 + 0.680677i −0.0211578 + 0.0366464i
\(346\) −1.93524 3.35193i −0.104039 0.180201i
\(347\) 12.2227 21.1703i 0.656147 1.13648i −0.325458 0.945557i \(-0.605518\pi\)
0.981605 0.190924i \(-0.0611483\pi\)
\(348\) −1.09254 1.89233i −0.0585662 0.101440i
\(349\) −8.35905 −0.447450 −0.223725 0.974652i \(-0.571822\pi\)
−0.223725 + 0.974652i \(0.571822\pi\)
\(350\) 0.0222897 0.00119144
\(351\) 1.57171 + 2.72229i 0.0838919 + 0.145305i
\(352\) 8.99009 + 15.5713i 0.479174 + 0.829953i
\(353\) −2.91960 −0.155394 −0.0776972 0.996977i \(-0.524757\pi\)
−0.0776972 + 0.996977i \(0.524757\pi\)
\(354\) 2.45929 0.130710
\(355\) 6.80269 + 11.7826i 0.361049 + 0.625355i
\(356\) 1.32917 2.30219i 0.0704458 0.122016i
\(357\) −0.0795033 0.137704i −0.00420776 0.00728806i
\(358\) 6.46293 11.1941i 0.341576 0.591628i
\(359\) −11.8294 + 20.4891i −0.624330 + 1.08137i 0.364340 + 0.931266i \(0.381295\pi\)
−0.988670 + 0.150106i \(0.952039\pi\)
\(360\) 59.1202 3.11591
\(361\) 18.2027 5.44611i 0.958039 0.286637i
\(362\) 19.7240 1.03667
\(363\) 0.0468836 0.0812047i 0.00246075 0.00426214i
\(364\) 3.17982 5.50761i 0.166668 0.288677i
\(365\) 5.69639 + 9.86644i 0.298163 + 0.516433i
\(366\) −0.943648 + 1.63445i −0.0493253 + 0.0854339i
\(367\) 0.0136491 + 0.0236409i 0.000712478 + 0.00123405i 0.866381 0.499383i \(-0.166440\pi\)
−0.865669 + 0.500617i \(0.833107\pi\)
\(368\) 49.3053 2.57021
\(369\) −12.8781 −0.670409
\(370\) 3.57166 + 6.18629i 0.185682 + 0.321610i
\(371\) −1.03173 1.78701i −0.0535647 0.0927768i
\(372\) 1.25348 0.0649897
\(373\) −7.11982 −0.368650 −0.184325 0.982865i \(-0.559010\pi\)
−0.184325 + 0.982865i \(0.559010\pi\)
\(374\) −10.5907 18.3437i −0.547634 0.948530i
\(375\) 0.522147 0.904385i 0.0269635 0.0467022i
\(376\) 1.01304 + 1.75464i 0.0522436 + 0.0904886i
\(377\) −12.3794 + 21.4418i −0.637574 + 1.10431i
\(378\) −0.163407 + 0.283028i −0.00840473 + 0.0145574i
\(379\) −30.4001 −1.56155 −0.780773 0.624814i \(-0.785175\pi\)
−0.780773 + 0.624814i \(0.785175\pi\)
\(380\) −50.9845 + 7.46361i −2.61545 + 0.382875i
\(381\) 1.14692 0.0587585
\(382\) −4.09864 + 7.09904i −0.209704 + 0.363219i
\(383\) −12.8099 + 22.1873i −0.654553 + 1.13372i 0.327453 + 0.944868i \(0.393810\pi\)
−0.982006 + 0.188852i \(0.939524\pi\)
\(384\) 1.10228 + 1.90921i 0.0562506 + 0.0974288i
\(385\) −0.242206 + 0.419512i −0.0123439 + 0.0213803i
\(386\) −16.9421 29.3445i −0.862328 1.49360i
\(387\) 1.43125 0.0727547
\(388\) −19.4281 −0.986311
\(389\) −9.62278 16.6671i −0.487894 0.845058i 0.512009 0.858980i \(-0.328902\pi\)
−0.999903 + 0.0139223i \(0.995568\pi\)
\(390\) 1.58732 + 2.74932i 0.0803771 + 0.139217i
\(391\) −29.3434 −1.48396
\(392\) −61.2274 −3.09245
\(393\) 0.848347 + 1.46938i 0.0427934 + 0.0741204i
\(394\) 5.84163 10.1180i 0.294297 0.509737i
\(395\) −2.61088 4.52217i −0.131367 0.227535i
\(396\) −7.87661 + 13.6427i −0.395815 + 0.685571i
\(397\) 8.92868 15.4649i 0.448118 0.776163i −0.550146 0.835069i \(-0.685428\pi\)
0.998264 + 0.0589059i \(0.0187612\pi\)
\(398\) −59.5542 −2.98518
\(399\) 0.0325734 0.0819714i 0.00163071 0.00410370i
\(400\) 0.505878 0.0252939
\(401\) 2.94296 5.09736i 0.146965 0.254550i −0.783140 0.621846i \(-0.786383\pi\)
0.930104 + 0.367296i \(0.119716\pi\)
\(402\) 1.08630 1.88153i 0.0541797 0.0938421i
\(403\) −7.10151 12.3002i −0.353751 0.612715i
\(404\) −6.02638 + 10.4380i −0.299823 + 0.519309i
\(405\) 10.0121 + 17.3414i 0.497503 + 0.861701i
\(406\) −2.57411 −0.127751
\(407\) −1.18058 −0.0585190
\(408\) −3.24385 5.61851i −0.160594 0.278158i
\(409\) −0.355064 0.614989i −0.0175568 0.0304092i 0.857114 0.515128i \(-0.172255\pi\)
−0.874670 + 0.484718i \(0.838922\pi\)
\(410\) −26.0503 −1.28653
\(411\) −1.28047 −0.0631608
\(412\) −23.5579 40.8034i −1.16061 2.01024i
\(413\) 1.04988 1.81844i 0.0516611 0.0894796i
\(414\) 15.0556 + 26.0770i 0.739940 + 1.28161i
\(415\) −13.3640 + 23.1472i −0.656014 + 1.13625i
\(416\) 50.3040 87.1291i 2.46636 4.27186i
\(417\) −0.838500 −0.0410615
\(418\) 4.33914 10.9195i 0.212234 0.534090i
\(419\) 12.1340 0.592787 0.296393 0.955066i \(-0.404216\pi\)
0.296393 + 0.955066i \(0.404216\pi\)
\(420\) −0.119607 + 0.207166i −0.00583624 + 0.0101087i
\(421\) 8.13407 14.0886i 0.396430 0.686638i −0.596852 0.802351i \(-0.703582\pi\)
0.993283 + 0.115714i \(0.0369155\pi\)
\(422\) 3.26853 + 5.66127i 0.159110 + 0.275586i
\(423\) −0.344133 + 0.596056i −0.0167323 + 0.0289813i
\(424\) −42.0960 72.9125i −2.04436 3.54094i
\(425\) −0.301067 −0.0146039
\(426\) −1.53208 −0.0742295
\(427\) 0.805690 + 1.39550i 0.0389901 + 0.0675328i
\(428\) 50.5921 + 87.6281i 2.44546 + 4.23567i
\(429\) −0.524673 −0.0253315
\(430\) 2.89518 0.139618
\(431\) 18.4001 + 31.8698i 0.886299 + 1.53512i 0.844217 + 0.536001i \(0.180066\pi\)
0.0420821 + 0.999114i \(0.486601\pi\)
\(432\) −3.70861 + 6.42350i −0.178431 + 0.309051i
\(433\) −11.2433 19.4740i −0.540319 0.935860i −0.998885 0.0471998i \(-0.984970\pi\)
0.458566 0.888660i \(-0.348363\pi\)
\(434\) 0.738323 1.27881i 0.0354407 0.0613850i
\(435\) 0.465646 0.806523i 0.0223260 0.0386698i
\(436\) 62.3286 2.98500
\(437\) −10.0949 12.7694i −0.482906 0.610843i
\(438\) −1.28292 −0.0613005
\(439\) 16.3712 28.3557i 0.781353 1.35334i −0.149801 0.988716i \(-0.547863\pi\)
0.931154 0.364627i \(-0.118803\pi\)
\(440\) −9.88233 + 17.1167i −0.471122 + 0.816007i
\(441\) −10.3996 18.0126i −0.495218 0.857742i
\(442\) −59.2604 + 102.642i −2.81873 + 4.88218i
\(443\) 9.65847 + 16.7290i 0.458888 + 0.794817i 0.998902 0.0468385i \(-0.0149146\pi\)
−0.540015 + 0.841656i \(0.681581\pi\)
\(444\) −0.582999 −0.0276679
\(445\) 1.13300 0.0537093
\(446\) −6.25880 10.8406i −0.296363 0.513316i
\(447\) −0.949297 1.64423i −0.0449002 0.0777695i
\(448\) 4.76121 0.224946
\(449\) −21.4206 −1.01090 −0.505451 0.862855i \(-0.668674\pi\)
−0.505451 + 0.862855i \(0.668674\pi\)
\(450\) 0.154472 + 0.267553i 0.00728188 + 0.0126126i
\(451\) 2.15267 3.72853i 0.101365 0.175569i
\(452\) −16.7813 29.0660i −0.789325 1.36715i
\(453\) −0.904120 + 1.56598i −0.0424793 + 0.0735762i
\(454\) 12.8352 22.2313i 0.602388 1.04337i
\(455\) 2.71052 0.127071
\(456\) 1.32904 3.34455i 0.0622380 0.156623i
\(457\) 25.7204 1.20315 0.601574 0.798817i \(-0.294541\pi\)
0.601574 + 0.798817i \(0.294541\pi\)
\(458\) 10.3457 17.9192i 0.483422 0.837311i
\(459\) 2.20713 3.82286i 0.103020 0.178436i
\(460\) 22.0726 + 38.2308i 1.02914 + 1.78252i
\(461\) −18.6190 + 32.2490i −0.867173 + 1.50199i −0.00229990 + 0.999997i \(0.500732\pi\)
−0.864873 + 0.501990i \(0.832601\pi\)
\(462\) −0.0272744 0.0472406i −0.00126892 0.00219783i
\(463\) 25.5742 1.18853 0.594267 0.804268i \(-0.297442\pi\)
0.594267 + 0.804268i \(0.297442\pi\)
\(464\) −58.4210 −2.71213
\(465\) 0.267119 + 0.462664i 0.0123874 + 0.0214555i
\(466\) 25.7252 + 44.5574i 1.19170 + 2.06408i
\(467\) 34.4549 1.59438 0.797191 0.603727i \(-0.206318\pi\)
0.797191 + 0.603727i \(0.206318\pi\)
\(468\) 88.1471 4.07460
\(469\) −0.927487 1.60646i −0.0428274 0.0741792i
\(470\) −0.696123 + 1.20572i −0.0321097 + 0.0556157i
\(471\) −0.365758 0.633512i −0.0168533 0.0291907i
\(472\) 42.8365 74.1950i 1.97171 3.41510i
\(473\) −0.239243 + 0.414382i −0.0110004 + 0.0190533i
\(474\) 0.588014 0.0270084
\(475\) −0.103575 0.131016i −0.00475236 0.00601141i
\(476\) −8.93074 −0.409340
\(477\) 14.3002 24.7686i 0.654759 1.13408i
\(478\) −27.9956 + 48.4899i −1.28049 + 2.21788i
\(479\) −13.5575 23.4824i −0.619460 1.07294i −0.989584 0.143954i \(-0.954018\pi\)
0.370124 0.928982i \(-0.379315\pi\)
\(480\) −1.89216 + 3.27732i −0.0863648 + 0.149588i
\(481\) 3.30296 + 5.72089i 0.150602 + 0.260850i
\(482\) −40.1544 −1.82898
\(483\) −0.0755683 −0.00343848
\(484\) −2.63325 4.56093i −0.119693 0.207315i
\(485\) −4.14018 7.17101i −0.187996 0.325619i
\(486\) −6.79795 −0.308361
\(487\) 25.2102 1.14238 0.571192 0.820817i \(-0.306481\pi\)
0.571192 + 0.820817i \(0.306481\pi\)
\(488\) 32.8733 + 56.9382i 1.48810 + 2.57747i
\(489\) −0.722070 + 1.25066i −0.0326531 + 0.0565569i
\(490\) −21.0365 36.4364i −0.950334 1.64603i
\(491\) 3.14604 5.44910i 0.141979 0.245914i −0.786263 0.617892i \(-0.787987\pi\)
0.928242 + 0.371978i \(0.121320\pi\)
\(492\) 1.06304 1.84124i 0.0479256 0.0830096i
\(493\) 34.7685 1.56589
\(494\) −65.0540 + 9.52325i −2.92692 + 0.428471i
\(495\) −6.71412 −0.301777
\(496\) 16.7567 29.0234i 0.752398 1.30319i
\(497\) −0.654047 + 1.13284i −0.0293380 + 0.0508150i
\(498\) −1.50490 2.60657i −0.0674363 0.116803i
\(499\) −4.19930 + 7.27339i −0.187986 + 0.325602i −0.944579 0.328285i \(-0.893529\pi\)
0.756592 + 0.653887i \(0.226863\pi\)
\(500\) −29.3268 50.7955i −1.31153 2.27164i
\(501\) 0.419426 0.0187386
\(502\) 58.7074 2.62024
\(503\) −5.75923 9.97528i −0.256791 0.444776i 0.708589 0.705621i \(-0.249332\pi\)
−0.965381 + 0.260845i \(0.915999\pi\)
\(504\) 2.84207 + 4.92261i 0.126596 + 0.219271i
\(505\) −5.13696 −0.228592
\(506\) −10.0665 −0.447512
\(507\) 0.858417 + 1.48682i 0.0381236 + 0.0660321i
\(508\) 32.2088 55.7874i 1.42904 2.47516i
\(509\) −6.34543 10.9906i −0.281256 0.487150i 0.690438 0.723391i \(-0.257418\pi\)
−0.971694 + 0.236241i \(0.924084\pi\)
\(510\) 2.22905 3.86082i 0.0987039 0.170960i
\(511\) −0.547683 + 0.948614i −0.0242281 + 0.0419642i
\(512\) 4.87828 0.215592
\(513\) 2.42291 0.354690i 0.106974 0.0156599i
\(514\) −33.2773 −1.46780
\(515\) 10.0405 17.3907i 0.442438 0.766325i
\(516\) −0.118144 + 0.204632i −0.00520102 + 0.00900843i
\(517\) −0.115048 0.199269i −0.00505982 0.00876386i
\(518\) −0.343399 + 0.594784i −0.0150881 + 0.0261333i
\(519\) 0.0673166 + 0.116596i 0.00295487 + 0.00511799i
\(520\) 110.593 4.84983
\(521\) −14.2894 −0.626031 −0.313015 0.949748i \(-0.601339\pi\)
−0.313015 + 0.949748i \(0.601339\pi\)
\(522\) −17.8391 30.8982i −0.780795 1.35238i
\(523\) −3.34378 5.79159i −0.146213 0.253249i 0.783612 0.621251i \(-0.213375\pi\)
−0.929825 + 0.368002i \(0.880042\pi\)
\(524\) 95.2962 4.16304
\(525\) −0.000775340 0 −3.38386e−5 0
\(526\) 1.50651 + 2.60934i 0.0656868 + 0.113773i
\(527\) −9.97253 + 17.2729i −0.434410 + 0.752421i
\(528\) −0.619009 1.07215i −0.0269389 0.0466595i
\(529\) 4.52724 7.84142i 0.196837 0.340931i
\(530\) 28.9268 50.1026i 1.25650 2.17632i
\(531\) 29.1034 1.26298
\(532\) −3.07242 3.88640i −0.133206 0.168497i
\(533\) −24.0905 −1.04347
\(534\) −0.0637926 + 0.110492i −0.00276058 + 0.00478146i
\(535\) −21.5627 + 37.3477i −0.932236 + 1.61468i
\(536\) −37.8428 65.5456i −1.63456 2.83114i
\(537\) −0.224811 + 0.389384i −0.00970130 + 0.0168032i
\(538\) −27.2559 47.2087i −1.17509 2.03531i
\(539\) 6.95343 0.299505
\(540\) −6.64096 −0.285781
\(541\) −21.6812 37.5529i −0.932146 1.61452i −0.779645 0.626221i \(-0.784601\pi\)
−0.152501 0.988303i \(-0.548733\pi\)
\(542\) −22.7851 39.4649i −0.978703 1.69516i
\(543\) −0.686091 −0.0294430
\(544\) −141.282 −6.05742
\(545\) 13.2824 + 23.0058i 0.568956 + 0.985460i
\(546\) −0.152614 + 0.264335i −0.00653126 + 0.0113125i
\(547\) −9.61252 16.6494i −0.411002 0.711876i 0.583998 0.811755i \(-0.301488\pi\)
−0.995000 + 0.0998795i \(0.968154\pi\)
\(548\) −35.9593 + 62.2832i −1.53610 + 2.66061i
\(549\) −11.1672 + 19.3421i −0.476603 + 0.825501i
\(550\) −0.103284 −0.00440404
\(551\) 11.9613 + 15.1302i 0.509569 + 0.644570i
\(552\) −3.08329 −0.131234
\(553\) 0.251024 0.434786i 0.0106746 0.0184890i
\(554\) −21.1732 + 36.6730i −0.899562 + 1.55809i
\(555\) −0.124239 0.215188i −0.00527365 0.00913422i
\(556\) −23.5475 + 40.7855i −0.998638 + 1.72969i
\(557\) 10.3851 + 17.9875i 0.440030 + 0.762154i 0.997691 0.0679144i \(-0.0216345\pi\)
−0.557661 + 0.830069i \(0.688301\pi\)
\(558\) 20.4669 0.866432
\(559\) 2.67737 0.113241
\(560\) 3.19787 + 5.53887i 0.135135 + 0.234060i
\(561\) 0.368395 + 0.638079i 0.0155537 + 0.0269397i
\(562\) −57.2294 −2.41408
\(563\) 20.3001 0.855546 0.427773 0.903886i \(-0.359298\pi\)
0.427773 + 0.903886i \(0.359298\pi\)
\(564\) −0.0568138 0.0984044i −0.00239229 0.00414357i
\(565\) 7.15229 12.3881i 0.300899 0.521172i
\(566\) 23.9537 + 41.4890i 1.00685 + 1.74391i
\(567\) −0.962615 + 1.66730i −0.0404260 + 0.0700199i
\(568\) −26.6861 + 46.2216i −1.11972 + 1.93942i
\(569\) 35.3675 1.48268 0.741342 0.671127i \(-0.234190\pi\)
0.741342 + 0.671127i \(0.234190\pi\)
\(570\) 2.44697 0.358212i 0.102492 0.0150038i
\(571\) 10.3172 0.431763 0.215882 0.976420i \(-0.430737\pi\)
0.215882 + 0.976420i \(0.430737\pi\)
\(572\) −14.7344 + 25.5207i −0.616075 + 1.06707i
\(573\) 0.142570 0.246938i 0.00595593 0.0103160i
\(574\) −1.25231 2.16906i −0.0522703 0.0905348i
\(575\) −0.0715414 + 0.123913i −0.00298348 + 0.00516754i
\(576\) 32.9960 + 57.1508i 1.37484 + 2.38128i
\(577\) −15.6117 −0.649923 −0.324961 0.945727i \(-0.605351\pi\)
−0.324961 + 0.945727i \(0.605351\pi\)
\(578\) 120.611 5.01675
\(579\) 0.589324 + 1.02074i 0.0244915 + 0.0424205i
\(580\) −26.1534 45.2990i −1.08596 1.88094i
\(581\) −2.56978 −0.106613
\(582\) 0.932440 0.0386509
\(583\) 4.78073 + 8.28047i 0.197998 + 0.342942i
\(584\) −22.3462 + 38.7048i −0.924693 + 1.60162i
\(585\) 18.7844 + 32.5356i 0.776640 + 1.34518i
\(586\) 28.5370 49.4276i 1.17885 2.04183i
\(587\) −2.61795 + 4.53442i −0.108054 + 0.187156i −0.914982 0.403495i \(-0.867795\pi\)
0.806928 + 0.590650i \(0.201129\pi\)
\(588\) 3.43378 0.141607
\(589\) −10.9475 + 1.60260i −0.451084 + 0.0660341i
\(590\) 58.8712 2.42369
\(591\) −0.203199 + 0.351951i −0.00835849 + 0.0144773i
\(592\) −7.79364 + 13.4990i −0.320317 + 0.554805i
\(593\) 3.30918 + 5.73167i 0.135892 + 0.235371i 0.925938 0.377676i \(-0.123277\pi\)
−0.790046 + 0.613048i \(0.789943\pi\)
\(594\) 0.757178 1.31147i 0.0310674 0.0538103i
\(595\) −1.90317 3.29639i −0.0780223 0.135139i
\(596\) −106.636 −4.36799
\(597\) 2.07157 0.0847839
\(598\) 28.1636 + 48.7808i 1.15170 + 1.99480i
\(599\) 19.8772 + 34.4283i 0.812159 + 1.40670i 0.911350 + 0.411632i \(0.135041\pi\)
−0.0991913 + 0.995068i \(0.531626\pi\)
\(600\) −0.0316350 −0.00129149
\(601\) −13.5825 −0.554043 −0.277021 0.960864i \(-0.589347\pi\)
−0.277021 + 0.960864i \(0.589347\pi\)
\(602\) 0.139179 + 0.241065i 0.00567252 + 0.00982510i
\(603\) 12.8553 22.2661i 0.523509 0.906744i
\(604\) 50.7806 + 87.9546i 2.06623 + 3.57882i
\(605\) 1.12231 1.94390i 0.0456284 0.0790307i
\(606\) 0.289232 0.500965i 0.0117493 0.0203503i
\(607\) −22.2351 −0.902494 −0.451247 0.892399i \(-0.649021\pi\)
−0.451247 + 0.892399i \(0.649021\pi\)
\(608\) −48.6049 61.4819i −1.97119 2.49342i
\(609\) 0.0895396 0.00362833
\(610\) −22.5893 + 39.1257i −0.914612 + 1.58415i
\(611\) −0.643752 + 1.11501i −0.0260434 + 0.0451085i
\(612\) −61.8917 107.200i −2.50182 4.33329i
\(613\) −7.08099 + 12.2646i −0.285999 + 0.495364i −0.972851 0.231433i \(-0.925659\pi\)
0.686852 + 0.726797i \(0.258992\pi\)
\(614\) 33.5683 + 58.1419i 1.35470 + 2.34642i
\(615\) 0.906150 0.0365395
\(616\) −1.90028 −0.0765646
\(617\) −20.4531 35.4259i −0.823412 1.42619i −0.903127 0.429374i \(-0.858734\pi\)
0.0797143 0.996818i \(-0.474599\pi\)
\(618\) 1.13065 + 1.95834i 0.0454812 + 0.0787758i
\(619\) 12.3500 0.496390 0.248195 0.968710i \(-0.420163\pi\)
0.248195 + 0.968710i \(0.420163\pi\)
\(620\) 30.0060 1.20507
\(621\) −1.04894 1.81682i −0.0420927 0.0729066i
\(622\) 13.6268 23.6024i 0.546386 0.946369i
\(623\) 0.0544664 + 0.0943385i 0.00218215 + 0.00377959i
\(624\) −3.46366 + 5.99923i −0.138657 + 0.240162i
\(625\) 12.5951 21.8153i 0.503802 0.872611i
\(626\) 2.91425 0.116477
\(627\) −0.150935 + 0.379831i −0.00602778 + 0.0151690i
\(628\) −41.0862 −1.63952
\(629\) 4.63828 8.03374i 0.184941 0.320326i
\(630\) −1.95296 + 3.38263i −0.0778079 + 0.134767i
\(631\) 17.0376 + 29.5101i 0.678258 + 1.17478i 0.975505 + 0.219976i \(0.0705980\pi\)
−0.297247 + 0.954800i \(0.596069\pi\)
\(632\) 10.2421 17.7399i 0.407410 0.705656i
\(633\) −0.113695 0.196925i −0.00451896 0.00782708i
\(634\) −8.04254 −0.319410
\(635\) 27.4552 1.08953
\(636\) 2.36085 + 4.08911i 0.0936137 + 0.162144i
\(637\) −19.4539 33.6952i −0.770793 1.33505i
\(638\) 11.9277 0.472221
\(639\) −18.1307 −0.717239
\(640\) 26.3867 + 45.7030i 1.04302 + 1.80657i
\(641\) −11.6178 + 20.1227i −0.458877 + 0.794799i −0.998902 0.0468503i \(-0.985082\pi\)
0.540025 + 0.841649i \(0.318415\pi\)
\(642\) −2.42814 4.20566i −0.0958310 0.165984i
\(643\) 0.310158 0.537209i 0.0122314 0.0211855i −0.859845 0.510555i \(-0.829440\pi\)
0.872076 + 0.489370i \(0.162773\pi\)
\(644\) −2.12218 + 3.67572i −0.0836255 + 0.144844i
\(645\) −0.100708 −0.00396537
\(646\) 57.2588 + 72.4284i 2.25282 + 2.84966i
\(647\) 21.6992 0.853083 0.426541 0.904468i \(-0.359732\pi\)
0.426541 + 0.904468i \(0.359732\pi\)
\(648\) −39.2761 + 68.0281i −1.54291 + 2.67240i
\(649\) −4.86482 + 8.42612i −0.190961 + 0.330754i
\(650\) 0.288962 + 0.500498i 0.0113340 + 0.0196311i
\(651\) −0.0256823 + 0.0444831i −0.00100657 + 0.00174343i
\(652\) 40.5557 + 70.2445i 1.58828 + 2.75099i
\(653\) −5.63795 −0.220630 −0.110315 0.993897i \(-0.535186\pi\)
−0.110315 + 0.993897i \(0.535186\pi\)
\(654\) −2.99142 −0.116974
\(655\) 20.3079 + 35.1744i 0.793496 + 1.37438i
\(656\) −28.4219 49.2281i −1.10969 1.92204i
\(657\) −15.1822 −0.592313
\(658\) −0.133858 −0.00521833
\(659\) −2.07926 3.60138i −0.0809964 0.140290i 0.822682 0.568502i \(-0.192477\pi\)
−0.903678 + 0.428212i \(0.859144\pi\)
\(660\) 0.554225 0.959946i 0.0215732 0.0373658i
\(661\) 17.9539 + 31.0970i 0.698324 + 1.20953i 0.969047 + 0.246876i \(0.0794040\pi\)
−0.270723 + 0.962657i \(0.587263\pi\)
\(662\) −9.57497 + 16.5843i −0.372142 + 0.644569i
\(663\) 2.06135 3.57037i 0.0800563 0.138662i
\(664\) −104.851 −4.06900
\(665\) 0.779749 1.96225i 0.0302374 0.0760928i
\(666\) −9.51927 −0.368864
\(667\) 8.26190 14.3100i 0.319902 0.554087i
\(668\) 11.7787 20.4013i 0.455732 0.789351i
\(669\) 0.217710 + 0.377085i 0.00841717 + 0.0145790i
\(670\) 26.0041 45.0404i 1.00463 1.74006i
\(671\) −3.73333 6.46632i −0.144124 0.249629i
\(672\) −0.363845 −0.0140356
\(673\) −27.5619 −1.06243 −0.531216 0.847237i \(-0.678265\pi\)
−0.531216 + 0.847237i \(0.678265\pi\)
\(674\) 21.9317 + 37.9869i 0.844779 + 1.46320i
\(675\) −0.0107623 0.0186408i −0.000414241 0.000717487i
\(676\) 96.4274 3.70875
\(677\) −0.779510 −0.0299590 −0.0149795 0.999888i \(-0.504768\pi\)
−0.0149795 + 0.999888i \(0.504768\pi\)
\(678\) 0.805408 + 1.39501i 0.0309315 + 0.0535750i
\(679\) 0.398060 0.689460i 0.0152761 0.0264591i
\(680\) −77.6520 134.497i −2.97782 5.15773i
\(681\) −0.446470 + 0.773308i −0.0171088 + 0.0296332i
\(682\) −3.42117 + 5.92565i −0.131003 + 0.226905i
\(683\) −25.8086 −0.987538 −0.493769 0.869593i \(-0.664381\pi\)
−0.493769 + 0.869593i \(0.664381\pi\)
\(684\) 25.3577 63.8130i 0.969576 2.43995i
\(685\) −30.6521 −1.17116
\(686\) 4.05868 7.02985i 0.154961 0.268401i
\(687\) −0.359871 + 0.623315i −0.0137299 + 0.0237809i
\(688\) 3.15875 + 5.47112i 0.120426 + 0.208585i
\(689\) 26.7505 46.3333i 1.01911 1.76516i
\(690\) −1.05936 1.83486i −0.0403291 0.0698521i
\(691\) 8.73241 0.332196 0.166098 0.986109i \(-0.446883\pi\)
0.166098 + 0.986109i \(0.446883\pi\)
\(692\) 7.56179 0.287456
\(693\) −0.322766 0.559048i −0.0122609 0.0212365i
\(694\) 32.9480 + 57.0676i 1.25069 + 2.16626i
\(695\) −20.0722 −0.761382
\(696\) 3.65334 0.138480
\(697\) 16.9149 + 29.2975i 0.640698 + 1.10972i
\(698\) 11.2665 19.5142i 0.426444 0.738623i
\(699\) −0.894843 1.54991i −0.0338461 0.0586231i
\(700\) −0.0217738 + 0.0377133i −0.000822973 + 0.00142543i
\(701\) 7.75047 13.4242i 0.292731 0.507025i −0.681723 0.731610i \(-0.738769\pi\)
0.974455 + 0.224585i \(0.0721026\pi\)
\(702\) −8.47357 −0.319814
\(703\) 5.09175 0.745380i 0.192039 0.0281125i
\(704\) −22.0620 −0.831494
\(705\) 0.0242144 0.0419406i 0.000911967 0.00157957i
\(706\) 3.93510 6.81579i 0.148099 0.256516i
\(707\) −0.246948 0.427726i −0.00928742 0.0160863i
\(708\) −2.40237 + 4.16103i −0.0902867 + 0.156381i
\(709\) 6.69797 + 11.6012i 0.251548 + 0.435693i 0.963952 0.266076i \(-0.0857271\pi\)
−0.712404 + 0.701769i \(0.752394\pi\)
\(710\) −36.6753 −1.37640
\(711\) 6.95858 0.260967
\(712\) 2.22231 + 3.84915i 0.0832844 + 0.144253i
\(713\) 4.73947 + 8.20900i 0.177494 + 0.307429i
\(714\) 0.428626 0.0160409
\(715\) −12.5598 −0.469708
\(716\) 12.6267 + 21.8701i 0.471881 + 0.817323i
\(717\) 0.973819 1.68670i 0.0363679 0.0629911i
\(718\) −31.8878 55.2313i −1.19004 2.06121i
\(719\) 2.83980 4.91868i 0.105907 0.183436i −0.808202 0.588906i \(-0.799559\pi\)
0.914108 + 0.405470i \(0.132892\pi\)
\(720\) −44.3236 + 76.7708i −1.65184 + 2.86108i
\(721\) 1.93070 0.0719030
\(722\) −11.8202 + 49.8347i −0.439901 + 1.85465i
\(723\) 1.39676 0.0519460
\(724\) −19.2674 + 33.3722i −0.716069 + 1.24027i
\(725\) 0.0847682 0.146823i 0.00314821 0.00545286i
\(726\) 0.126382 + 0.218899i 0.00469046 + 0.00812411i
\(727\) 7.29357 12.6328i 0.270504 0.468526i −0.698487 0.715623i \(-0.746143\pi\)
0.968991 + 0.247096i \(0.0794764\pi\)
\(728\) 5.31651 + 9.20847i 0.197043 + 0.341289i
\(729\) −26.5264 −0.982458
\(730\) −30.7109 −1.13666
\(731\) −1.87989 3.25607i −0.0695303 0.120430i
\(732\) −1.84361 3.19323i −0.0681419 0.118025i
\(733\) −19.0829 −0.704845 −0.352422 0.935841i \(-0.614642\pi\)
−0.352422 + 0.935841i \(0.614642\pi\)
\(734\) −0.0735863 −0.00271612
\(735\) 0.731749 + 1.26743i 0.0269910 + 0.0467497i
\(736\) −33.5723 + 58.1490i −1.23749 + 2.14340i
\(737\) 4.29770 + 7.44384i 0.158308 + 0.274197i
\(738\) 17.3575 30.0640i 0.638937 1.10667i
\(739\) −13.1812 + 22.8304i −0.484877 + 0.839832i −0.999849 0.0173754i \(-0.994469\pi\)
0.514972 + 0.857207i \(0.327802\pi\)
\(740\) −13.9560 −0.513031
\(741\) 2.26288 0.331263i 0.0831290 0.0121692i
\(742\) 5.56235 0.204200
\(743\) −13.5609 + 23.4882i −0.497501 + 0.861697i −0.999996 0.00288297i \(-0.999082\pi\)
0.502495 + 0.864580i \(0.332416\pi\)
\(744\) −1.04788 + 1.81497i −0.0384170 + 0.0665402i
\(745\) −22.7245 39.3600i −0.832561 1.44204i
\(746\) 9.59625 16.6212i 0.351344 0.608545i
\(747\) −17.8091 30.8462i −0.651600 1.12860i
\(748\) 41.3824 1.51309
\(749\) −4.14631 −0.151503
\(750\) 1.40752 + 2.43790i 0.0513955 + 0.0890196i
\(751\) 21.7527 + 37.6767i 0.793766 + 1.37484i 0.923620 + 0.383310i \(0.125216\pi\)
−0.129854 + 0.991533i \(0.541451\pi\)
\(752\) −3.03799 −0.110784
\(753\) −2.04212 −0.0744189
\(754\) −33.3706 57.7996i −1.21529 2.10494i
\(755\) −21.6430 + 37.4868i −0.787670 + 1.36428i
\(756\) −0.319249 0.552955i −0.0116110 0.0201108i
\(757\) 4.62905 8.01775i 0.168246 0.291410i −0.769558 0.638578i \(-0.779523\pi\)
0.937803 + 0.347168i \(0.112856\pi\)
\(758\) 40.9739 70.9689i 1.48824 2.57771i
\(759\) 0.350161 0.0127100
\(760\) 31.8149 80.0626i 1.15405 2.90417i
\(761\) 1.36776 0.0495811 0.0247906 0.999693i \(-0.492108\pi\)
0.0247906 + 0.999693i \(0.492108\pi\)
\(762\) −1.54584 + 2.67748i −0.0560001 + 0.0969949i
\(763\) −1.27704 + 2.21190i −0.0462321 + 0.0800763i
\(764\) −8.00754 13.8695i −0.289703 0.501780i
\(765\) 26.3786 45.6891i 0.953722 1.65189i
\(766\) −34.5308 59.8092i −1.24765 2.16099i
\(767\) 54.4422 1.96579
\(768\) −1.80534 −0.0651445
\(769\) −4.78603 8.28965i −0.172589 0.298933i 0.766735 0.641963i \(-0.221880\pi\)
−0.939324 + 0.343031i \(0.888547\pi\)
\(770\) −0.652901 1.13086i