[N,k,chi] = [209,2,Mod(45,209)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(209, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("209.45");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/209\mathbb{Z}\right)^\times\).
\(n\)
\(78\)
\(134\)
\(\chi(n)\)
\(-1 - \beta_{8}\)
\(1\)
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{18} - T_{2}^{17} + 14 T_{2}^{16} - 11 T_{2}^{15} + 130 T_{2}^{14} - 92 T_{2}^{13} + 629 T_{2}^{12} - 276 T_{2}^{11} + 2060 T_{2}^{10} - 681 T_{2}^{9} + 3955 T_{2}^{8} - 115 T_{2}^{7} + 4735 T_{2}^{6} + 105 T_{2}^{5} + 2904 T_{2}^{4} + \cdots + 9 \)
T2^18 - T2^17 + 14*T2^16 - 11*T2^15 + 130*T2^14 - 92*T2^13 + 629*T2^12 - 276*T2^11 + 2060*T2^10 - 681*T2^9 + 3955*T2^8 - 115*T2^7 + 4735*T2^6 + 105*T2^5 + 2904*T2^4 + 1230*T2^3 + 639*T2^2 + 81*T2 + 9
acting on \(S_{2}^{\mathrm{new}}(209, [\chi])\).
$p$
$F_p(T)$
$2$
\( T^{18} - T^{17} + 14 T^{16} - 11 T^{15} + \cdots + 9 \)
T^18 - T^17 + 14*T^16 - 11*T^15 + 130*T^14 - 92*T^13 + 629*T^12 - 276*T^11 + 2060*T^10 - 681*T^9 + 3955*T^8 - 115*T^7 + 4735*T^6 + 105*T^5 + 2904*T^4 + 1230*T^3 + 639*T^2 + 81*T + 9
$3$
\( T^{18} + 19 T^{16} - 2 T^{15} + 251 T^{14} + \cdots + 196 \)
T^18 + 19*T^16 - 2*T^15 + 251*T^14 - 37*T^13 + 1643*T^12 - 539*T^11 + 7714*T^10 - 2169*T^9 + 19305*T^8 - 3254*T^7 + 34498*T^6 - 4052*T^5 + 34125*T^4 - 1092*T^3 + 22394*T^2 - 2072*T + 196
$5$
\( T^{18} + 26 T^{16} + 14 T^{15} + \cdots + 7569 \)
T^18 + 26*T^16 + 14*T^15 + 465*T^14 + 311*T^13 + 4463*T^12 + 4718*T^11 + 31410*T^10 + 32879*T^9 + 122090*T^8 + 144534*T^7 + 335797*T^6 + 273201*T^5 + 293754*T^4 + 53250*T^3 + 50715*T^2 + 6786*T + 7569
$7$
\( (T^{9} + 3 T^{8} - 24 T^{7} - 64 T^{6} + \cdots + 64)^{2} \)
(T^9 + 3*T^8 - 24*T^7 - 64*T^6 + 157*T^5 + 352*T^4 - 244*T^3 - 635*T^2 - 152*T + 64)^2
$11$
\( (T + 1)^{18} \)
(T + 1)^18
$13$
\( T^{18} - 11 T^{17} + 119 T^{16} + \cdots + 23020804 \)
T^18 - 11*T^17 + 119*T^16 - 684*T^15 + 4511*T^14 - 20149*T^13 + 105750*T^12 - 354924*T^11 + 1316939*T^10 - 2920892*T^9 + 8871256*T^8 - 15091591*T^7 + 41370358*T^6 - 42724315*T^5 + 92887577*T^4 - 73779370*T^3 + 145333722*T^2 - 58430044*T + 23020804
$17$
\( T^{18} - 6 T^{17} + 78 T^{16} + \cdots + 13571856 \)
T^18 - 6*T^17 + 78*T^16 - 146*T^15 + 2574*T^14 - 5928*T^13 + 43955*T^12 - 103995*T^11 + 540072*T^10 - 1316416*T^9 + 4003227*T^8 - 8306862*T^7 + 19366999*T^6 - 34051839*T^5 + 55163793*T^4 - 63190704*T^3 + 59074884*T^2 - 33509664*T + 13571856
$19$
\( T^{18} - 4 T^{17} + \cdots + 322687697779 \)
T^18 - 4*T^17 - 43*T^16 + 37*T^15 + 1170*T^14 + 2616*T^13 - 13657*T^12 - 132350*T^11 + 98101*T^10 + 2835778*T^9 + 1863919*T^8 - 47778350*T^7 - 93673363*T^6 + 340919736*T^5 + 2897035830*T^4 + 1740697597*T^3 - 38436484777*T^2 - 67934252164*T + 322687697779
$23$
\( T^{18} + T^{17} + 61 T^{16} + 168 T^{15} + \cdots + 72900 \)
T^18 + T^17 + 61*T^16 + 168*T^15 + 3013*T^14 + 6110*T^13 + 48180*T^12 - 669*T^11 + 384835*T^10 - 337596*T^9 + 2764794*T^8 - 4514910*T^7 + 8208792*T^6 - 6113376*T^5 + 4547025*T^4 - 876204*T^3 + 679914*T^2 - 126360*T + 72900
$29$
\( T^{18} - 13 T^{17} + \cdots + 463344321636 \)
T^18 - 13*T^17 + 207*T^16 - 1832*T^15 + 19731*T^14 - 149557*T^13 + 1202324*T^12 - 7314344*T^11 + 45753139*T^10 - 231256778*T^9 + 1148872020*T^8 - 4422717681*T^7 + 15368748088*T^6 - 38217758475*T^5 + 86443414041*T^4 - 130614944946*T^3 + 246004791246*T^2 - 268186629060*T + 463344321636
$31$
\( (T^{9} + 16 T^{8} - 75 T^{7} + \cdots - 331264)^{2} \)
(T^9 + 16*T^8 - 75*T^7 - 2331*T^6 - 5941*T^5 + 77709*T^4 + 446338*T^3 + 501094*T^2 - 433248*T - 331264)^2
$37$
\( (T^{9} + 18 T^{8} - 78 T^{7} + \cdots - 1086460)^{2} \)
(T^9 + 18*T^8 - 78*T^7 - 2957*T^6 - 9662*T^5 + 92580*T^4 + 592769*T^3 + 709309*T^2 - 869928*T - 1086460)^2
$41$
\( T^{18} + \cdots + 127125805400064 \)
T^18 - 4*T^17 + 283*T^16 - 624*T^15 + 51241*T^14 - 98722*T^13 + 5193884*T^12 - 7755680*T^11 + 374382304*T^10 - 535061920*T^9 + 15944734848*T^8 - 16168351360*T^7 + 473951531008*T^6 - 469983158784*T^5 + 7961661367296*T^4 - 4755613495296*T^3 + 83660443213824*T^2 - 91765937111040*T + 127125805400064
$43$
\( T^{18} - T^{17} + 143 T^{16} + \cdots + 41783296 \)
T^18 - T^17 + 143*T^16 + 126*T^15 + 14375*T^14 + 10178*T^13 + 680198*T^12 + 78421*T^11 + 23380767*T^10 - 6184774*T^9 + 410600348*T^8 - 444917786*T^7 + 5046242232*T^6 - 2900079988*T^5 + 2351950065*T^4 - 506805520*T^3 + 366919744*T^2 - 66915328*T + 41783296
$47$
\( T^{18} + 14 T^{17} + 230 T^{16} + \cdots + 101124 \)
T^18 + 14*T^17 + 230*T^16 + 1152*T^15 + 12991*T^14 + 47261*T^13 + 550280*T^12 + 869679*T^11 + 5743007*T^10 + 1227935*T^9 + 40574671*T^8 + 811566*T^7 + 126889087*T^6 - 71571222*T^5 + 267181131*T^4 - 38294916*T^3 + 10199250*T^2 + 705960*T + 101124
$53$
\( T^{18} + 4 T^{17} + 231 T^{16} + \cdots + 267813225 \)
T^18 + 4*T^17 + 231*T^16 + 548*T^15 + 40452*T^14 + 81915*T^13 + 2238741*T^12 - 6551540*T^11 + 61949672*T^10 - 85991137*T^9 + 453308218*T^8 - 389776640*T^7 + 2458336273*T^6 - 1304060523*T^5 + 3092203617*T^4 - 623655150*T^3 + 2704865634*T^2 - 789153030*T + 267813225
$59$
\( T^{18} - 31 T^{17} + \cdots + 76585986800964 \)
T^18 - 31*T^17 + 759*T^16 - 10916*T^15 + 143575*T^14 - 1401327*T^13 + 14102328*T^12 - 110680486*T^11 + 882510725*T^10 - 5209015160*T^9 + 32187333236*T^8 - 148682133063*T^7 + 756852501304*T^6 - 2495664543045*T^5 + 8323951126557*T^4 - 11652701931030*T^3 + 25329777152562*T^2 - 8285823113652*T + 76585986800964
$61$
\( T^{18} - 3 T^{17} + \cdots + 16374647833600 \)
T^18 - 3*T^17 + 225*T^16 - 660*T^15 + 35357*T^14 - 94904*T^13 + 2558514*T^12 - 4094101*T^11 + 122731655*T^10 - 160953222*T^9 + 3757102282*T^8 - 3530804242*T^7 + 81427852214*T^6 - 79288985204*T^5 + 1085754969329*T^4 - 929490993824*T^3 + 9339730174944*T^2 - 10553298990080*T + 16374647833600
$67$
\( T^{18} + 2 T^{17} + \cdots + 44\!\cdots\!00 \)
T^18 + 2*T^17 + 434*T^16 + 3084*T^15 + 131837*T^14 + 1006661*T^13 + 23796788*T^12 + 197838661*T^11 + 3131909037*T^10 + 22277037881*T^9 + 237002073575*T^8 + 1373600788948*T^7 + 11545077627315*T^6 + 52592766884642*T^5 + 283343878464417*T^4 + 574908654416936*T^3 + 1532045490271504*T^2 - 1151481598180480*T + 4450779144505600
$71$
\( T^{18} + 12 T^{17} + \cdots + 10122094962576 \)
T^18 + 12*T^17 + 301*T^16 + 3206*T^15 + 56861*T^14 + 536477*T^13 + 5710513*T^12 + 38047329*T^11 + 291027904*T^10 + 1562823723*T^9 + 9620157921*T^8 + 38975280800*T^7 + 171172564552*T^6 + 471745745532*T^5 + 1697055927585*T^4 + 3898464766836*T^3 + 9368479755396*T^2 + 10597109221872*T + 10122094962576
$73$
\( T^{18} + 26 T^{17} + \cdots + 120629793124 \)
T^18 + 26*T^17 + 598*T^16 + 7608*T^15 + 100627*T^14 + 957335*T^13 + 10247100*T^12 + 79180075*T^11 + 636289447*T^10 + 3893531821*T^9 + 25254775809*T^8 + 126474209600*T^7 + 574732904929*T^6 + 1784188737924*T^5 + 4380243887923*T^4 + 6214894137500*T^3 + 6108624544022*T^2 - 795643020760*T + 120629793124
$79$
\( T^{18} - 31 T^{17} + \cdots + 51046624225 \)
T^18 - 31*T^17 + 930*T^16 - 11461*T^15 + 176183*T^14 - 904866*T^13 + 18746858*T^12 - 44153877*T^11 + 1586173022*T^10 + 4146331615*T^9 + 76288048941*T^8 + 56385404449*T^7 + 546888882861*T^6 - 267981784940*T^5 + 3436798513001*T^4 - 649010223674*T^3 + 537093389869*T^2 + 76091067105*T + 51046624225
$83$
\( (T^{9} - 18 T^{8} - 155 T^{7} + \cdots - 3773520)^{2} \)
(T^9 - 18*T^8 - 155*T^7 + 3231*T^6 - 1074*T^5 - 121670*T^4 + 231872*T^3 + 1240803*T^2 - 2105352*T - 3773520)^2
$89$
\( T^{18} + 11 T^{17} + \cdots + 3020601600 \)
T^18 + 11*T^17 + 373*T^16 + 2902*T^15 + 89193*T^14 + 650447*T^13 + 8840594*T^12 + 13044032*T^11 + 192365929*T^10 + 427096724*T^9 + 2789564452*T^8 + 2460041709*T^7 + 8139206938*T^6 + 3958978311*T^5 + 17252543721*T^4 + 5379163896*T^3 + 10128130704*T^2 - 2700074880*T + 3020601600
$97$
\( T^{18} - 16 T^{17} + \cdots + 15\!\cdots\!89 \)
T^18 - 16*T^17 + 827*T^16 - 10208*T^15 + 394616*T^14 - 4486381*T^13 + 114323457*T^12 - 1046812940*T^11 + 21638285172*T^10 - 180062389561*T^9 + 2619548016906*T^8 - 16087150323916*T^7 + 170479795195789*T^6 - 1115104233562499*T^5 + 6664741536002441*T^4 - 24996690841825494*T^3 + 74050073354138342*T^2 - 126639655352298774*T + 153169915675934089
show more
show less