Defining parameters
Level: | \( N \) | \(=\) | \( 209 = 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 209.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(209, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 36 | 8 |
Cusp forms | 36 | 36 | 0 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(209, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
209.2.e.a | $18$ | $1.669$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-1\) | \(-4\) | \(0\) | \(-6\) | \(q-\beta _{1}q^{2}-\beta _{7}q^{3}+(-1-\beta _{4}-\beta _{9}+\cdots)q^{4}+\cdots\) |
209.2.e.b | $18$ | $1.669$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(1\) | \(0\) | \(0\) | \(-6\) | \(q+\beta _{1}q^{2}+(\beta _{4}-\beta _{12})q^{3}+(-1+\beta _{3}+\cdots)q^{4}+\cdots\) |