Properties

Label 209.2.d
Level $209$
Weight $2$
Character orbit 209.d
Rep. character $\chi_{209}(208,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $3$
Sturm bound $40$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 209 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(40\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(209, [\chi])\).

Total New Old
Modular forms 22 22 0
Cusp forms 18 18 0
Eisenstein series 4 4 0

Trace form

\( 18 q + 12 q^{4} - 2 q^{5} - 30 q^{9} + 5 q^{11} - 40 q^{20} - 16 q^{23} + 28 q^{25} + 20 q^{26} - 88 q^{36} - 32 q^{38} + 128 q^{42} + 62 q^{44} + 34 q^{45} - 6 q^{47} - 44 q^{49} - 27 q^{55} + 20 q^{58}+ \cdots - 25 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(209, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
209.2.d.a 209.d 209.d $2$ $1.669$ \(\Q(\sqrt{-19}) \) \(\Q(\sqrt{-19}) \) 209.2.d.a \(0\) \(0\) \(2\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{4}+q^{5}+(1-2\beta )q^{7}+3q^{9}+(3+\cdots)q^{11}+\cdots\)
209.2.d.b 209.d 209.d $8$ $1.669$ 8.0.3288334336.3 None 209.2.d.b \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{7}q^{2}+\beta _{2}q^{3}-\beta _{3}q^{4}+(-1-\beta _{3}+\cdots)q^{5}+\cdots\)
209.2.d.c 209.d 209.d $8$ $1.669$ 8.0.484000000.9 None 209.2.d.c \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{2}+\beta _{2}q^{3}+(1+2\beta _{3})q^{4}+(2+\cdots)q^{5}+\cdots\)