Properties

Label 209.2.a.c.1.5
Level $209$
Weight $2$
Character 209.1
Self dual yes
Analytic conductor $1.669$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,2,Mod(1,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.66887340224\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.246832.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 6x^{2} + 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.71457\) of defining polynomial
Character \(\chi\) \(=\) 209.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.65432 q^{2} +0.121872 q^{3} +5.04540 q^{4} -1.06025 q^{5} +0.323487 q^{6} -3.36889 q^{7} +8.08346 q^{8} -2.98515 q^{9} -2.81425 q^{10} +1.00000 q^{11} +0.614893 q^{12} -2.15993 q^{13} -8.94209 q^{14} -0.129215 q^{15} +11.3653 q^{16} +3.67288 q^{17} -7.92353 q^{18} -1.00000 q^{19} -5.34940 q^{20} -0.410573 q^{21} +2.65432 q^{22} +3.15468 q^{23} +0.985147 q^{24} -3.87587 q^{25} -5.73313 q^{26} -0.729422 q^{27} -16.9974 q^{28} +7.17849 q^{29} -0.342978 q^{30} +4.65295 q^{31} +14.0001 q^{32} +0.121872 q^{33} +9.74900 q^{34} +3.57187 q^{35} -15.0613 q^{36} +2.27446 q^{37} -2.65432 q^{38} -0.263235 q^{39} -8.57050 q^{40} -11.3852 q^{41} -1.08979 q^{42} +9.38838 q^{43} +5.04540 q^{44} +3.16501 q^{45} +8.37352 q^{46} -5.77094 q^{47} +1.38511 q^{48} +4.34940 q^{49} -10.2878 q^{50} +0.447622 q^{51} -10.8977 q^{52} -5.65820 q^{53} -1.93612 q^{54} -1.06025 q^{55} -27.2322 q^{56} -0.121872 q^{57} +19.0540 q^{58} -13.7944 q^{59} -0.651942 q^{60} +6.98152 q^{61} +12.3504 q^{62} +10.0566 q^{63} +14.4301 q^{64} +2.29007 q^{65} +0.323487 q^{66} -4.81332 q^{67} +18.5312 q^{68} +0.384467 q^{69} +9.48087 q^{70} +15.2629 q^{71} -24.1303 q^{72} -8.08806 q^{73} +6.03713 q^{74} -0.472360 q^{75} -5.04540 q^{76} -3.36889 q^{77} -0.698709 q^{78} +13.4291 q^{79} -12.0500 q^{80} +8.86655 q^{81} -30.2199 q^{82} +9.96666 q^{83} -2.07150 q^{84} -3.89418 q^{85} +24.9197 q^{86} +0.874858 q^{87} +8.08346 q^{88} -4.61626 q^{89} +8.40094 q^{90} +7.27655 q^{91} +15.9166 q^{92} +0.567064 q^{93} -15.3179 q^{94} +1.06025 q^{95} +1.70622 q^{96} -4.09907 q^{97} +11.5447 q^{98} -2.98515 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} + q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} + 6 q^{7} + 6 q^{8} + 4 q^{9} + 12 q^{10} + 5 q^{11} + 6 q^{12} + 4 q^{13} - 14 q^{14} + 3 q^{15} + 8 q^{16} - 4 q^{17} - 20 q^{18} - 5 q^{19} - 8 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.65432 1.87689 0.938443 0.345435i \(-0.112268\pi\)
0.938443 + 0.345435i \(0.112268\pi\)
\(3\) 0.121872 0.0703629 0.0351814 0.999381i \(-0.488799\pi\)
0.0351814 + 0.999381i \(0.488799\pi\)
\(4\) 5.04540 2.52270
\(5\) −1.06025 −0.474159 −0.237080 0.971490i \(-0.576190\pi\)
−0.237080 + 0.971490i \(0.576190\pi\)
\(6\) 0.323487 0.132063
\(7\) −3.36889 −1.27332 −0.636660 0.771145i \(-0.719684\pi\)
−0.636660 + 0.771145i \(0.719684\pi\)
\(8\) 8.08346 2.85793
\(9\) −2.98515 −0.995049
\(10\) −2.81425 −0.889943
\(11\) 1.00000 0.301511
\(12\) 0.614893 0.177504
\(13\) −2.15993 −0.599056 −0.299528 0.954087i \(-0.596829\pi\)
−0.299528 + 0.954087i \(0.596829\pi\)
\(14\) −8.94209 −2.38987
\(15\) −0.129215 −0.0333632
\(16\) 11.3653 2.84131
\(17\) 3.67288 0.890805 0.445402 0.895330i \(-0.353061\pi\)
0.445402 + 0.895330i \(0.353061\pi\)
\(18\) −7.92353 −1.86759
\(19\) −1.00000 −0.229416
\(20\) −5.34940 −1.19616
\(21\) −0.410573 −0.0895944
\(22\) 2.65432 0.565902
\(23\) 3.15468 0.657797 0.328898 0.944365i \(-0.393323\pi\)
0.328898 + 0.944365i \(0.393323\pi\)
\(24\) 0.985147 0.201092
\(25\) −3.87587 −0.775173
\(26\) −5.73313 −1.12436
\(27\) −0.729422 −0.140377
\(28\) −16.9974 −3.21220
\(29\) 7.17849 1.33301 0.666506 0.745499i \(-0.267789\pi\)
0.666506 + 0.745499i \(0.267789\pi\)
\(30\) −0.342978 −0.0626189
\(31\) 4.65295 0.835694 0.417847 0.908517i \(-0.362785\pi\)
0.417847 + 0.908517i \(0.362785\pi\)
\(32\) 14.0001 2.47489
\(33\) 0.121872 0.0212152
\(34\) 9.74900 1.67194
\(35\) 3.57187 0.603756
\(36\) −15.0613 −2.51021
\(37\) 2.27446 0.373918 0.186959 0.982368i \(-0.440137\pi\)
0.186959 + 0.982368i \(0.440137\pi\)
\(38\) −2.65432 −0.430587
\(39\) −0.263235 −0.0421513
\(40\) −8.57050 −1.35512
\(41\) −11.3852 −1.77807 −0.889034 0.457841i \(-0.848623\pi\)
−0.889034 + 0.457841i \(0.848623\pi\)
\(42\) −1.08979 −0.168158
\(43\) 9.38838 1.43171 0.715857 0.698247i \(-0.246036\pi\)
0.715857 + 0.698247i \(0.246036\pi\)
\(44\) 5.04540 0.760623
\(45\) 3.16501 0.471812
\(46\) 8.37352 1.23461
\(47\) −5.77094 −0.841778 −0.420889 0.907112i \(-0.638282\pi\)
−0.420889 + 0.907112i \(0.638282\pi\)
\(48\) 1.38511 0.199923
\(49\) 4.34940 0.621342
\(50\) −10.2878 −1.45491
\(51\) 0.447622 0.0626796
\(52\) −10.8977 −1.51124
\(53\) −5.65820 −0.777213 −0.388607 0.921404i \(-0.627043\pi\)
−0.388607 + 0.921404i \(0.627043\pi\)
\(54\) −1.93612 −0.263472
\(55\) −1.06025 −0.142964
\(56\) −27.2322 −3.63906
\(57\) −0.121872 −0.0161423
\(58\) 19.0540 2.50191
\(59\) −13.7944 −1.79588 −0.897939 0.440121i \(-0.854936\pi\)
−0.897939 + 0.440121i \(0.854936\pi\)
\(60\) −0.651942 −0.0841653
\(61\) 6.98152 0.893892 0.446946 0.894561i \(-0.352512\pi\)
0.446946 + 0.894561i \(0.352512\pi\)
\(62\) 12.3504 1.56850
\(63\) 10.0566 1.26702
\(64\) 14.4301 1.80377
\(65\) 2.29007 0.284048
\(66\) 0.323487 0.0398185
\(67\) −4.81332 −0.588041 −0.294020 0.955799i \(-0.594993\pi\)
−0.294020 + 0.955799i \(0.594993\pi\)
\(68\) 18.5312 2.24723
\(69\) 0.384467 0.0462844
\(70\) 9.48087 1.13318
\(71\) 15.2629 1.81137 0.905685 0.423951i \(-0.139357\pi\)
0.905685 + 0.423951i \(0.139357\pi\)
\(72\) −24.1303 −2.84378
\(73\) −8.08806 −0.946636 −0.473318 0.880892i \(-0.656944\pi\)
−0.473318 + 0.880892i \(0.656944\pi\)
\(74\) 6.03713 0.701802
\(75\) −0.472360 −0.0545434
\(76\) −5.04540 −0.578747
\(77\) −3.36889 −0.383920
\(78\) −0.698709 −0.0791132
\(79\) 13.4291 1.51090 0.755448 0.655209i \(-0.227419\pi\)
0.755448 + 0.655209i \(0.227419\pi\)
\(80\) −12.0500 −1.34724
\(81\) 8.86655 0.985172
\(82\) −30.2199 −3.33723
\(83\) 9.96666 1.09398 0.546992 0.837138i \(-0.315773\pi\)
0.546992 + 0.837138i \(0.315773\pi\)
\(84\) −2.07150 −0.226020
\(85\) −3.89418 −0.422383
\(86\) 24.9197 2.68716
\(87\) 0.874858 0.0937946
\(88\) 8.08346 0.861699
\(89\) −4.61626 −0.489323 −0.244661 0.969609i \(-0.578677\pi\)
−0.244661 + 0.969609i \(0.578677\pi\)
\(90\) 8.40094 0.885537
\(91\) 7.27655 0.762790
\(92\) 15.9166 1.65942
\(93\) 0.567064 0.0588018
\(94\) −15.3179 −1.57992
\(95\) 1.06025 0.108780
\(96\) 1.70622 0.174140
\(97\) −4.09907 −0.416197 −0.208099 0.978108i \(-0.566727\pi\)
−0.208099 + 0.978108i \(0.566727\pi\)
\(98\) 11.5447 1.16619
\(99\) −2.98515 −0.300019
\(100\) −19.5553 −1.95553
\(101\) −10.8730 −1.08190 −0.540950 0.841055i \(-0.681935\pi\)
−0.540950 + 0.841055i \(0.681935\pi\)
\(102\) 1.18813 0.117642
\(103\) 8.85864 0.872867 0.436434 0.899736i \(-0.356241\pi\)
0.436434 + 0.899736i \(0.356241\pi\)
\(104\) −17.4597 −1.71206
\(105\) 0.435311 0.0424820
\(106\) −15.0186 −1.45874
\(107\) −18.1669 −1.75626 −0.878131 0.478421i \(-0.841209\pi\)
−0.878131 + 0.478421i \(0.841209\pi\)
\(108\) −3.68023 −0.354130
\(109\) −0.211303 −0.0202392 −0.0101196 0.999949i \(-0.503221\pi\)
−0.0101196 + 0.999949i \(0.503221\pi\)
\(110\) −2.81425 −0.268328
\(111\) 0.277193 0.0263100
\(112\) −38.2883 −3.61790
\(113\) −0.198345 −0.0186587 −0.00932935 0.999956i \(-0.502970\pi\)
−0.00932935 + 0.999956i \(0.502970\pi\)
\(114\) −0.323487 −0.0302973
\(115\) −3.34476 −0.311900
\(116\) 36.2184 3.36279
\(117\) 6.44770 0.596090
\(118\) −36.6147 −3.37066
\(119\) −12.3735 −1.13428
\(120\) −1.04450 −0.0953498
\(121\) 1.00000 0.0909091
\(122\) 18.5312 1.67773
\(123\) −1.38754 −0.125110
\(124\) 23.4760 2.10821
\(125\) 9.41066 0.841715
\(126\) 26.6935 2.37804
\(127\) −3.60331 −0.319742 −0.159871 0.987138i \(-0.551108\pi\)
−0.159871 + 0.987138i \(0.551108\pi\)
\(128\) 10.3020 0.910578
\(129\) 1.14418 0.100739
\(130\) 6.07857 0.533126
\(131\) 16.8741 1.47430 0.737150 0.675729i \(-0.236171\pi\)
0.737150 + 0.675729i \(0.236171\pi\)
\(132\) 0.614893 0.0535196
\(133\) 3.36889 0.292119
\(134\) −12.7761 −1.10369
\(135\) 0.773371 0.0665612
\(136\) 29.6896 2.54586
\(137\) −6.10839 −0.521875 −0.260937 0.965356i \(-0.584032\pi\)
−0.260937 + 0.965356i \(0.584032\pi\)
\(138\) 1.02050 0.0868706
\(139\) 11.3347 0.961398 0.480699 0.876886i \(-0.340383\pi\)
0.480699 + 0.876886i \(0.340383\pi\)
\(140\) 18.0215 1.52310
\(141\) −0.703316 −0.0592299
\(142\) 40.5125 3.39973
\(143\) −2.15993 −0.180622
\(144\) −33.9270 −2.82725
\(145\) −7.61101 −0.632060
\(146\) −21.4683 −1.77673
\(147\) 0.530070 0.0437194
\(148\) 11.4755 0.943284
\(149\) 6.75698 0.553554 0.276777 0.960934i \(-0.410734\pi\)
0.276777 + 0.960934i \(0.410734\pi\)
\(150\) −1.25379 −0.102372
\(151\) 6.46231 0.525895 0.262948 0.964810i \(-0.415305\pi\)
0.262948 + 0.964810i \(0.415305\pi\)
\(152\) −8.08346 −0.655655
\(153\) −10.9641 −0.886395
\(154\) −8.94209 −0.720574
\(155\) −4.93330 −0.396252
\(156\) −1.32813 −0.106335
\(157\) 0.248382 0.0198230 0.00991152 0.999951i \(-0.496845\pi\)
0.00991152 + 0.999951i \(0.496845\pi\)
\(158\) 35.6452 2.83578
\(159\) −0.689576 −0.0546869
\(160\) −14.8436 −1.17349
\(161\) −10.6278 −0.837585
\(162\) 23.5346 1.84905
\(163\) −16.9710 −1.32927 −0.664637 0.747167i \(-0.731414\pi\)
−0.664637 + 0.747167i \(0.731414\pi\)
\(164\) −57.4428 −4.48553
\(165\) −0.129215 −0.0100594
\(166\) 26.4547 2.05328
\(167\) −0.865538 −0.0669773 −0.0334887 0.999439i \(-0.510662\pi\)
−0.0334887 + 0.999439i \(0.510662\pi\)
\(168\) −3.31885 −0.256055
\(169\) −8.33471 −0.641132
\(170\) −10.3364 −0.792765
\(171\) 2.98515 0.228280
\(172\) 47.3681 3.61178
\(173\) −4.14483 −0.315125 −0.157563 0.987509i \(-0.550364\pi\)
−0.157563 + 0.987509i \(0.550364\pi\)
\(174\) 2.32215 0.176042
\(175\) 13.0574 0.987043
\(176\) 11.3653 0.856688
\(177\) −1.68115 −0.126363
\(178\) −12.2530 −0.918403
\(179\) 2.04584 0.152913 0.0764567 0.997073i \(-0.475639\pi\)
0.0764567 + 0.997073i \(0.475639\pi\)
\(180\) 15.9687 1.19024
\(181\) 5.27519 0.392101 0.196051 0.980594i \(-0.437188\pi\)
0.196051 + 0.980594i \(0.437188\pi\)
\(182\) 19.3143 1.43167
\(183\) 0.850852 0.0628968
\(184\) 25.5007 1.87994
\(185\) −2.41150 −0.177297
\(186\) 1.50517 0.110364
\(187\) 3.67288 0.268588
\(188\) −29.1167 −2.12355
\(189\) 2.45734 0.178745
\(190\) 2.81425 0.204167
\(191\) −16.1899 −1.17146 −0.585729 0.810507i \(-0.699192\pi\)
−0.585729 + 0.810507i \(0.699192\pi\)
\(192\) 1.75863 0.126918
\(193\) −20.0620 −1.44409 −0.722045 0.691846i \(-0.756798\pi\)
−0.722045 + 0.691846i \(0.756798\pi\)
\(194\) −10.8802 −0.781155
\(195\) 0.279095 0.0199864
\(196\) 21.9444 1.56746
\(197\) −23.8398 −1.69851 −0.849257 0.527979i \(-0.822950\pi\)
−0.849257 + 0.527979i \(0.822950\pi\)
\(198\) −7.92353 −0.563101
\(199\) −1.90194 −0.134825 −0.0674125 0.997725i \(-0.521474\pi\)
−0.0674125 + 0.997725i \(0.521474\pi\)
\(200\) −31.3304 −2.21539
\(201\) −0.586609 −0.0413762
\(202\) −28.8603 −2.03060
\(203\) −24.1835 −1.69735
\(204\) 2.25843 0.158122
\(205\) 12.0712 0.843087
\(206\) 23.5136 1.63827
\(207\) −9.41719 −0.654540
\(208\) −24.5481 −1.70211
\(209\) −1.00000 −0.0691714
\(210\) 1.15545 0.0797339
\(211\) 12.3048 0.847100 0.423550 0.905873i \(-0.360784\pi\)
0.423550 + 0.905873i \(0.360784\pi\)
\(212\) −28.5479 −1.96068
\(213\) 1.86012 0.127453
\(214\) −48.2207 −3.29630
\(215\) −9.95405 −0.678860
\(216\) −5.89625 −0.401189
\(217\) −15.6753 −1.06411
\(218\) −0.560865 −0.0379866
\(219\) −0.985709 −0.0666080
\(220\) −5.34940 −0.360656
\(221\) −7.93316 −0.533642
\(222\) 0.735757 0.0493808
\(223\) 22.8473 1.52997 0.764985 0.644048i \(-0.222746\pi\)
0.764985 + 0.644048i \(0.222746\pi\)
\(224\) −47.1647 −3.15132
\(225\) 11.5700 0.771335
\(226\) −0.526470 −0.0350202
\(227\) 4.00654 0.265923 0.132962 0.991121i \(-0.457551\pi\)
0.132962 + 0.991121i \(0.457551\pi\)
\(228\) −0.614893 −0.0407223
\(229\) −24.6024 −1.62577 −0.812887 0.582422i \(-0.802105\pi\)
−0.812887 + 0.582422i \(0.802105\pi\)
\(230\) −8.87805 −0.585401
\(231\) −0.410573 −0.0270137
\(232\) 58.0270 3.80966
\(233\) 16.2994 1.06781 0.533903 0.845545i \(-0.320725\pi\)
0.533903 + 0.845545i \(0.320725\pi\)
\(234\) 17.1143 1.11879
\(235\) 6.11865 0.399137
\(236\) −69.5982 −4.53046
\(237\) 1.63664 0.106311
\(238\) −32.8433 −2.12891
\(239\) −15.4182 −0.997324 −0.498662 0.866797i \(-0.666175\pi\)
−0.498662 + 0.866797i \(0.666175\pi\)
\(240\) −1.46856 −0.0947953
\(241\) 24.1441 1.55526 0.777629 0.628723i \(-0.216422\pi\)
0.777629 + 0.628723i \(0.216422\pi\)
\(242\) 2.65432 0.170626
\(243\) 3.26885 0.209697
\(244\) 35.2245 2.25502
\(245\) −4.61146 −0.294615
\(246\) −3.68296 −0.234817
\(247\) 2.15993 0.137433
\(248\) 37.6119 2.38836
\(249\) 1.21466 0.0769758
\(250\) 24.9789 1.57980
\(251\) −19.9099 −1.25670 −0.628350 0.777931i \(-0.716269\pi\)
−0.628350 + 0.777931i \(0.716269\pi\)
\(252\) 50.7397 3.19630
\(253\) 3.15468 0.198333
\(254\) −9.56433 −0.600119
\(255\) −0.474592 −0.0297201
\(256\) −1.51547 −0.0947166
\(257\) −22.3126 −1.39182 −0.695911 0.718128i \(-0.744999\pi\)
−0.695911 + 0.718128i \(0.744999\pi\)
\(258\) 3.03702 0.189076
\(259\) −7.66239 −0.476118
\(260\) 11.5543 0.716568
\(261\) −21.4289 −1.32641
\(262\) 44.7893 2.76709
\(263\) 13.7963 0.850716 0.425358 0.905025i \(-0.360148\pi\)
0.425358 + 0.905025i \(0.360148\pi\)
\(264\) 0.985147 0.0606316
\(265\) 5.99912 0.368523
\(266\) 8.94209 0.548275
\(267\) −0.562593 −0.0344301
\(268\) −24.2851 −1.48345
\(269\) −11.2028 −0.683048 −0.341524 0.939873i \(-0.610943\pi\)
−0.341524 + 0.939873i \(0.610943\pi\)
\(270\) 2.05277 0.124928
\(271\) 17.1234 1.04017 0.520085 0.854115i \(-0.325900\pi\)
0.520085 + 0.854115i \(0.325900\pi\)
\(272\) 41.7433 2.53106
\(273\) 0.886808 0.0536721
\(274\) −16.2136 −0.979499
\(275\) −3.87587 −0.233723
\(276\) 1.93979 0.116762
\(277\) −13.7127 −0.823919 −0.411960 0.911202i \(-0.635156\pi\)
−0.411960 + 0.911202i \(0.635156\pi\)
\(278\) 30.0859 1.80443
\(279\) −13.8897 −0.831557
\(280\) 28.8730 1.72549
\(281\) 25.8599 1.54267 0.771337 0.636427i \(-0.219588\pi\)
0.771337 + 0.636427i \(0.219588\pi\)
\(282\) −1.86682 −0.111168
\(283\) 28.8711 1.71621 0.858103 0.513477i \(-0.171643\pi\)
0.858103 + 0.513477i \(0.171643\pi\)
\(284\) 77.0073 4.56954
\(285\) 0.129215 0.00765404
\(286\) −5.73313 −0.339007
\(287\) 38.3554 2.26405
\(288\) −41.7923 −2.46264
\(289\) −3.50993 −0.206467
\(290\) −20.2020 −1.18630
\(291\) −0.499562 −0.0292848
\(292\) −40.8075 −2.38808
\(293\) 6.37971 0.372707 0.186353 0.982483i \(-0.440333\pi\)
0.186353 + 0.982483i \(0.440333\pi\)
\(294\) 1.40697 0.0820563
\(295\) 14.6255 0.851532
\(296\) 18.3855 1.06863
\(297\) −0.729422 −0.0423254
\(298\) 17.9352 1.03896
\(299\) −6.81389 −0.394057
\(300\) −2.38324 −0.137597
\(301\) −31.6284 −1.82303
\(302\) 17.1530 0.987045
\(303\) −1.32511 −0.0761256
\(304\) −11.3653 −0.651842
\(305\) −7.40217 −0.423847
\(306\) −29.1022 −1.66366
\(307\) 10.4299 0.595264 0.297632 0.954681i \(-0.403803\pi\)
0.297632 + 0.954681i \(0.403803\pi\)
\(308\) −16.9974 −0.968515
\(309\) 1.07962 0.0614174
\(310\) −13.0945 −0.743720
\(311\) −8.26224 −0.468508 −0.234254 0.972175i \(-0.575265\pi\)
−0.234254 + 0.972175i \(0.575265\pi\)
\(312\) −2.12785 −0.120466
\(313\) −24.1167 −1.36315 −0.681577 0.731746i \(-0.738706\pi\)
−0.681577 + 0.731746i \(0.738706\pi\)
\(314\) 0.659285 0.0372056
\(315\) −10.6626 −0.600767
\(316\) 67.7554 3.81154
\(317\) −11.7330 −0.658989 −0.329495 0.944157i \(-0.606878\pi\)
−0.329495 + 0.944157i \(0.606878\pi\)
\(318\) −1.83035 −0.102641
\(319\) 7.17849 0.401918
\(320\) −15.2996 −0.855273
\(321\) −2.21404 −0.123576
\(322\) −28.2095 −1.57205
\(323\) −3.67288 −0.204365
\(324\) 44.7353 2.48529
\(325\) 8.37159 0.464372
\(326\) −45.0465 −2.49489
\(327\) −0.0257519 −0.00142409
\(328\) −92.0317 −5.08160
\(329\) 19.4416 1.07185
\(330\) −0.342978 −0.0188803
\(331\) −6.95223 −0.382129 −0.191065 0.981577i \(-0.561194\pi\)
−0.191065 + 0.981577i \(0.561194\pi\)
\(332\) 50.2858 2.75979
\(333\) −6.78959 −0.372067
\(334\) −2.29741 −0.125709
\(335\) 5.10333 0.278825
\(336\) −4.66627 −0.254566
\(337\) 29.4416 1.60379 0.801893 0.597468i \(-0.203826\pi\)
0.801893 + 0.597468i \(0.203826\pi\)
\(338\) −22.1230 −1.20333
\(339\) −0.0241727 −0.00131288
\(340\) −19.6477 −1.06555
\(341\) 4.65295 0.251971
\(342\) 7.92353 0.428455
\(343\) 8.92959 0.482152
\(344\) 75.8905 4.09174
\(345\) −0.407632 −0.0219462
\(346\) −11.0017 −0.591454
\(347\) −17.2180 −0.924311 −0.462155 0.886799i \(-0.652924\pi\)
−0.462155 + 0.886799i \(0.652924\pi\)
\(348\) 4.41401 0.236616
\(349\) 4.32405 0.231461 0.115731 0.993281i \(-0.463079\pi\)
0.115731 + 0.993281i \(0.463079\pi\)
\(350\) 34.6583 1.85257
\(351\) 1.57550 0.0840939
\(352\) 14.0001 0.746207
\(353\) 23.4421 1.24770 0.623848 0.781545i \(-0.285568\pi\)
0.623848 + 0.781545i \(0.285568\pi\)
\(354\) −4.46231 −0.237169
\(355\) −16.1825 −0.858878
\(356\) −23.2909 −1.23441
\(357\) −1.50799 −0.0798111
\(358\) 5.43031 0.287001
\(359\) 8.20544 0.433066 0.216533 0.976275i \(-0.430525\pi\)
0.216533 + 0.976275i \(0.430525\pi\)
\(360\) 25.5842 1.34841
\(361\) 1.00000 0.0526316
\(362\) 14.0020 0.735930
\(363\) 0.121872 0.00639662
\(364\) 36.7131 1.92429
\(365\) 8.57539 0.448856
\(366\) 2.25843 0.118050
\(367\) 33.1494 1.73039 0.865193 0.501439i \(-0.167196\pi\)
0.865193 + 0.501439i \(0.167196\pi\)
\(368\) 35.8538 1.86901
\(369\) 33.9865 1.76926
\(370\) −6.40088 −0.332766
\(371\) 19.0618 0.989640
\(372\) 2.86107 0.148339
\(373\) −16.5840 −0.858685 −0.429343 0.903142i \(-0.641255\pi\)
−0.429343 + 0.903142i \(0.641255\pi\)
\(374\) 9.74900 0.504109
\(375\) 1.14690 0.0592254
\(376\) −46.6492 −2.40575
\(377\) −15.5050 −0.798550
\(378\) 6.52256 0.335484
\(379\) 5.79467 0.297652 0.148826 0.988863i \(-0.452451\pi\)
0.148826 + 0.988863i \(0.452451\pi\)
\(380\) 5.34940 0.274418
\(381\) −0.439143 −0.0224980
\(382\) −42.9730 −2.19869
\(383\) 5.89016 0.300973 0.150487 0.988612i \(-0.451916\pi\)
0.150487 + 0.988612i \(0.451916\pi\)
\(384\) 1.25553 0.0640709
\(385\) 3.57187 0.182039
\(386\) −53.2508 −2.71039
\(387\) −28.0257 −1.42463
\(388\) −20.6814 −1.04994
\(389\) 13.8055 0.699964 0.349982 0.936756i \(-0.386188\pi\)
0.349982 + 0.936756i \(0.386188\pi\)
\(390\) 0.740808 0.0375122
\(391\) 11.5868 0.585968
\(392\) 35.1581 1.77575
\(393\) 2.05649 0.103736
\(394\) −63.2784 −3.18792
\(395\) −14.2383 −0.716405
\(396\) −15.0613 −0.756857
\(397\) 6.48471 0.325458 0.162729 0.986671i \(-0.447970\pi\)
0.162729 + 0.986671i \(0.447970\pi\)
\(398\) −5.04835 −0.253051
\(399\) 0.410573 0.0205544
\(400\) −44.0502 −2.20251
\(401\) 3.70806 0.185172 0.0925858 0.995705i \(-0.470487\pi\)
0.0925858 + 0.995705i \(0.470487\pi\)
\(402\) −1.55705 −0.0776584
\(403\) −10.0500 −0.500628
\(404\) −54.8584 −2.72931
\(405\) −9.40077 −0.467128
\(406\) −64.1908 −3.18573
\(407\) 2.27446 0.112741
\(408\) 3.61833 0.179134
\(409\) 31.0569 1.53567 0.767833 0.640650i \(-0.221335\pi\)
0.767833 + 0.640650i \(0.221335\pi\)
\(410\) 32.0407 1.58238
\(411\) −0.744442 −0.0367206
\(412\) 44.6954 2.20198
\(413\) 46.4717 2.28673
\(414\) −24.9962 −1.22850
\(415\) −10.5672 −0.518722
\(416\) −30.2392 −1.48260
\(417\) 1.38138 0.0676467
\(418\) −2.65432 −0.129827
\(419\) −11.2871 −0.551410 −0.275705 0.961242i \(-0.588911\pi\)
−0.275705 + 0.961242i \(0.588911\pi\)
\(420\) 2.19632 0.107169
\(421\) 34.5194 1.68237 0.841186 0.540746i \(-0.181858\pi\)
0.841186 + 0.540746i \(0.181858\pi\)
\(422\) 32.6609 1.58991
\(423\) 17.2271 0.837611
\(424\) −45.7378 −2.22122
\(425\) −14.2356 −0.690528
\(426\) 4.93734 0.239215
\(427\) −23.5199 −1.13821
\(428\) −91.6593 −4.43052
\(429\) −0.263235 −0.0127091
\(430\) −26.4212 −1.27414
\(431\) 18.1654 0.874996 0.437498 0.899219i \(-0.355865\pi\)
0.437498 + 0.899219i \(0.355865\pi\)
\(432\) −8.29007 −0.398856
\(433\) 10.7804 0.518075 0.259037 0.965867i \(-0.416595\pi\)
0.259037 + 0.965867i \(0.416595\pi\)
\(434\) −41.6071 −1.99720
\(435\) −0.927570 −0.0444736
\(436\) −1.06611 −0.0510573
\(437\) −3.15468 −0.150909
\(438\) −2.61638 −0.125016
\(439\) −1.38742 −0.0662180 −0.0331090 0.999452i \(-0.510541\pi\)
−0.0331090 + 0.999452i \(0.510541\pi\)
\(440\) −8.57050 −0.408583
\(441\) −12.9836 −0.618266
\(442\) −21.0571 −1.00159
\(443\) −7.26792 −0.345310 −0.172655 0.984982i \(-0.555234\pi\)
−0.172655 + 0.984982i \(0.555234\pi\)
\(444\) 1.39855 0.0663722
\(445\) 4.89440 0.232017
\(446\) 60.6441 2.87158
\(447\) 0.823487 0.0389496
\(448\) −48.6135 −2.29677
\(449\) 21.4298 1.01134 0.505668 0.862728i \(-0.331246\pi\)
0.505668 + 0.862728i \(0.331246\pi\)
\(450\) 30.7105 1.44771
\(451\) −11.3852 −0.536108
\(452\) −1.00073 −0.0470703
\(453\) 0.787575 0.0370035
\(454\) 10.6346 0.499108
\(455\) −7.71498 −0.361684
\(456\) −0.985147 −0.0461337
\(457\) −17.6312 −0.824754 −0.412377 0.911013i \(-0.635301\pi\)
−0.412377 + 0.911013i \(0.635301\pi\)
\(458\) −65.3026 −3.05139
\(459\) −2.67908 −0.125049
\(460\) −16.8756 −0.786831
\(461\) 34.2073 1.59320 0.796598 0.604510i \(-0.206631\pi\)
0.796598 + 0.604510i \(0.206631\pi\)
\(462\) −1.08979 −0.0507017
\(463\) −11.0009 −0.511253 −0.255626 0.966776i \(-0.582282\pi\)
−0.255626 + 0.966776i \(0.582282\pi\)
\(464\) 81.5854 3.78751
\(465\) −0.601231 −0.0278814
\(466\) 43.2637 2.00415
\(467\) 4.38453 0.202892 0.101446 0.994841i \(-0.467653\pi\)
0.101446 + 0.994841i \(0.467653\pi\)
\(468\) 32.5312 1.50376
\(469\) 16.2155 0.748764
\(470\) 16.2408 0.749134
\(471\) 0.0302708 0.00139481
\(472\) −111.506 −5.13250
\(473\) 9.38838 0.431678
\(474\) 4.34415 0.199534
\(475\) 3.87587 0.177837
\(476\) −62.4294 −2.86145
\(477\) 16.8905 0.773365
\(478\) −40.9249 −1.87186
\(479\) −14.3683 −0.656505 −0.328253 0.944590i \(-0.606460\pi\)
−0.328253 + 0.944590i \(0.606460\pi\)
\(480\) −1.80902 −0.0825702
\(481\) −4.91266 −0.223998
\(482\) 64.0861 2.91904
\(483\) −1.29523 −0.0589349
\(484\) 5.04540 0.229336
\(485\) 4.34604 0.197344
\(486\) 8.67657 0.393577
\(487\) 1.01712 0.0460899 0.0230449 0.999734i \(-0.492664\pi\)
0.0230449 + 0.999734i \(0.492664\pi\)
\(488\) 56.4348 2.55468
\(489\) −2.06829 −0.0935314
\(490\) −12.2403 −0.552959
\(491\) −2.41045 −0.108782 −0.0543910 0.998520i \(-0.517322\pi\)
−0.0543910 + 0.998520i \(0.517322\pi\)
\(492\) −7.00067 −0.315615
\(493\) 26.3658 1.18745
\(494\) 5.73313 0.257946
\(495\) 3.16501 0.142257
\(496\) 52.8820 2.37447
\(497\) −51.4189 −2.30645
\(498\) 3.22409 0.144475
\(499\) 4.07426 0.182389 0.0911945 0.995833i \(-0.470931\pi\)
0.0911945 + 0.995833i \(0.470931\pi\)
\(500\) 47.4805 2.12339
\(501\) −0.105485 −0.00471272
\(502\) −52.8471 −2.35868
\(503\) −19.9553 −0.889762 −0.444881 0.895590i \(-0.646754\pi\)
−0.444881 + 0.895590i \(0.646754\pi\)
\(504\) 81.2923 3.62104
\(505\) 11.5281 0.512993
\(506\) 8.37352 0.372249
\(507\) −1.01577 −0.0451118
\(508\) −18.1801 −0.806613
\(509\) −8.79239 −0.389716 −0.194858 0.980831i \(-0.562425\pi\)
−0.194858 + 0.980831i \(0.562425\pi\)
\(510\) −1.25972 −0.0557812
\(511\) 27.2478 1.20537
\(512\) −24.6266 −1.08835
\(513\) 0.729422 0.0322048
\(514\) −59.2247 −2.61229
\(515\) −9.39239 −0.413878
\(516\) 5.77285 0.254135
\(517\) −5.77094 −0.253806
\(518\) −20.3384 −0.893618
\(519\) −0.505138 −0.0221731
\(520\) 18.5117 0.811790
\(521\) 27.3483 1.19815 0.599075 0.800693i \(-0.295535\pi\)
0.599075 + 0.800693i \(0.295535\pi\)
\(522\) −56.8790 −2.48953
\(523\) −41.7043 −1.82360 −0.911800 0.410634i \(-0.865307\pi\)
−0.911800 + 0.410634i \(0.865307\pi\)
\(524\) 85.1368 3.71922
\(525\) 1.59133 0.0694512
\(526\) 36.6197 1.59670
\(527\) 17.0897 0.744441
\(528\) 1.38511 0.0602790
\(529\) −13.0480 −0.567304
\(530\) 15.9236 0.691675
\(531\) 41.1783 1.78699
\(532\) 16.9974 0.736930
\(533\) 24.5912 1.06516
\(534\) −1.49330 −0.0646214
\(535\) 19.2615 0.832748
\(536\) −38.9083 −1.68058
\(537\) 0.249331 0.0107594
\(538\) −29.7358 −1.28200
\(539\) 4.34940 0.187342
\(540\) 3.90197 0.167914
\(541\) −20.7584 −0.892472 −0.446236 0.894915i \(-0.647236\pi\)
−0.446236 + 0.894915i \(0.647236\pi\)
\(542\) 45.4508 1.95228
\(543\) 0.642898 0.0275894
\(544\) 51.4207 2.20464
\(545\) 0.224035 0.00959659
\(546\) 2.35387 0.100736
\(547\) 5.39396 0.230629 0.115315 0.993329i \(-0.463212\pi\)
0.115315 + 0.993329i \(0.463212\pi\)
\(548\) −30.8193 −1.31653
\(549\) −20.8409 −0.889466
\(550\) −10.2878 −0.438672
\(551\) −7.17849 −0.305814
\(552\) 3.10783 0.132278
\(553\) −45.2412 −1.92385
\(554\) −36.3980 −1.54640
\(555\) −0.293894 −0.0124751
\(556\) 57.1881 2.42532
\(557\) −38.0076 −1.61043 −0.805217 0.592981i \(-0.797951\pi\)
−0.805217 + 0.592981i \(0.797951\pi\)
\(558\) −36.8678 −1.56074
\(559\) −20.2782 −0.857677
\(560\) 40.5952 1.71546
\(561\) 0.447622 0.0188986
\(562\) 68.6404 2.89542
\(563\) −26.4313 −1.11395 −0.556973 0.830530i \(-0.688037\pi\)
−0.556973 + 0.830530i \(0.688037\pi\)
\(564\) −3.54851 −0.149419
\(565\) 0.210295 0.00884719
\(566\) 76.6330 3.22112
\(567\) −29.8704 −1.25444
\(568\) 123.377 5.17677
\(569\) 40.6105 1.70248 0.851239 0.524778i \(-0.175852\pi\)
0.851239 + 0.524778i \(0.175852\pi\)
\(570\) 0.342978 0.0143658
\(571\) 8.44299 0.353328 0.176664 0.984271i \(-0.443469\pi\)
0.176664 + 0.984271i \(0.443469\pi\)
\(572\) −10.8977 −0.455656
\(573\) −1.97309 −0.0824271
\(574\) 101.807 4.24936
\(575\) −12.2271 −0.509906
\(576\) −43.0761 −1.79484
\(577\) 20.9771 0.873288 0.436644 0.899634i \(-0.356167\pi\)
0.436644 + 0.899634i \(0.356167\pi\)
\(578\) −9.31648 −0.387514
\(579\) −2.44499 −0.101610
\(580\) −38.4006 −1.59450
\(581\) −33.5766 −1.39299
\(582\) −1.32600 −0.0549643
\(583\) −5.65820 −0.234339
\(584\) −65.3795 −2.70542
\(585\) −6.83619 −0.282642
\(586\) 16.9338 0.699528
\(587\) −21.1452 −0.872756 −0.436378 0.899764i \(-0.643739\pi\)
−0.436378 + 0.899764i \(0.643739\pi\)
\(588\) 2.67441 0.110291
\(589\) −4.65295 −0.191721
\(590\) 38.8208 1.59823
\(591\) −2.90540 −0.119512
\(592\) 25.8498 1.06242
\(593\) 27.7731 1.14051 0.570253 0.821469i \(-0.306845\pi\)
0.570253 + 0.821469i \(0.306845\pi\)
\(594\) −1.93612 −0.0794399
\(595\) 13.1191 0.537829
\(596\) 34.0917 1.39645
\(597\) −0.231793 −0.00948667
\(598\) −18.0862 −0.739600
\(599\) 23.0129 0.940281 0.470140 0.882592i \(-0.344203\pi\)
0.470140 + 0.882592i \(0.344203\pi\)
\(600\) −3.81830 −0.155881
\(601\) 23.3322 0.951738 0.475869 0.879516i \(-0.342134\pi\)
0.475869 + 0.879516i \(0.342134\pi\)
\(602\) −83.9517 −3.42162
\(603\) 14.3685 0.585129
\(604\) 32.6049 1.32668
\(605\) −1.06025 −0.0431054
\(606\) −3.51726 −0.142879
\(607\) −3.22857 −0.131044 −0.0655218 0.997851i \(-0.520871\pi\)
−0.0655218 + 0.997851i \(0.520871\pi\)
\(608\) −14.0001 −0.567778
\(609\) −2.94730 −0.119430
\(610\) −19.6477 −0.795512
\(611\) 12.4648 0.504273
\(612\) −55.3182 −2.23611
\(613\) −17.2202 −0.695519 −0.347759 0.937584i \(-0.613057\pi\)
−0.347759 + 0.937584i \(0.613057\pi\)
\(614\) 27.6842 1.11724
\(615\) 1.47114 0.0593220
\(616\) −27.2322 −1.09722
\(617\) −27.4776 −1.10621 −0.553103 0.833113i \(-0.686557\pi\)
−0.553103 + 0.833113i \(0.686557\pi\)
\(618\) 2.86565 0.115274
\(619\) −9.53870 −0.383393 −0.191696 0.981454i \(-0.561399\pi\)
−0.191696 + 0.981454i \(0.561399\pi\)
\(620\) −24.8905 −0.999625
\(621\) −2.30109 −0.0923397
\(622\) −21.9306 −0.879337
\(623\) 15.5517 0.623064
\(624\) −2.99173 −0.119765
\(625\) 9.40166 0.376066
\(626\) −64.0133 −2.55848
\(627\) −0.121872 −0.00486710
\(628\) 1.25319 0.0500076
\(629\) 8.35381 0.333088
\(630\) −28.3018 −1.12757
\(631\) 1.16647 0.0464363 0.0232182 0.999730i \(-0.492609\pi\)
0.0232182 + 0.999730i \(0.492609\pi\)
\(632\) 108.554 4.31804
\(633\) 1.49962 0.0596044
\(634\) −31.1430 −1.23685
\(635\) 3.82042 0.151609
\(636\) −3.47919 −0.137959
\(637\) −9.39438 −0.372219
\(638\) 19.0540 0.754355
\(639\) −45.5619 −1.80240
\(640\) −10.9227 −0.431759
\(641\) 10.0249 0.395960 0.197980 0.980206i \(-0.436562\pi\)
0.197980 + 0.980206i \(0.436562\pi\)
\(642\) −5.87676 −0.231937
\(643\) −40.7197 −1.60583 −0.802915 0.596094i \(-0.796719\pi\)
−0.802915 + 0.596094i \(0.796719\pi\)
\(644\) −53.6213 −2.11298
\(645\) −1.21312 −0.0477666
\(646\) −9.74900 −0.383569
\(647\) −16.6460 −0.654423 −0.327211 0.944951i \(-0.606109\pi\)
−0.327211 + 0.944951i \(0.606109\pi\)
\(648\) 71.6723 2.81555
\(649\) −13.7944 −0.541477
\(650\) 22.2209 0.871574
\(651\) −1.91038 −0.0748735
\(652\) −85.6256 −3.35336
\(653\) −34.7416 −1.35954 −0.679771 0.733424i \(-0.737921\pi\)
−0.679771 + 0.733424i \(0.737921\pi\)
\(654\) −0.0683538 −0.00267285
\(655\) −17.8908 −0.699053
\(656\) −129.396 −5.05205
\(657\) 24.1441 0.941949
\(658\) 51.6043 2.01175
\(659\) −22.9537 −0.894148 −0.447074 0.894497i \(-0.647534\pi\)
−0.447074 + 0.894497i \(0.647534\pi\)
\(660\) −0.651942 −0.0253768
\(661\) −22.7141 −0.883476 −0.441738 0.897144i \(-0.645638\pi\)
−0.441738 + 0.897144i \(0.645638\pi\)
\(662\) −18.4534 −0.717213
\(663\) −0.966831 −0.0375486
\(664\) 80.5651 3.12653
\(665\) −3.57187 −0.138511
\(666\) −18.0217 −0.698328
\(667\) 22.6459 0.876851
\(668\) −4.36698 −0.168964
\(669\) 2.78445 0.107653
\(670\) 13.5459 0.523322
\(671\) 6.98152 0.269518
\(672\) −5.74806 −0.221736
\(673\) 20.9448 0.807364 0.403682 0.914899i \(-0.367730\pi\)
0.403682 + 0.914899i \(0.367730\pi\)
\(674\) 78.1473 3.01012
\(675\) 2.82714 0.108817
\(676\) −42.0519 −1.61738
\(677\) 11.4153 0.438726 0.219363 0.975643i \(-0.429602\pi\)
0.219363 + 0.975643i \(0.429602\pi\)
\(678\) −0.0641619 −0.00246412
\(679\) 13.8093 0.529952
\(680\) −31.4784 −1.20714
\(681\) 0.488285 0.0187111
\(682\) 12.3504 0.472921
\(683\) −34.9550 −1.33752 −0.668759 0.743479i \(-0.733174\pi\)
−0.668759 + 0.743479i \(0.733174\pi\)
\(684\) 15.0613 0.575882
\(685\) 6.47643 0.247452
\(686\) 23.7020 0.904945
\(687\) −2.99835 −0.114394
\(688\) 106.701 4.06795
\(689\) 12.2213 0.465594
\(690\) −1.08199 −0.0411905
\(691\) −15.8717 −0.603789 −0.301894 0.953341i \(-0.597619\pi\)
−0.301894 + 0.953341i \(0.597619\pi\)
\(692\) −20.9123 −0.794967
\(693\) 10.0566 0.382019
\(694\) −45.7020 −1.73483
\(695\) −12.0177 −0.455855
\(696\) 7.07187 0.268059
\(697\) −41.8165 −1.58391
\(698\) 11.4774 0.434426
\(699\) 1.98644 0.0751339
\(700\) 65.8795 2.49001
\(701\) −18.5830 −0.701869 −0.350935 0.936400i \(-0.614136\pi\)
−0.350935 + 0.936400i \(0.614136\pi\)
\(702\) 4.18188 0.157835
\(703\) −2.27446 −0.0857828
\(704\) 14.4301 0.543857
\(705\) 0.745693 0.0280844
\(706\) 62.2228 2.34178
\(707\) 36.6298 1.37760
\(708\) −8.48208 −0.318776
\(709\) 23.8063 0.894064 0.447032 0.894518i \(-0.352481\pi\)
0.447032 + 0.894518i \(0.352481\pi\)
\(710\) −42.9535 −1.61202
\(711\) −40.0880 −1.50342
\(712\) −37.3153 −1.39845
\(713\) 14.6786 0.549717
\(714\) −4.00267 −0.149796
\(715\) 2.29007 0.0856437
\(716\) 10.3221 0.385755
\(717\) −1.87905 −0.0701745
\(718\) 21.7798 0.812816
\(719\) 37.0144 1.38040 0.690202 0.723616i \(-0.257522\pi\)
0.690202 + 0.723616i \(0.257522\pi\)
\(720\) 35.9711 1.34057
\(721\) −29.8437 −1.11144
\(722\) 2.65432 0.0987835
\(723\) 2.94249 0.109432
\(724\) 26.6154 0.989154
\(725\) −27.8229 −1.03332
\(726\) 0.323487 0.0120057
\(727\) −22.0744 −0.818694 −0.409347 0.912379i \(-0.634243\pi\)
−0.409347 + 0.912379i \(0.634243\pi\)
\(728\) 58.8197 2.18000
\(729\) −26.2013 −0.970417
\(730\) 22.7618 0.842452
\(731\) 34.4824 1.27538
\(732\) 4.29289 0.158670
\(733\) −18.7090 −0.691031 −0.345515 0.938413i \(-0.612296\pi\)
−0.345515 + 0.938413i \(0.612296\pi\)
\(734\) 87.9891 3.24774
\(735\) −0.562008 −0.0207300
\(736\) 44.1658 1.62797
\(737\) −4.81332 −0.177301
\(738\) 90.2109 3.32071
\(739\) −5.91630 −0.217635 −0.108817 0.994062i \(-0.534706\pi\)
−0.108817 + 0.994062i \(0.534706\pi\)
\(740\) −12.1670 −0.447267
\(741\) 0.263235 0.00967017
\(742\) 50.5961 1.85744
\(743\) 14.0422 0.515159 0.257579 0.966257i \(-0.417075\pi\)
0.257579 + 0.966257i \(0.417075\pi\)
\(744\) 4.58384 0.168052
\(745\) −7.16411 −0.262473
\(746\) −44.0191 −1.61165
\(747\) −29.7520 −1.08857
\(748\) 18.5312 0.677566
\(749\) 61.2023 2.23628
\(750\) 3.04423 0.111159
\(751\) 4.91166 0.179229 0.0896145 0.995977i \(-0.471437\pi\)
0.0896145 + 0.995977i \(0.471437\pi\)
\(752\) −65.5882 −2.39176
\(753\) −2.42646 −0.0884250
\(754\) −41.1553 −1.49879
\(755\) −6.85168 −0.249358
\(756\) 12.3983 0.450920
\(757\) 49.2829 1.79122 0.895609 0.444843i \(-0.146741\pi\)
0.895609 + 0.444843i \(0.146741\pi\)
\(758\) 15.3809 0.558659
\(759\) 0.384467 0.0139553
\(760\) 8.57050 0.310885
\(761\) −7.25922 −0.263146 −0.131573 0.991306i \(-0.542003\pi\)
−0.131573 + 0.991306i \(0.542003\pi\)
\(762\) −1.16562 −0.0422261
\(763\) 0.711856 0.0257709
\(764\) −81.6843 −2.95524
\(765\) 11.6247 0.420292
\(766\) 15.6344 0.564892
\(767\) 29.7949 1.07583
\(768\) −0.184693 −0.00666453
\(769\) −21.5123 −0.775755 −0.387877 0.921711i \(-0.626792\pi\)
−0.387877 + 0.921711i \(0.626792\pi\)
\(770\) 9.48087 0.341667
\(771\) −2.71928 −0.0979325
\(772\) −101.221 −3.64301
\(773\) 4.54038 0.163306 0.0816530 0.996661i \(-0.473980\pi\)
0.0816530 + 0.996661i \(0.473980\pi\)
\(774\) −74.3891 −2.67386
\(775\) −18.0342 −0.647808
\(776\) −33.1346 −1.18946
\(777\) −0.933831 −0.0335010
\(778\) 36.6440 1.31375
\(779\) 11.3852 0.407917
\(780\) 1.40815 0.0504198
\(781\) 15.2629 0.546149
\(782\) 30.7550 1.09980
\(783\) −5.23615 −0.187125
\(784\) 49.4320 1.76543
\(785\) −0.263348 −0.00939928
\(786\) 5.45856 0.194701
\(787\) −7.25028 −0.258444 −0.129222 0.991616i \(-0.541248\pi\)
−0.129222 + 0.991616i \(0.541248\pi\)
\(788\) −120.281 −4.28484
\(789\) 1.68138 0.0598588
\(790\) −37.7929 −1.34461
\(791\) 0.668201 0.0237585
\(792\) −24.1303 −0.857433
\(793\) −15.0796 −0.535491
\(794\) 17.2125 0.610848
\(795\) 0.731124 0.0259303
\(796\) −9.59605 −0.340123
\(797\) 18.8674 0.668319 0.334159 0.942517i \(-0.391548\pi\)
0.334159 + 0.942517i \(0.391548\pi\)
\(798\) 1.08979 0.0385782
\(799\) −21.1960 −0.749860
\(800\) −54.2624 −1.91847
\(801\) 13.7802 0.486900
\(802\) 9.84236 0.347546
\(803\) −8.08806 −0.285422
\(804\) −2.95968 −0.104380
\(805\) 11.2681 0.397149
\(806\) −26.6760 −0.939622
\(807\) −1.36531 −0.0480612
\(808\) −87.8911 −3.09200
\(809\) −19.4948 −0.685399 −0.342700 0.939445i \(-0.611341\pi\)
−0.342700 + 0.939445i \(0.611341\pi\)
\(810\) −24.9526 −0.876746
\(811\) 4.28635 0.150514 0.0752570 0.997164i \(-0.476022\pi\)
0.0752570 + 0.997164i \(0.476022\pi\)
\(812\) −122.016 −4.28191
\(813\) 2.08686 0.0731893
\(814\) 6.03713 0.211601
\(815\) 17.9936 0.630287
\(816\) 5.08734 0.178092
\(817\) −9.38838 −0.328458
\(818\) 82.4350 2.88227
\(819\) −21.7216 −0.759014
\(820\) 60.9039 2.12686
\(821\) 5.37419 0.187561 0.0937803 0.995593i \(-0.470105\pi\)
0.0937803 + 0.995593i \(0.470105\pi\)
\(822\) −1.97598 −0.0689204
\(823\) 26.3196 0.917445 0.458723 0.888580i \(-0.348307\pi\)
0.458723 + 0.888580i \(0.348307\pi\)
\(824\) 71.6084 2.49460
\(825\) −0.472360 −0.0164455
\(826\) 123.351 4.29192
\(827\) −8.11186 −0.282077 −0.141039 0.990004i \(-0.545044\pi\)
−0.141039 + 0.990004i \(0.545044\pi\)
\(828\) −47.5135 −1.65121
\(829\) −21.5948 −0.750017 −0.375009 0.927021i \(-0.622360\pi\)
−0.375009 + 0.927021i \(0.622360\pi\)
\(830\) −28.0486 −0.973582
\(831\) −1.67120 −0.0579733
\(832\) −31.1681 −1.08056
\(833\) 15.9748 0.553495
\(834\) 3.66663 0.126965
\(835\) 0.917688 0.0317579
\(836\) −5.04540 −0.174499
\(837\) −3.39396 −0.117313
\(838\) −29.9595 −1.03493
\(839\) −4.35109 −0.150216 −0.0751082 0.997175i \(-0.523930\pi\)
−0.0751082 + 0.997175i \(0.523930\pi\)
\(840\) 3.51882 0.121411
\(841\) 22.5308 0.776923
\(842\) 91.6254 3.15762
\(843\) 3.15160 0.108547
\(844\) 62.0828 2.13698
\(845\) 8.83689 0.303998
\(846\) 45.7262 1.57210
\(847\) −3.36889 −0.115756
\(848\) −64.3069 −2.20831
\(849\) 3.51858 0.120757
\(850\) −37.7858 −1.29604
\(851\) 7.17519 0.245962
\(852\) 9.38504 0.321526
\(853\) 19.5022 0.667744 0.333872 0.942618i \(-0.391645\pi\)
0.333872 + 0.942618i \(0.391645\pi\)
\(854\) −62.4294 −2.13629
\(855\) −3.16501 −0.108241
\(856\) −146.851 −5.01928
\(857\) 13.3462 0.455898 0.227949 0.973673i \(-0.426798\pi\)
0.227949 + 0.973673i \(0.426798\pi\)
\(858\) −0.698709 −0.0238535
\(859\) 21.6016 0.737036 0.368518 0.929621i \(-0.379865\pi\)
0.368518 + 0.929621i \(0.379865\pi\)
\(860\) −50.2221 −1.71256
\(861\) 4.67445 0.159305
\(862\) 48.2167 1.64227
\(863\) −2.72425 −0.0927345 −0.0463673 0.998924i \(-0.514764\pi\)
−0.0463673 + 0.998924i \(0.514764\pi\)
\(864\) −10.2120 −0.347418
\(865\) 4.39456 0.149420
\(866\) 28.6147 0.972367
\(867\) −0.427763 −0.0145276
\(868\) −79.0879 −2.68442
\(869\) 13.4291 0.455552
\(870\) −2.46206 −0.0834718
\(871\) 10.3964 0.352269
\(872\) −1.70806 −0.0578422
\(873\) 12.2363 0.414137
\(874\) −8.37352 −0.283239
\(875\) −31.7034 −1.07177
\(876\) −4.97329 −0.168032
\(877\) 1.29130 0.0436041 0.0218021 0.999762i \(-0.493060\pi\)
0.0218021 + 0.999762i \(0.493060\pi\)
\(878\) −3.68266 −0.124284
\(879\) 0.777508 0.0262247
\(880\) −12.0500 −0.406207
\(881\) 24.9873 0.841844 0.420922 0.907097i \(-0.361707\pi\)
0.420922 + 0.907097i \(0.361707\pi\)
\(882\) −34.4626 −1.16041
\(883\) 15.5046 0.521772 0.260886 0.965370i \(-0.415985\pi\)
0.260886 + 0.965370i \(0.415985\pi\)
\(884\) −40.0260 −1.34622
\(885\) 1.78244 0.0599162
\(886\) −19.2914 −0.648107
\(887\) −9.98029 −0.335105 −0.167553 0.985863i \(-0.553586\pi\)
−0.167553 + 0.985863i \(0.553586\pi\)
\(888\) 2.24068 0.0751921
\(889\) 12.1391 0.407134
\(890\) 12.9913 0.435469
\(891\) 8.86655 0.297040
\(892\) 115.274 3.85966
\(893\) 5.77094 0.193117
\(894\) 2.18580 0.0731040
\(895\) −2.16911 −0.0725053
\(896\) −34.7063 −1.15946
\(897\) −0.830422 −0.0277270
\(898\) 56.8815 1.89816
\(899\) 33.4012 1.11399
\(900\) 58.3754 1.94585
\(901\) −20.7819 −0.692345
\(902\) −30.2199 −1.00621
\(903\) −3.85461 −0.128274
\(904\) −1.60331 −0.0533253
\(905\) −5.59303 −0.185919
\(906\) 2.09047 0.0694513
\(907\) 11.8887 0.394758 0.197379 0.980327i \(-0.436757\pi\)
0.197379 + 0.980327i \(0.436757\pi\)
\(908\) 20.2146 0.670845
\(909\) 32.4574 1.07654
\(910\) −20.4780 −0.678839
\(911\) −23.7166 −0.785767 −0.392883 0.919588i \(-0.628522\pi\)
−0.392883 + 0.919588i \(0.628522\pi\)
\(912\) −1.38511 −0.0458655
\(913\) 9.96666 0.329848
\(914\) −46.7989 −1.54797
\(915\) −0.902117 −0.0298231
\(916\) −124.129 −4.10134
\(917\) −56.8471 −1.87726
\(918\) −7.11113 −0.234702
\(919\) 18.1426 0.598470 0.299235 0.954179i \(-0.403269\pi\)
0.299235 + 0.954179i \(0.403269\pi\)
\(920\) −27.0372 −0.891390
\(921\) 1.27111 0.0418845
\(922\) 90.7972 2.99024
\(923\) −32.9667 −1.08511
\(924\) −2.07150 −0.0681475
\(925\) −8.81549 −0.289852
\(926\) −29.1997 −0.959563
\(927\) −26.4443 −0.868546
\(928\) 100.500 3.29906
\(929\) −50.5019 −1.65691 −0.828457 0.560053i \(-0.810781\pi\)
−0.828457 + 0.560053i \(0.810781\pi\)
\(930\) −1.59586 −0.0523303
\(931\) −4.34940 −0.142546
\(932\) 82.2368 2.69376
\(933\) −1.00694 −0.0329656
\(934\) 11.6379 0.380805
\(935\) −3.89418 −0.127353
\(936\) 52.1197 1.70359
\(937\) −39.6587 −1.29559 −0.647797 0.761813i \(-0.724309\pi\)
−0.647797 + 0.761813i \(0.724309\pi\)
\(938\) 43.0412 1.40534
\(939\) −2.93915 −0.0959154
\(940\) 30.8711 1.00690
\(941\) −34.8809 −1.13709 −0.568543 0.822653i \(-0.692493\pi\)
−0.568543 + 0.822653i \(0.692493\pi\)
\(942\) 0.0803484 0.00261789
\(943\) −35.9166 −1.16961
\(944\) −156.777 −5.10265
\(945\) −2.60540 −0.0847537
\(946\) 24.9197 0.810210
\(947\) −30.3067 −0.984835 −0.492417 0.870359i \(-0.663887\pi\)
−0.492417 + 0.870359i \(0.663887\pi\)
\(948\) 8.25748 0.268191
\(949\) 17.4696 0.567088
\(950\) 10.2878 0.333780
\(951\) −1.42992 −0.0463684
\(952\) −100.021 −3.24169
\(953\) −6.65804 −0.215675 −0.107838 0.994169i \(-0.534393\pi\)
−0.107838 + 0.994169i \(0.534393\pi\)
\(954\) 44.8329 1.45152
\(955\) 17.1653 0.555457
\(956\) −77.7912 −2.51595
\(957\) 0.874858 0.0282801
\(958\) −38.1381 −1.23219
\(959\) 20.5785 0.664513
\(960\) −1.86459 −0.0601795
\(961\) −9.35006 −0.301615
\(962\) −13.0398 −0.420419
\(963\) 54.2309 1.74757
\(964\) 121.817 3.92345
\(965\) 21.2707 0.684729
\(966\) −3.43794 −0.110614
\(967\) −20.0020 −0.643221 −0.321611 0.946872i \(-0.604224\pi\)
−0.321611 + 0.946872i \(0.604224\pi\)
\(968\) 8.08346 0.259812
\(969\) −0.447622 −0.0143797
\(970\) 11.5358 0.370392
\(971\) −0.491941 −0.0157871 −0.00789357 0.999969i \(-0.502513\pi\)
−0.00789357 + 0.999969i \(0.502513\pi\)
\(972\) 16.4927 0.529002
\(973\) −38.1853 −1.22417
\(974\) 2.69975 0.0865055
\(975\) 1.02026 0.0326746
\(976\) 79.3467 2.53983
\(977\) 23.6515 0.756679 0.378339 0.925667i \(-0.376495\pi\)
0.378339 + 0.925667i \(0.376495\pi\)
\(978\) −5.48991 −0.175548
\(979\) −4.61626 −0.147536
\(980\) −23.2666 −0.743225
\(981\) 0.630771 0.0201390
\(982\) −6.39809 −0.204171
\(983\) 39.5609 1.26180 0.630899 0.775865i \(-0.282686\pi\)
0.630899 + 0.775865i \(0.282686\pi\)
\(984\) −11.2161 −0.357556
\(985\) 25.2762 0.805366
\(986\) 69.9831 2.22872
\(987\) 2.36939 0.0754186
\(988\) 10.8977 0.346702
\(989\) 29.6173 0.941777
\(990\) 8.40094 0.266999
\(991\) −13.6096 −0.432322 −0.216161 0.976358i \(-0.569354\pi\)
−0.216161 + 0.976358i \(0.569354\pi\)
\(992\) 65.1417 2.06825
\(993\) −0.847283 −0.0268877
\(994\) −136.482 −4.32895
\(995\) 2.01654 0.0639285
\(996\) 6.12843 0.194187
\(997\) 41.1821 1.30425 0.652125 0.758111i \(-0.273878\pi\)
0.652125 + 0.758111i \(0.273878\pi\)
\(998\) 10.8144 0.342323
\(999\) −1.65904 −0.0524897
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 209.2.a.c.1.5 5
3.2 odd 2 1881.2.a.k.1.1 5
4.3 odd 2 3344.2.a.t.1.3 5
5.4 even 2 5225.2.a.h.1.1 5
11.10 odd 2 2299.2.a.n.1.1 5
19.18 odd 2 3971.2.a.h.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.a.c.1.5 5 1.1 even 1 trivial
1881.2.a.k.1.1 5 3.2 odd 2
2299.2.a.n.1.1 5 11.10 odd 2
3344.2.a.t.1.3 5 4.3 odd 2
3971.2.a.h.1.1 5 19.18 odd 2
5225.2.a.h.1.1 5 5.4 even 2