Properties

Label 209.2.a
Level $209$
Weight $2$
Character orbit 209.a
Rep. character $\chi_{209}(1,\cdot)$
Character field $\Q$
Dimension $15$
Newform subspaces $4$
Sturm bound $40$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 209.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(40\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(209))\).

Total New Old
Modular forms 22 15 7
Cusp forms 19 15 4
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(7\)
\(-\)\(+\)\(-\)\(5\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(3\)
Minus space\(-\)\(12\)

Trace form

\( 15 q + q^{2} + 2 q^{3} + 19 q^{4} - 8 q^{5} - 8 q^{6} + 8 q^{7} - 3 q^{8} + 13 q^{9} + 6 q^{10} - 3 q^{11} - 12 q^{12} - 2 q^{13} - 12 q^{14} + 14 q^{15} + 31 q^{16} + 2 q^{17} - 3 q^{18} + q^{19} - 6 q^{20}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(209))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11 19
209.2.a.a 209.a 1.a $1$ $1.669$ \(\Q\) None 209.2.a.a \(0\) \(1\) \(-3\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}-3q^{5}-4q^{7}-2q^{9}+\cdots\)
209.2.a.b 209.a 1.a $2$ $1.669$ \(\Q(\sqrt{2}) \) None 209.2.a.b \(0\) \(-2\) \(-2\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-1-\beta )q^{3}-q^{5}+(-2-\beta )q^{6}+\cdots\)
209.2.a.c 209.a 1.a $5$ $1.669$ 5.5.246832.1 None 209.2.a.c \(2\) \(1\) \(-5\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+\beta _{3}q^{3}+(\beta _{1}+\beta _{2}+\beta _{3}+\beta _{4})q^{4}+\cdots\)
209.2.a.d 209.a 1.a $7$ $1.669$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 209.2.a.d \(-1\) \(2\) \(2\) \(10\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{2}q^{3}+(2+\beta _{2}+\beta _{3})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(209))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(209)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)