Defining parameters
Level: | \( N \) | \(=\) | \( 209 = 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 209.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(209))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 15 | 7 |
Cusp forms | 19 | 15 | 4 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(11\) | \(19\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(7\) |
\(-\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(3\) | |
Minus space | \(-\) | \(12\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(209))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 11 | 19 | |||||||
209.2.a.a | $1$ | $1.669$ | \(\Q\) | None | \(0\) | \(1\) | \(-3\) | \(-4\) | $-$ | $-$ | \(q+q^{3}-2q^{4}-3q^{5}-4q^{7}-2q^{9}+\cdots\) | |
209.2.a.b | $2$ | $1.669$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(-2\) | \(-4\) | $+$ | $+$ | \(q+\beta q^{2}+(-1-\beta )q^{3}-q^{5}+(-2-\beta )q^{6}+\cdots\) | |
209.2.a.c | $5$ | $1.669$ | 5.5.246832.1 | None | \(2\) | \(1\) | \(-5\) | \(6\) | $-$ | $+$ | \(q+\beta _{2}q^{2}+\beta _{3}q^{3}+(\beta _{1}+\beta _{2}+\beta _{3}+\beta _{4})q^{4}+\cdots\) | |
209.2.a.d | $7$ | $1.669$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(-1\) | \(2\) | \(2\) | \(10\) | $+$ | $-$ | \(q-\beta _{1}q^{2}-\beta _{2}q^{3}+(2+\beta _{2}+\beta _{3})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(209))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(209)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)