Defining parameters
Level: | \( N \) | = | \( 209 = 11 \cdot 19 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 12 \) | ||
Newform subspaces: | \( 25 \) | ||
Sturm bound: | \(7200\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(209))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1980 | 1913 | 67 |
Cusp forms | 1621 | 1605 | 16 |
Eisenstein series | 359 | 308 | 51 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(209))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(209))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(209)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(209))\)\(^{\oplus 1}\)