Properties

Label 208.8.w.a.49.7
Level $208$
Weight $8$
Character 208.49
Analytic conductor $64.976$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,8,Mod(17,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.17"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 208.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.9760853007\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 1279 x^{12} + 629380 x^{10} + 148562016 x^{8} + 16872573312 x^{6} + 790180980480 x^{4} + \cdots + 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{3}\cdot 13^{4} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.7
Root \(0.679146i\) of defining polynomial
Character \(\chi\) \(=\) 208.49
Dual form 208.8.w.a.17.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(31.2267 + 54.0862i) q^{3} +439.155i q^{5} +(1128.14 + 651.329i) q^{7} +(-856.712 + 1483.87i) q^{9} +(-497.807 + 287.409i) q^{11} +(-7892.42 - 676.938i) q^{13} +(-23752.2 + 13713.4i) q^{15} +(-5634.27 + 9758.85i) q^{17} +(-35549.9 - 20524.7i) q^{19} +81355.4i q^{21} +(22132.8 + 38335.2i) q^{23} -114732. q^{25} +29576.4 q^{27} +(72756.1 + 126017. i) q^{29} -122045. i q^{31} +(-31089.7 - 17949.6i) q^{33} +(-286035. + 495427. i) q^{35} +(36374.8 - 21001.0i) q^{37} +(-209841. - 448010. i) q^{39} +(-75942.3 + 43845.3i) q^{41} +(374876. - 649305. i) q^{43} +(-651649. - 376230. i) q^{45} +940126. i q^{47} +(436688. + 756366. i) q^{49} -703759. q^{51} -924214. q^{53} +(-126217. - 218614. i) q^{55} -2.56368e6i q^{57} +(-547626. - 316172. i) q^{59} +(32203.2 - 55777.7i) q^{61} +(-1.93297e6 + 1.11600e6i) q^{63} +(297281. - 3.46600e6i) q^{65} +(1.68358e6 - 972013. i) q^{67} +(-1.38227e6 + 2.39416e6i) q^{69} +(4.09113e6 + 2.36202e6i) q^{71} +1.92731e6i q^{73} +(-3.58271e6 - 6.20544e6i) q^{75} -748791. q^{77} +1.50287e6 q^{79} +(2.79720e6 + 4.84490e6i) q^{81} +1.87974e6i q^{83} +(-4.28565e6 - 2.47432e6i) q^{85} +(-4.54386e6 + 7.87020e6i) q^{87} +(3.78860e6 - 2.18735e6i) q^{89} +(-8.46281e6 - 5.90424e6i) q^{91} +(6.60097e6 - 3.81107e6i) q^{93} +(9.01354e6 - 1.56119e7i) q^{95} +(-1.53602e6 - 886819. i) q^{97} -984906. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 26 q^{3} + 2772 q^{7} - 3491 q^{9} - 6516 q^{11} + 5109 q^{13} + 19266 q^{15} - 38403 q^{17} - 43254 q^{19} + 68550 q^{23} + 39380 q^{25} + 432400 q^{27} + 221583 q^{29} + 219756 q^{33} - 659616 q^{35}+ \cdots - 68556288 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 31.2267 + 54.0862i 0.667731 + 1.15654i 0.978537 + 0.206071i \(0.0660677\pi\)
−0.310806 + 0.950473i \(0.600599\pi\)
\(4\) 0 0
\(5\) 439.155i 1.57117i 0.618754 + 0.785585i \(0.287638\pi\)
−0.618754 + 0.785585i \(0.712362\pi\)
\(6\) 0 0
\(7\) 1128.14 + 651.329i 1.24313 + 0.717724i 0.969731 0.244175i \(-0.0785173\pi\)
0.273403 + 0.961899i \(0.411851\pi\)
\(8\) 0 0
\(9\) −856.712 + 1483.87i −0.391729 + 0.678495i
\(10\) 0 0
\(11\) −497.807 + 287.409i −0.112768 + 0.0651067i −0.555323 0.831635i \(-0.687405\pi\)
0.442555 + 0.896741i \(0.354072\pi\)
\(12\) 0 0
\(13\) −7892.42 676.938i −0.996342 0.0854568i
\(14\) 0 0
\(15\) −23752.2 + 13713.4i −1.81713 + 1.04912i
\(16\) 0 0
\(17\) −5634.27 + 9758.85i −0.278142 + 0.481756i −0.970923 0.239392i \(-0.923052\pi\)
0.692781 + 0.721148i \(0.256385\pi\)
\(18\) 0 0
\(19\) −35549.9 20524.7i −1.18905 0.686499i −0.230960 0.972963i \(-0.574187\pi\)
−0.958091 + 0.286464i \(0.907520\pi\)
\(20\) 0 0
\(21\) 81355.4i 1.91699i
\(22\) 0 0
\(23\) 22132.8 + 38335.2i 0.379306 + 0.656977i 0.990961 0.134147i \(-0.0428294\pi\)
−0.611655 + 0.791124i \(0.709496\pi\)
\(24\) 0 0
\(25\) −114732. −1.46857
\(26\) 0 0
\(27\) 29576.4 0.289183
\(28\) 0 0
\(29\) 72756.1 + 126017.i 0.553957 + 0.959482i 0.997984 + 0.0634685i \(0.0202162\pi\)
−0.444027 + 0.896014i \(0.646450\pi\)
\(30\) 0 0
\(31\) 122045.i 0.735793i −0.929867 0.367896i \(-0.880078\pi\)
0.929867 0.367896i \(-0.119922\pi\)
\(32\) 0 0
\(33\) −31089.7 17949.6i −0.150597 0.0869475i
\(34\) 0 0
\(35\) −286035. + 495427.i −1.12767 + 1.95318i
\(36\) 0 0
\(37\) 36374.8 21001.0i 0.118058 0.0681608i −0.439808 0.898092i \(-0.644954\pi\)
0.557866 + 0.829931i \(0.311620\pi\)
\(38\) 0 0
\(39\) −209841. 448010.i −0.566454 1.20938i
\(40\) 0 0
\(41\) −75942.3 + 43845.3i −0.172084 + 0.0993526i −0.583568 0.812064i \(-0.698344\pi\)
0.411484 + 0.911417i \(0.365011\pi\)
\(42\) 0 0
\(43\) 374876. 649305.i 0.719032 1.24540i −0.242352 0.970188i \(-0.577919\pi\)
0.961384 0.275212i \(-0.0887479\pi\)
\(44\) 0 0
\(45\) −651649. 376230.i −1.06603 0.615473i
\(46\) 0 0
\(47\) 940126.i 1.32082i 0.750905 + 0.660410i \(0.229617\pi\)
−0.750905 + 0.660410i \(0.770383\pi\)
\(48\) 0 0
\(49\) 436688. + 756366.i 0.530255 + 0.918429i
\(50\) 0 0
\(51\) −703759. −0.742896
\(52\) 0 0
\(53\) −924214. −0.852721 −0.426360 0.904553i \(-0.640204\pi\)
−0.426360 + 0.904553i \(0.640204\pi\)
\(54\) 0 0
\(55\) −126217. 218614.i −0.102294 0.177178i
\(56\) 0 0
\(57\) 2.56368e6i 1.83359i
\(58\) 0 0
\(59\) −547626. 316172.i −0.347138 0.200420i 0.316286 0.948664i \(-0.397564\pi\)
−0.663424 + 0.748244i \(0.730897\pi\)
\(60\) 0 0
\(61\) 32203.2 55777.7i 0.0181654 0.0314634i −0.856800 0.515649i \(-0.827551\pi\)
0.874965 + 0.484186i \(0.160884\pi\)
\(62\) 0 0
\(63\) −1.93297e6 + 1.11600e6i −0.973944 + 0.562307i
\(64\) 0 0
\(65\) 297281. 3.46600e6i 0.134267 1.56542i
\(66\) 0 0
\(67\) 1.68358e6 972013.i 0.683866 0.394830i −0.117444 0.993079i \(-0.537470\pi\)
0.801310 + 0.598249i \(0.204137\pi\)
\(68\) 0 0
\(69\) −1.38227e6 + 2.39416e6i −0.506549 + 0.877368i
\(70\) 0 0
\(71\) 4.09113e6 + 2.36202e6i 1.35656 + 0.783211i 0.989159 0.146851i \(-0.0469139\pi\)
0.367402 + 0.930062i \(0.380247\pi\)
\(72\) 0 0
\(73\) 1.92731e6i 0.579857i 0.957048 + 0.289928i \(0.0936315\pi\)
−0.957048 + 0.289928i \(0.906368\pi\)
\(74\) 0 0
\(75\) −3.58271e6 6.20544e6i −0.980612 1.69847i
\(76\) 0 0
\(77\) −748791. −0.186915
\(78\) 0 0
\(79\) 1.50287e6 0.342947 0.171474 0.985189i \(-0.445147\pi\)
0.171474 + 0.985189i \(0.445147\pi\)
\(80\) 0 0
\(81\) 2.79720e6 + 4.84490e6i 0.584826 + 1.01295i
\(82\) 0 0
\(83\) 1.87974e6i 0.360848i 0.983589 + 0.180424i \(0.0577470\pi\)
−0.983589 + 0.180424i \(0.942253\pi\)
\(84\) 0 0
\(85\) −4.28565e6 2.47432e6i −0.756921 0.437008i
\(86\) 0 0
\(87\) −4.54386e6 + 7.87020e6i −0.739789 + 1.28135i
\(88\) 0 0
\(89\) 3.78860e6 2.18735e6i 0.569657 0.328892i −0.187355 0.982292i \(-0.559992\pi\)
0.757012 + 0.653400i \(0.226658\pi\)
\(90\) 0 0
\(91\) −8.46281e6 5.90424e6i −1.17725 0.821333i
\(92\) 0 0
\(93\) 6.60097e6 3.81107e6i 0.850977 0.491312i
\(94\) 0 0
\(95\) 9.01354e6 1.56119e7i 1.07861 1.86820i
\(96\) 0 0
\(97\) −1.53602e6 886819.i −0.170881 0.0986583i 0.412120 0.911130i \(-0.364788\pi\)
−0.583001 + 0.812471i \(0.698122\pi\)
\(98\) 0 0
\(99\) 984906.i 0.102017i
\(100\) 0 0
\(101\) −4.81973e6 8.34802e6i −0.465477 0.806229i 0.533746 0.845645i \(-0.320784\pi\)
−0.999223 + 0.0394154i \(0.987450\pi\)
\(102\) 0 0
\(103\) −7.14668e6 −0.644427 −0.322214 0.946667i \(-0.604427\pi\)
−0.322214 + 0.946667i \(0.604427\pi\)
\(104\) 0 0
\(105\) −3.57277e7 −3.01191
\(106\) 0 0
\(107\) −1.03003e7 1.78406e7i −0.812839 1.40788i −0.910869 0.412695i \(-0.864587\pi\)
0.0980299 0.995183i \(-0.468746\pi\)
\(108\) 0 0
\(109\) 1.05713e7i 0.781872i −0.920418 0.390936i \(-0.872151\pi\)
0.920418 0.390936i \(-0.127849\pi\)
\(110\) 0 0
\(111\) 2.27173e6 + 1.31158e6i 0.157662 + 0.0910261i
\(112\) 0 0
\(113\) −1.34036e7 + 2.32157e7i −0.873868 + 1.51358i −0.0159047 + 0.999874i \(0.505063\pi\)
−0.857964 + 0.513711i \(0.828270\pi\)
\(114\) 0 0
\(115\) −1.68351e7 + 9.71976e6i −1.03222 + 0.595954i
\(116\) 0 0
\(117\) 7.76602e6 1.11314e7i 0.448278 0.642537i
\(118\) 0 0
\(119\) −1.27124e7 + 7.33953e6i −0.691536 + 0.399258i
\(120\) 0 0
\(121\) −9.57838e6 + 1.65902e7i −0.491522 + 0.851341i
\(122\) 0 0
\(123\) −4.74285e6 2.73829e6i −0.229811 0.132682i
\(124\) 0 0
\(125\) 1.60763e7i 0.736209i
\(126\) 0 0
\(127\) 4.03532e6 + 6.98938e6i 0.174810 + 0.302779i 0.940095 0.340912i \(-0.110736\pi\)
−0.765286 + 0.643691i \(0.777402\pi\)
\(128\) 0 0
\(129\) 4.68246e7 1.92048
\(130\) 0 0
\(131\) −1.26390e7 −0.491206 −0.245603 0.969370i \(-0.578986\pi\)
−0.245603 + 0.969370i \(0.578986\pi\)
\(132\) 0 0
\(133\) −2.67367e7 4.63094e7i −0.985434 1.70682i
\(134\) 0 0
\(135\) 1.29886e7i 0.454355i
\(136\) 0 0
\(137\) 2.45282e7 + 1.41614e7i 0.814975 + 0.470526i 0.848680 0.528906i \(-0.177398\pi\)
−0.0337058 + 0.999432i \(0.510731\pi\)
\(138\) 0 0
\(139\) −4.44074e6 + 7.69159e6i −0.140250 + 0.242920i −0.927591 0.373598i \(-0.878124\pi\)
0.787341 + 0.616518i \(0.211457\pi\)
\(140\) 0 0
\(141\) −5.08478e7 + 2.93570e7i −1.52759 + 0.881952i
\(142\) 0 0
\(143\) 4.12346e6 1.93137e6i 0.117919 0.0552317i
\(144\) 0 0
\(145\) −5.53411e7 + 3.19512e7i −1.50751 + 0.870361i
\(146\) 0 0
\(147\) −2.72726e7 + 4.72376e7i −0.708136 + 1.22653i
\(148\) 0 0
\(149\) −4.40391e7 2.54260e7i −1.09065 0.629689i −0.156902 0.987614i \(-0.550151\pi\)
−0.933750 + 0.357926i \(0.883484\pi\)
\(150\) 0 0
\(151\) 9.76974e6i 0.230921i 0.993312 + 0.115461i \(0.0368344\pi\)
−0.993312 + 0.115461i \(0.963166\pi\)
\(152\) 0 0
\(153\) −9.65390e6 1.67210e7i −0.217913 0.377436i
\(154\) 0 0
\(155\) 5.35969e7 1.15606
\(156\) 0 0
\(157\) 6.53474e7 1.34766 0.673828 0.738888i \(-0.264649\pi\)
0.673828 + 0.738888i \(0.264649\pi\)
\(158\) 0 0
\(159\) −2.88601e7 4.99872e7i −0.569388 0.986209i
\(160\) 0 0
\(161\) 5.76631e7i 1.08895i
\(162\) 0 0
\(163\) −1.74920e7 1.00990e7i −0.316361 0.182651i 0.333409 0.942782i \(-0.391801\pi\)
−0.649769 + 0.760132i \(0.725134\pi\)
\(164\) 0 0
\(165\) 7.88268e6 1.36532e7i 0.136609 0.236614i
\(166\) 0 0
\(167\) 5.86371e6 3.38542e6i 0.0974238 0.0562477i −0.450497 0.892778i \(-0.648753\pi\)
0.547920 + 0.836531i \(0.315420\pi\)
\(168\) 0 0
\(169\) 6.18320e7 + 1.06853e7i 0.985394 + 0.170288i
\(170\) 0 0
\(171\) 6.09120e7 3.51676e7i 0.931572 0.537843i
\(172\) 0 0
\(173\) 4.33522e7 7.50883e7i 0.636576 1.10258i −0.349603 0.936898i \(-0.613684\pi\)
0.986179 0.165684i \(-0.0529831\pi\)
\(174\) 0 0
\(175\) −1.29434e8 7.47285e7i −1.82563 1.05403i
\(176\) 0 0
\(177\) 3.94920e7i 0.535307i
\(178\) 0 0
\(179\) 4.47221e7 + 7.74609e7i 0.582823 + 1.00948i 0.995143 + 0.0984398i \(0.0313852\pi\)
−0.412320 + 0.911039i \(0.635281\pi\)
\(180\) 0 0
\(181\) −2.55748e7 −0.320581 −0.160290 0.987070i \(-0.551243\pi\)
−0.160290 + 0.987070i \(0.551243\pi\)
\(182\) 0 0
\(183\) 4.02240e6 0.0485184
\(184\) 0 0
\(185\) 9.22271e6 + 1.59742e7i 0.107092 + 0.185489i
\(186\) 0 0
\(187\) 6.47736e6i 0.0724356i
\(188\) 0 0
\(189\) 3.33662e7 + 1.92640e7i 0.359493 + 0.207553i
\(190\) 0 0
\(191\) 7.26412e7 1.25818e8i 0.754339 1.30655i −0.191364 0.981519i \(-0.561291\pi\)
0.945702 0.325034i \(-0.105376\pi\)
\(192\) 0 0
\(193\) −7.90017e7 + 4.56117e7i −0.791017 + 0.456694i −0.840321 0.542090i \(-0.817633\pi\)
0.0493033 + 0.998784i \(0.484300\pi\)
\(194\) 0 0
\(195\) 1.96746e8 9.21528e7i 1.90013 0.889995i
\(196\) 0 0
\(197\) 1.47447e8 8.51285e7i 1.37405 0.793311i 0.382619 0.923906i \(-0.375022\pi\)
0.991436 + 0.130595i \(0.0416889\pi\)
\(198\) 0 0
\(199\) 6.97613e7 1.20830e8i 0.627521 1.08690i −0.360526 0.932749i \(-0.617403\pi\)
0.988047 0.154150i \(-0.0492639\pi\)
\(200\) 0 0
\(201\) 1.05145e8 + 6.07055e7i 0.913277 + 0.527281i
\(202\) 0 0
\(203\) 1.89553e8i 1.59035i
\(204\) 0 0
\(205\) −1.92549e7 3.33504e7i −0.156100 0.270373i
\(206\) 0 0
\(207\) −7.58459e7 −0.594341
\(208\) 0 0
\(209\) 2.35960e7 0.178783
\(210\) 0 0
\(211\) 4.18539e7 + 7.24931e7i 0.306724 + 0.531261i 0.977644 0.210269i \(-0.0674338\pi\)
−0.670920 + 0.741530i \(0.734101\pi\)
\(212\) 0 0
\(213\) 2.95032e8i 2.09190i
\(214\) 0 0
\(215\) 2.85146e8 + 1.64629e8i 1.95673 + 1.12972i
\(216\) 0 0
\(217\) 7.94917e7 1.37684e8i 0.528096 0.914689i
\(218\) 0 0
\(219\) −1.04241e8 + 6.01834e7i −0.670630 + 0.387188i
\(220\) 0 0
\(221\) 5.10742e7 7.32069e7i 0.318294 0.456225i
\(222\) 0 0
\(223\) 8.23600e7 4.75506e7i 0.497335 0.287137i −0.230277 0.973125i \(-0.573963\pi\)
0.727612 + 0.685988i \(0.240630\pi\)
\(224\) 0 0
\(225\) 9.82926e7 1.70248e8i 0.575283 0.996420i
\(226\) 0 0
\(227\) −8.55988e7 4.94205e7i −0.485710 0.280425i 0.237083 0.971489i \(-0.423809\pi\)
−0.722793 + 0.691064i \(0.757142\pi\)
\(228\) 0 0
\(229\) 8.72426e7i 0.480070i 0.970764 + 0.240035i \(0.0771589\pi\)
−0.970764 + 0.240035i \(0.922841\pi\)
\(230\) 0 0
\(231\) −2.33823e7 4.04993e7i −0.124809 0.216175i
\(232\) 0 0
\(233\) −2.42490e8 −1.25588 −0.627940 0.778262i \(-0.716102\pi\)
−0.627940 + 0.778262i \(0.716102\pi\)
\(234\) 0 0
\(235\) −4.12861e8 −2.07523
\(236\) 0 0
\(237\) 4.69298e7 + 8.12847e7i 0.228997 + 0.396634i
\(238\) 0 0
\(239\) 4.08512e8i 1.93558i 0.251750 + 0.967792i \(0.418994\pi\)
−0.251750 + 0.967792i \(0.581006\pi\)
\(240\) 0 0
\(241\) 1.89875e8 + 1.09624e8i 0.873792 + 0.504484i 0.868606 0.495503i \(-0.165016\pi\)
0.00518518 + 0.999987i \(0.498349\pi\)
\(242\) 0 0
\(243\) −1.42353e8 + 2.46563e8i −0.636421 + 1.10231i
\(244\) 0 0
\(245\) −3.32162e8 + 1.91774e8i −1.44301 + 0.833121i
\(246\) 0 0
\(247\) 2.66681e8 + 1.86055e8i 1.12604 + 0.785600i
\(248\) 0 0
\(249\) −1.01668e8 + 5.86980e7i −0.417337 + 0.240949i
\(250\) 0 0
\(251\) −7.42822e6 + 1.28661e7i −0.0296501 + 0.0513556i −0.880470 0.474102i \(-0.842773\pi\)
0.850820 + 0.525458i \(0.176106\pi\)
\(252\) 0 0
\(253\) −2.20358e7 1.27223e7i −0.0855473 0.0493907i
\(254\) 0 0
\(255\) 3.09059e8i 1.16722i
\(256\) 0 0
\(257\) 2.49812e8 + 4.32688e8i 0.918011 + 1.59004i 0.802432 + 0.596744i \(0.203539\pi\)
0.115579 + 0.993298i \(0.463128\pi\)
\(258\) 0 0
\(259\) 5.47143e7 0.195682
\(260\) 0 0
\(261\) −2.49324e8 −0.868005
\(262\) 0 0
\(263\) 1.51725e7 + 2.62796e7i 0.0514295 + 0.0890785i 0.890594 0.454799i \(-0.150289\pi\)
−0.839165 + 0.543878i \(0.816956\pi\)
\(264\) 0 0
\(265\) 4.05873e8i 1.33977i
\(266\) 0 0
\(267\) 2.36611e8 + 1.36607e8i 0.760756 + 0.439222i
\(268\) 0 0
\(269\) −5.52630e7 + 9.57183e7i −0.173102 + 0.299821i −0.939503 0.342541i \(-0.888712\pi\)
0.766401 + 0.642363i \(0.222046\pi\)
\(270\) 0 0
\(271\) −4.36530e7 + 2.52031e7i −0.133236 + 0.0769238i −0.565136 0.824997i \(-0.691176\pi\)
0.431901 + 0.901921i \(0.357843\pi\)
\(272\) 0 0
\(273\) 5.50725e7 6.42091e8i 0.163820 1.90997i
\(274\) 0 0
\(275\) 5.71145e7 3.29751e7i 0.165608 0.0956140i
\(276\) 0 0
\(277\) −2.69297e8 + 4.66436e8i −0.761294 + 1.31860i 0.180889 + 0.983503i \(0.442102\pi\)
−0.942184 + 0.335097i \(0.891231\pi\)
\(278\) 0 0
\(279\) 1.81099e8 + 1.04558e8i 0.499232 + 0.288232i
\(280\) 0 0
\(281\) 1.43482e8i 0.385766i 0.981222 + 0.192883i \(0.0617839\pi\)
−0.981222 + 0.192883i \(0.938216\pi\)
\(282\) 0 0
\(283\) −5.06236e7 8.76826e7i −0.132770 0.229964i 0.791973 0.610556i \(-0.209054\pi\)
−0.924743 + 0.380591i \(0.875721\pi\)
\(284\) 0 0
\(285\) 1.12585e9 2.88088
\(286\) 0 0
\(287\) −1.14231e8 −0.285231
\(288\) 0 0
\(289\) 1.41679e8 + 2.45396e8i 0.345274 + 0.598032i
\(290\) 0 0
\(291\) 1.10770e8i 0.263509i
\(292\) 0 0
\(293\) −2.65267e8 1.53152e8i −0.616094 0.355702i 0.159252 0.987238i \(-0.449092\pi\)
−0.775347 + 0.631536i \(0.782425\pi\)
\(294\) 0 0
\(295\) 1.38849e8 2.40493e8i 0.314894 0.545413i
\(296\) 0 0
\(297\) −1.47233e7 + 8.50052e6i −0.0326106 + 0.0188277i
\(298\) 0 0
\(299\) −1.48731e8 3.17540e8i −0.321775 0.686988i
\(300\) 0 0
\(301\) 8.45822e8 4.88336e8i 1.78771 1.03213i
\(302\) 0 0
\(303\) 3.01008e8 5.21362e8i 0.621626 1.07669i
\(304\) 0 0
\(305\) 2.44951e7 + 1.41422e7i 0.0494344 + 0.0285409i
\(306\) 0 0
\(307\) 8.86416e6i 0.0174845i −0.999962 0.00874225i \(-0.997217\pi\)
0.999962 0.00874225i \(-0.00278278\pi\)
\(308\) 0 0
\(309\) −2.23167e8 3.86537e8i −0.430304 0.745308i
\(310\) 0 0
\(311\) 3.95364e8 0.745309 0.372654 0.927970i \(-0.378448\pi\)
0.372654 + 0.927970i \(0.378448\pi\)
\(312\) 0 0
\(313\) −8.88408e8 −1.63760 −0.818799 0.574080i \(-0.805360\pi\)
−0.818799 + 0.574080i \(0.805360\pi\)
\(314\) 0 0
\(315\) −4.90099e8 8.48876e8i −0.883480 1.53023i
\(316\) 0 0
\(317\) 3.40256e8i 0.599928i 0.953951 + 0.299964i \(0.0969746\pi\)
−0.953951 + 0.299964i \(0.903025\pi\)
\(318\) 0 0
\(319\) −7.24369e7 4.18215e7i −0.124937 0.0721326i
\(320\) 0 0
\(321\) 6.43286e8 1.11420e9i 1.08552 1.88017i
\(322\) 0 0
\(323\) 4.00595e8 2.31284e8i 0.661450 0.381888i
\(324\) 0 0
\(325\) 9.05516e8 + 7.76666e7i 1.46320 + 0.125500i
\(326\) 0 0
\(327\) 5.71762e8 3.30107e8i 0.904270 0.522080i
\(328\) 0 0
\(329\) −6.12331e8 + 1.06059e9i −0.947984 + 1.64196i
\(330\) 0 0
\(331\) 4.75802e8 + 2.74704e8i 0.721154 + 0.416359i 0.815177 0.579211i \(-0.196639\pi\)
−0.0940230 + 0.995570i \(0.529973\pi\)
\(332\) 0 0
\(333\) 7.19673e7i 0.106802i
\(334\) 0 0
\(335\) 4.26865e8 + 7.39351e8i 0.620345 + 1.07447i
\(336\) 0 0
\(337\) −6.88538e8 −0.979993 −0.489997 0.871724i \(-0.663002\pi\)
−0.489997 + 0.871724i \(0.663002\pi\)
\(338\) 0 0
\(339\) −1.67420e9 −2.33404
\(340\) 0 0
\(341\) 3.50769e7 + 6.07550e7i 0.0479050 + 0.0829739i
\(342\) 0 0
\(343\) 6.49158e7i 0.0868602i
\(344\) 0 0
\(345\) −1.05141e9 6.07032e8i −1.37849 0.795874i
\(346\) 0 0
\(347\) −3.43577e8 + 5.95094e8i −0.441440 + 0.764596i −0.997797 0.0663474i \(-0.978865\pi\)
0.556357 + 0.830943i \(0.312199\pi\)
\(348\) 0 0
\(349\) −8.95711e8 + 5.17139e8i −1.12792 + 0.651206i −0.943411 0.331625i \(-0.892403\pi\)
−0.184510 + 0.982831i \(0.559070\pi\)
\(350\) 0 0
\(351\) −2.33430e8 2.00214e7i −0.288125 0.0247127i
\(352\) 0 0
\(353\) 9.29168e8 5.36455e8i 1.12430 0.649116i 0.181806 0.983334i \(-0.441806\pi\)
0.942496 + 0.334219i \(0.108472\pi\)
\(354\) 0 0
\(355\) −1.03729e9 + 1.79664e9i −1.23056 + 2.13139i
\(356\) 0 0
\(357\) −7.93935e8 4.58379e8i −0.923520 0.533194i
\(358\) 0 0
\(359\) 6.57582e8i 0.750100i 0.927005 + 0.375050i \(0.122374\pi\)
−0.927005 + 0.375050i \(0.877626\pi\)
\(360\) 0 0
\(361\) 3.95593e8 + 6.85188e8i 0.442562 + 0.766539i
\(362\) 0 0
\(363\) −1.19640e9 −1.31282
\(364\) 0 0
\(365\) −8.46387e8 −0.911054
\(366\) 0 0
\(367\) −4.47343e8 7.74821e8i −0.472400 0.818220i 0.527102 0.849802i \(-0.323279\pi\)
−0.999501 + 0.0315822i \(0.989945\pi\)
\(368\) 0 0
\(369\) 1.50251e8i 0.155677i
\(370\) 0 0
\(371\) −1.04264e9 6.01967e8i −1.06005 0.612018i
\(372\) 0 0
\(373\) −3.42088e8 + 5.92515e8i −0.341317 + 0.591178i −0.984677 0.174385i \(-0.944206\pi\)
0.643361 + 0.765563i \(0.277540\pi\)
\(374\) 0 0
\(375\) 8.69507e8 5.02010e8i 0.851458 0.491590i
\(376\) 0 0
\(377\) −4.88916e8 1.04383e9i −0.469937 1.00331i
\(378\) 0 0
\(379\) 9.87024e8 5.69859e8i 0.931302 0.537687i 0.0440788 0.999028i \(-0.485965\pi\)
0.887223 + 0.461341i \(0.152631\pi\)
\(380\) 0 0
\(381\) −2.52019e8 + 4.36510e8i −0.233451 + 0.404350i
\(382\) 0 0
\(383\) −1.16426e9 6.72186e8i −1.05890 0.611355i −0.133771 0.991012i \(-0.542709\pi\)
−0.925127 + 0.379657i \(0.876042\pi\)
\(384\) 0 0
\(385\) 3.28835e8i 0.293674i
\(386\) 0 0
\(387\) 6.42322e8 + 1.11253e9i 0.563332 + 0.975719i
\(388\) 0 0
\(389\) 4.06758e8 0.350359 0.175179 0.984537i \(-0.443949\pi\)
0.175179 + 0.984537i \(0.443949\pi\)
\(390\) 0 0
\(391\) −4.98810e8 −0.422004
\(392\) 0 0
\(393\) −3.94675e8 6.83597e8i −0.327994 0.568102i
\(394\) 0 0
\(395\) 6.59995e8i 0.538829i
\(396\) 0 0
\(397\) 1.70506e8 + 9.84416e7i 0.136764 + 0.0789609i 0.566821 0.823841i \(-0.308173\pi\)
−0.430057 + 0.902802i \(0.641506\pi\)
\(398\) 0 0
\(399\) 1.66980e9 2.89218e9i 1.31601 2.27939i
\(400\) 0 0
\(401\) 8.66177e8 5.00088e8i 0.670813 0.387294i −0.125572 0.992085i \(-0.540077\pi\)
0.796385 + 0.604791i \(0.206743\pi\)
\(402\) 0 0
\(403\) −8.26171e7 + 9.63233e8i −0.0628785 + 0.733101i
\(404\) 0 0
\(405\) −2.12766e9 + 1.22841e9i −1.59151 + 0.918860i
\(406\) 0 0
\(407\) −1.20718e7 + 2.09089e7i −0.00887544 + 0.0153727i
\(408\) 0 0
\(409\) 1.40643e9 + 8.12004e8i 1.01645 + 0.586850i 0.913075 0.407793i \(-0.133701\pi\)
0.103379 + 0.994642i \(0.467035\pi\)
\(410\) 0 0
\(411\) 1.76885e9i 1.25674i
\(412\) 0 0
\(413\) −4.11864e8 7.13370e8i −0.287693 0.498299i
\(414\) 0 0
\(415\) −8.25497e8 −0.566953
\(416\) 0 0
\(417\) −5.54678e8 −0.374598
\(418\) 0 0
\(419\) −9.59601e7 1.66208e8i −0.0637297 0.110383i 0.832400 0.554175i \(-0.186966\pi\)
−0.896130 + 0.443792i \(0.853633\pi\)
\(420\) 0 0
\(421\) 1.17016e9i 0.764292i −0.924102 0.382146i \(-0.875185\pi\)
0.924102 0.382146i \(-0.124815\pi\)
\(422\) 0 0
\(423\) −1.39502e9 8.05417e8i −0.896169 0.517404i
\(424\) 0 0
\(425\) 6.46433e8 1.11966e9i 0.408472 0.707495i
\(426\) 0 0
\(427\) 7.26592e7 4.19498e7i 0.0451641 0.0260755i
\(428\) 0 0
\(429\) 2.33222e8 + 1.62712e8i 0.142616 + 0.0994990i
\(430\) 0 0
\(431\) 1.83241e8 1.05794e8i 0.110243 0.0636491i −0.443864 0.896094i \(-0.646393\pi\)
0.554108 + 0.832445i \(0.313059\pi\)
\(432\) 0 0
\(433\) −5.87978e8 + 1.01841e9i −0.348060 + 0.602857i −0.985905 0.167308i \(-0.946493\pi\)
0.637845 + 0.770165i \(0.279826\pi\)
\(434\) 0 0
\(435\) −3.45624e9 1.99546e9i −2.01322 1.16233i
\(436\) 0 0
\(437\) 1.81708e9i 1.04157i
\(438\) 0 0
\(439\) 1.21215e9 + 2.09950e9i 0.683802 + 1.18438i 0.973812 + 0.227356i \(0.0730081\pi\)
−0.290010 + 0.957024i \(0.593659\pi\)
\(440\) 0 0
\(441\) −1.49646e9 −0.830866
\(442\) 0 0
\(443\) −8.11271e7 −0.0443356 −0.0221678 0.999754i \(-0.507057\pi\)
−0.0221678 + 0.999754i \(0.507057\pi\)
\(444\) 0 0
\(445\) 9.60586e8 + 1.66378e9i 0.516745 + 0.895028i
\(446\) 0 0
\(447\) 3.17588e9i 1.68185i
\(448\) 0 0
\(449\) −2.29405e7 1.32447e7i −0.0119603 0.00690525i 0.494008 0.869457i \(-0.335531\pi\)
−0.505968 + 0.862552i \(0.668865\pi\)
\(450\) 0 0
\(451\) 2.52030e7 4.36529e7i 0.0129370 0.0224076i
\(452\) 0 0
\(453\) −5.28408e8 + 3.05077e8i −0.267070 + 0.154193i
\(454\) 0 0
\(455\) 2.59288e9 3.71649e9i 1.29045 1.84966i
\(456\) 0 0
\(457\) −2.28711e9 + 1.32046e9i −1.12094 + 0.647172i −0.941640 0.336623i \(-0.890715\pi\)
−0.179296 + 0.983795i \(0.557382\pi\)
\(458\) 0 0
\(459\) −1.66642e8 + 2.88632e8i −0.0804339 + 0.139316i
\(460\) 0 0
\(461\) −1.91120e8 1.10343e8i −0.0908558 0.0524556i 0.453884 0.891061i \(-0.350038\pi\)
−0.544740 + 0.838605i \(0.683371\pi\)
\(462\) 0 0
\(463\) 1.40461e9i 0.657691i 0.944384 + 0.328845i \(0.106659\pi\)
−0.944384 + 0.328845i \(0.893341\pi\)
\(464\) 0 0
\(465\) 1.67365e9 + 2.89885e9i 0.771934 + 1.33703i
\(466\) 0 0
\(467\) −1.70943e9 −0.776681 −0.388341 0.921516i \(-0.626952\pi\)
−0.388341 + 0.921516i \(0.626952\pi\)
\(468\) 0 0
\(469\) 2.53240e9 1.13352
\(470\) 0 0
\(471\) 2.04058e9 + 3.53439e9i 0.899872 + 1.55862i
\(472\) 0 0
\(473\) 4.30971e8i 0.187255i
\(474\) 0 0
\(475\) 4.07872e9 + 2.35485e9i 1.74621 + 1.00817i
\(476\) 0 0
\(477\) 7.91785e8 1.37141e9i 0.334036 0.578567i
\(478\) 0 0
\(479\) 1.87473e9 1.08237e9i 0.779405 0.449990i −0.0568141 0.998385i \(-0.518094\pi\)
0.836220 + 0.548395i \(0.184761\pi\)
\(480\) 0 0
\(481\) −3.01302e8 + 1.41125e8i −0.123451 + 0.0578226i
\(482\) 0 0
\(483\) −3.11878e9 + 1.80063e9i −1.25942 + 0.727125i
\(484\) 0 0
\(485\) 3.89451e8 6.74549e8i 0.155009 0.268483i
\(486\) 0 0
\(487\) −3.13354e9 1.80915e9i −1.22937 0.709779i −0.262474 0.964939i \(-0.584538\pi\)
−0.966899 + 0.255160i \(0.917872\pi\)
\(488\) 0 0
\(489\) 1.26143e9i 0.487847i
\(490\) 0 0
\(491\) 8.96441e8 + 1.55268e9i 0.341772 + 0.591966i 0.984762 0.173908i \(-0.0556397\pi\)
−0.642990 + 0.765875i \(0.722306\pi\)
\(492\) 0 0
\(493\) −1.63971e9 −0.616315
\(494\) 0 0
\(495\) 4.32527e8 0.160286
\(496\) 0 0
\(497\) 3.07690e9 + 5.32935e9i 1.12426 + 1.94727i
\(498\) 0 0
\(499\) 1.87794e9i 0.676596i −0.941039 0.338298i \(-0.890149\pi\)
0.941039 0.338298i \(-0.109851\pi\)
\(500\) 0 0
\(501\) 3.66209e8 + 2.11431e8i 0.130106 + 0.0751166i
\(502\) 0 0
\(503\) −5.65977e7 + 9.80300e7i −0.0198294 + 0.0343456i −0.875770 0.482729i \(-0.839646\pi\)
0.855940 + 0.517074i \(0.172979\pi\)
\(504\) 0 0
\(505\) 3.66608e9 2.11661e9i 1.26672 0.731343i
\(506\) 0 0
\(507\) 1.35288e9 + 3.67793e9i 0.461032 + 1.25336i
\(508\) 0 0
\(509\) 4.69915e9 2.71305e9i 1.57945 0.911898i 0.584517 0.811381i \(-0.301284\pi\)
0.994935 0.100516i \(-0.0320495\pi\)
\(510\) 0 0
\(511\) −1.25531e9 + 2.17426e9i −0.416177 + 0.720840i
\(512\) 0 0
\(513\) −1.05144e9 6.07048e8i −0.343853 0.198524i
\(514\) 0 0
\(515\) 3.13850e9i 1.01250i
\(516\) 0 0
\(517\) −2.70200e8 4.68001e8i −0.0859942 0.148946i
\(518\) 0 0
\(519\) 5.41499e9 1.70025
\(520\) 0 0
\(521\) −2.65903e9 −0.823741 −0.411871 0.911242i \(-0.635124\pi\)
−0.411871 + 0.911242i \(0.635124\pi\)
\(522\) 0 0
\(523\) 2.02223e9 + 3.50260e9i 0.618122 + 1.07062i 0.989828 + 0.142268i \(0.0454395\pi\)
−0.371706 + 0.928350i \(0.621227\pi\)
\(524\) 0 0
\(525\) 9.33410e9i 2.81524i
\(526\) 0 0
\(527\) 1.19102e9 + 6.87637e8i 0.354473 + 0.204655i
\(528\) 0 0
\(529\) 7.22687e8 1.25173e9i 0.212254 0.367634i
\(530\) 0 0
\(531\) 9.38316e8 5.41737e8i 0.271968 0.157021i
\(532\) 0 0
\(533\) 6.29049e8 2.94637e8i 0.179945 0.0842835i
\(534\) 0 0
\(535\) 7.83478e9 4.52341e9i 2.21202 1.27711i
\(536\) 0 0
\(537\) −2.79305e9 + 4.83770e9i −0.778338 + 1.34812i
\(538\) 0 0
\(539\) −4.34772e8 2.51016e8i −0.119592 0.0690463i
\(540\) 0 0
\(541\) 6.97904e9i 1.89498i 0.319782 + 0.947491i \(0.396390\pi\)
−0.319782 + 0.947491i \(0.603610\pi\)
\(542\) 0 0
\(543\) −7.98617e8 1.38325e9i −0.214062 0.370766i
\(544\) 0 0
\(545\) 4.64244e9 1.22845
\(546\) 0 0
\(547\) −5.47434e7 −0.0143013 −0.00715065 0.999974i \(-0.502276\pi\)
−0.00715065 + 0.999974i \(0.502276\pi\)
\(548\) 0 0
\(549\) 5.51778e7 + 9.55708e7i 0.0142318 + 0.0246503i
\(550\) 0 0
\(551\) 5.97320e9i 1.52116i
\(552\) 0 0
\(553\) 1.69544e9 + 9.78866e8i 0.426330 + 0.246142i
\(554\) 0 0
\(555\) −5.75989e8 + 9.97643e8i −0.143017 + 0.247713i
\(556\) 0 0
\(557\) 1.87977e8 1.08528e8i 0.0460905 0.0266103i −0.476778 0.879024i \(-0.658195\pi\)
0.522868 + 0.852414i \(0.324862\pi\)
\(558\) 0 0
\(559\) −3.39822e9 + 4.87082e9i −0.822830 + 1.17940i
\(560\) 0 0
\(561\) 3.50336e8 2.02266e8i 0.0837750 0.0483675i
\(562\) 0 0
\(563\) −2.39971e9 + 4.15643e9i −0.566735 + 0.981614i 0.430151 + 0.902757i \(0.358460\pi\)
−0.996886 + 0.0788572i \(0.974873\pi\)
\(564\) 0 0
\(565\) −1.01953e10 5.88625e9i −2.37810 1.37300i
\(566\) 0 0
\(567\) 7.28760e9i 1.67897i
\(568\) 0 0
\(569\) 2.61206e9 + 4.52422e9i 0.594415 + 1.02956i 0.993629 + 0.112699i \(0.0359497\pi\)
−0.399214 + 0.916858i \(0.630717\pi\)
\(570\) 0 0
\(571\) 9.53468e8 0.214328 0.107164 0.994241i \(-0.465823\pi\)
0.107164 + 0.994241i \(0.465823\pi\)
\(572\) 0 0
\(573\) 9.07338e9 2.01478
\(574\) 0 0
\(575\) −2.53935e9 4.39829e9i −0.557039 0.964820i
\(576\) 0 0
\(577\) 7.41729e6i 0.00160742i 1.00000 0.000803711i \(0.000255829\pi\)
−1.00000 0.000803711i \(0.999744\pi\)
\(578\) 0 0
\(579\) −4.93392e9 2.84860e9i −1.05637 0.609898i
\(580\) 0 0
\(581\) −1.22433e9 + 2.12060e9i −0.258989 + 0.448583i
\(582\) 0 0
\(583\) 4.60080e8 2.65627e8i 0.0961597 0.0555178i
\(584\) 0 0
\(585\) 4.88840e9 + 3.41049e9i 1.00953 + 0.704321i
\(586\) 0 0
\(587\) −5.20465e9 + 3.00490e9i −1.06208 + 0.613193i −0.926007 0.377505i \(-0.876782\pi\)
−0.136074 + 0.990699i \(0.543449\pi\)
\(588\) 0 0
\(589\) −2.50495e9 + 4.33870e9i −0.505121 + 0.874895i
\(590\) 0 0
\(591\) 9.20856e9 + 5.31656e9i 1.83500 + 1.05944i
\(592\) 0 0
\(593\) 1.00461e9i 0.197836i 0.995096 + 0.0989178i \(0.0315381\pi\)
−0.995096 + 0.0989178i \(0.968462\pi\)
\(594\) 0 0
\(595\) −3.22320e9 5.58274e9i −0.627303 1.08652i
\(596\) 0 0
\(597\) 8.71365e9 1.67606
\(598\) 0 0
\(599\) 4.70768e9 0.894979 0.447489 0.894289i \(-0.352318\pi\)
0.447489 + 0.894289i \(0.352318\pi\)
\(600\) 0 0
\(601\) −3.02639e9 5.24187e9i −0.568676 0.984975i −0.996697 0.0812066i \(-0.974123\pi\)
0.428022 0.903768i \(-0.359211\pi\)
\(602\) 0 0
\(603\) 3.33094e9i 0.618666i
\(604\) 0 0
\(605\) −7.28569e9 4.20640e9i −1.33760 0.772265i
\(606\) 0 0
\(607\) −3.56363e9 + 6.17239e9i −0.646744 + 1.12019i 0.337152 + 0.941450i \(0.390536\pi\)
−0.983896 + 0.178743i \(0.942797\pi\)
\(608\) 0 0
\(609\) −1.02522e10 + 5.91910e9i −1.83931 + 1.06193i
\(610\) 0 0
\(611\) 6.36406e8 7.41987e9i 0.112873 1.31599i
\(612\) 0 0
\(613\) −8.66562e8 + 5.00310e8i −0.151946 + 0.0877258i −0.574045 0.818824i \(-0.694627\pi\)
0.422100 + 0.906549i \(0.361293\pi\)
\(614\) 0 0
\(615\) 1.20253e9 2.08285e9i 0.208465 0.361073i
\(616\) 0 0
\(617\) −3.21958e9 1.85882e9i −0.551825 0.318596i 0.198033 0.980195i \(-0.436545\pi\)
−0.749858 + 0.661599i \(0.769878\pi\)
\(618\) 0 0
\(619\) 8.30664e9i 1.40769i −0.710352 0.703847i \(-0.751464\pi\)
0.710352 0.703847i \(-0.248536\pi\)
\(620\) 0 0
\(621\) 6.54611e8 + 1.13382e9i 0.109689 + 0.189987i
\(622\) 0 0
\(623\) 5.69874e9 0.944214
\(624\) 0 0
\(625\) −1.90347e9 −0.311864
\(626\) 0 0
\(627\) 7.36823e8 + 1.27622e9i 0.119379 + 0.206770i
\(628\) 0 0
\(629\) 4.73302e8i 0.0758335i
\(630\) 0 0
\(631\) −6.78879e9 3.91951e9i −1.07570 0.621053i −0.145963 0.989290i \(-0.546628\pi\)
−0.929732 + 0.368237i \(0.879962\pi\)
\(632\) 0 0
\(633\) −2.61392e9 + 4.52744e9i −0.409618 + 0.709479i
\(634\) 0 0
\(635\) −3.06942e9 + 1.77213e9i −0.475717 + 0.274655i
\(636\) 0 0
\(637\) −2.93451e9 6.26517e9i −0.449830 0.960384i
\(638\) 0 0
\(639\) −7.00984e9 + 4.04713e9i −1.06281 + 0.613613i
\(640\) 0 0
\(641\) 6.36068e8 1.10170e9i 0.0953895 0.165220i −0.814382 0.580330i \(-0.802924\pi\)
0.909771 + 0.415110i \(0.136257\pi\)
\(642\) 0 0
\(643\) −4.91826e9 2.83956e9i −0.729581 0.421224i 0.0886881 0.996059i \(-0.471733\pi\)
−0.818269 + 0.574836i \(0.805066\pi\)
\(644\) 0 0
\(645\) 2.05633e10i 3.01740i
\(646\) 0 0
\(647\) 4.91513e9 + 8.51325e9i 0.713460 + 1.23575i 0.963551 + 0.267526i \(0.0862063\pi\)
−0.250091 + 0.968222i \(0.580460\pi\)
\(648\) 0 0
\(649\) 3.63483e8 0.0521948
\(650\) 0 0
\(651\) 9.92905e9 1.41050
\(652\) 0 0
\(653\) 1.92707e9 + 3.33778e9i 0.270832 + 0.469096i 0.969075 0.246765i \(-0.0793677\pi\)
−0.698243 + 0.715861i \(0.746034\pi\)
\(654\) 0 0
\(655\) 5.55049e9i 0.771769i
\(656\) 0 0
\(657\) −2.85987e9 1.65115e9i −0.393430 0.227147i
\(658\) 0 0
\(659\) −2.45749e9 + 4.25650e9i −0.334498 + 0.579367i −0.983388 0.181515i \(-0.941900\pi\)
0.648891 + 0.760882i \(0.275233\pi\)
\(660\) 0 0
\(661\) 1.10777e10 6.39573e9i 1.49192 0.861360i 0.491962 0.870616i \(-0.336280\pi\)
0.999957 + 0.00925625i \(0.00294640\pi\)
\(662\) 0 0
\(663\) 5.55436e9 + 4.76401e8i 0.740179 + 0.0634856i
\(664\) 0 0
\(665\) 2.03370e10 1.17416e10i 2.68171 1.54828i
\(666\) 0 0
\(667\) −3.22060e9 + 5.57824e9i −0.420239 + 0.727875i
\(668\) 0 0
\(669\) 5.14366e9 + 2.96969e9i 0.664172 + 0.383460i
\(670\) 0 0
\(671\) 3.70220e7i 0.00473076i
\(672\) 0 0
\(673\) −5.49257e9 9.51341e9i −0.694581 1.20305i −0.970322 0.241818i \(-0.922256\pi\)
0.275741 0.961232i \(-0.411077\pi\)
\(674\) 0 0
\(675\) −3.39337e9 −0.424686
\(676\) 0 0
\(677\) 3.14306e9 0.389307 0.194653 0.980872i \(-0.437642\pi\)
0.194653 + 0.980872i \(0.437642\pi\)
\(678\) 0 0
\(679\) −1.15522e9 2.00090e9i −0.141619 0.245291i
\(680\) 0 0
\(681\) 6.17296e9i 0.748994i
\(682\) 0 0
\(683\) 1.33989e10 + 7.73584e9i 1.60915 + 0.929042i 0.989561 + 0.144113i \(0.0460328\pi\)
0.619586 + 0.784929i \(0.287301\pi\)
\(684\) 0 0
\(685\) −6.21904e9 + 1.07717e10i −0.739276 + 1.28046i
\(686\) 0 0
\(687\) −4.71862e9 + 2.72430e9i −0.555222 + 0.320557i
\(688\) 0 0
\(689\) 7.29428e9 + 6.25635e8i 0.849601 + 0.0728708i
\(690\) 0 0
\(691\) 4.00359e9 2.31148e9i 0.461612 0.266512i −0.251110 0.967959i \(-0.580796\pi\)
0.712722 + 0.701447i \(0.247462\pi\)
\(692\) 0 0
\(693\) 6.41498e8 1.11111e9i 0.0732199 0.126821i
\(694\) 0 0
\(695\) −3.37780e9 1.95017e9i −0.381669 0.220357i
\(696\) 0 0
\(697\) 9.88145e8i 0.110537i
\(698\) 0 0
\(699\) −7.57216e9 1.31154e10i −0.838590 1.45248i
\(700\) 0 0
\(701\) −1.41767e10 −1.55440 −0.777200 0.629253i \(-0.783361\pi\)
−0.777200 + 0.629253i \(0.783361\pi\)
\(702\) 0 0
\(703\) −1.72416e9 −0.187169
\(704\) 0 0
\(705\) −1.28923e10 2.23301e10i −1.38570 2.40010i
\(706\) 0 0
\(707\) 1.25569e10i 1.33634i
\(708\) 0 0
\(709\) 7.07624e9 + 4.08547e9i 0.745660 + 0.430507i 0.824124 0.566410i \(-0.191668\pi\)
−0.0784635 + 0.996917i \(0.525001\pi\)
\(710\) 0 0
\(711\) −1.28753e9 + 2.23007e9i −0.134343 + 0.232688i
\(712\) 0 0
\(713\) 4.67864e9 2.70121e9i 0.483399 0.279091i
\(714\) 0 0
\(715\) 8.48170e8 + 1.81084e9i 0.0867784 + 0.185271i
\(716\) 0 0
\(717\) −2.20949e10 + 1.27565e10i −2.23859 + 1.29245i
\(718\) 0 0
\(719\) 7.71168e9 1.33570e10i 0.773745 1.34017i −0.161752 0.986831i \(-0.551714\pi\)
0.935497 0.353334i \(-0.114952\pi\)
\(720\) 0 0
\(721\) −8.06242e9 4.65484e9i −0.801110 0.462521i
\(722\) 0 0
\(723\) 1.36928e10i 1.34744i
\(724\) 0 0
\(725\) −8.34748e9 1.44583e10i −0.813527 1.40907i
\(726\) 0 0
\(727\) −5.70391e9 −0.550557 −0.275279 0.961365i \(-0.588770\pi\)
−0.275279 + 0.961365i \(0.588770\pi\)
\(728\) 0 0
\(729\) −5.54588e9 −0.530181
\(730\) 0 0
\(731\) 4.22431e9 + 7.31672e9i 0.399986 + 0.692796i
\(732\) 0 0
\(733\) 1.66495e10i 1.56148i −0.624854 0.780742i \(-0.714841\pi\)
0.624854 0.780742i \(-0.285159\pi\)
\(734\) 0 0
\(735\) −2.07446e10 1.19769e10i −1.92708 1.11260i
\(736\) 0 0
\(737\) −5.58730e8 + 9.67749e8i −0.0514122 + 0.0890485i
\(738\) 0 0
\(739\) 4.26718e9 2.46366e9i 0.388943 0.224556i −0.292759 0.956186i \(-0.594573\pi\)
0.681702 + 0.731630i \(0.261240\pi\)
\(740\) 0 0
\(741\) −1.73545e9 + 2.02336e10i −0.156693 + 1.82688i
\(742\) 0 0
\(743\) 8.58753e9 4.95801e9i 0.768082 0.443452i −0.0641082 0.997943i \(-0.520420\pi\)
0.832190 + 0.554491i \(0.187087\pi\)
\(744\) 0 0
\(745\) 1.11660e10 1.93400e10i 0.989348 1.71360i
\(746\) 0 0
\(747\) −2.78929e9 1.61040e9i −0.244834 0.141355i
\(748\) 0 0
\(749\) 2.68354e10i 2.33358i
\(750\) 0 0
\(751\) −1.12646e10 1.95109e10i −0.970456 1.68088i −0.694180 0.719801i \(-0.744233\pi\)
−0.276276 0.961078i \(-0.589100\pi\)
\(752\) 0 0
\(753\) −9.27835e8 −0.0791933
\(754\) 0 0
\(755\) −4.29043e9 −0.362816
\(756\) 0 0
\(757\) 1.10819e10 + 1.91944e10i 0.928493 + 1.60820i 0.785846 + 0.618423i \(0.212228\pi\)
0.142647 + 0.989774i \(0.454439\pi\)
\(758\) 0 0
\(759\) 1.58911e9i 0.131919i
\(760\) 0 0
\(761\) 6.64485e9 + 3.83641e9i 0.546561 + 0.315557i 0.747734 0.663999i \(-0.231142\pi\)
−0.201173 + 0.979556i \(0.564475\pi\)
\(762\) 0 0
\(763\) 6.88540e9 1.19259e10i 0.561168 0.971972i
\(764\) 0 0
\(765\) 7.34313e9 4.23956e9i 0.593016 0.342378i
\(766\) 0 0
\(767\) 4.10807e9 + 2.86607e9i 0.328741 + 0.229352i
\(768\) 0 0
\(769\) −7.77528e9 + 4.48906e9i −0.616558 + 0.355970i −0.775528 0.631314i \(-0.782516\pi\)
0.158970 + 0.987283i \(0.449183\pi\)
\(770\) 0 0
\(771\) −1.56016e10 + 2.70228e10i −1.22597 + 2.12344i
\(772\) 0 0
\(773\) 9.70027e9 + 5.60045e9i 0.755363 + 0.436109i 0.827628 0.561276i \(-0.189690\pi\)
−0.0722655 + 0.997385i \(0.523023\pi\)
\(774\) 0 0
\(775\) 1.40026e10i 1.08057i
\(776\) 0 0
\(777\) 1.70855e9 + 2.95929e9i 0.130663 + 0.226315i
\(778\) 0 0
\(779\) 3.59965e9 0.272822
\(780\) 0 0
\(781\) −2.71546e9 −0.203969
\(782\) 0 0
\(783\) 2.15186e9 + 3.72714e9i 0.160195 + 0.277466i
\(784\) 0 0
\(785\) 2.86976e10i 2.11740i
\(786\) 0 0
\(787\) 9.57297e8 + 5.52696e8i 0.0700060 + 0.0404180i 0.534594 0.845109i \(-0.320464\pi\)
−0.464588 + 0.885527i \(0.653798\pi\)
\(788\) 0 0
\(789\) −9.47575e8 + 1.64125e9i −0.0686822 + 0.118961i
\(790\) 0 0
\(791\) −3.02421e10 + 1.74603e10i −2.17267 + 1.25439i
\(792\) 0 0
\(793\) −2.91920e8 + 4.18421e8i −0.0207877 + 0.0297960i
\(794\) 0 0
\(795\) 2.19521e10 1.26741e10i 1.54950 0.894605i
\(796\) 0 0
\(797\) −7.49691e9 + 1.29850e10i −0.524540 + 0.908529i 0.475052 + 0.879958i \(0.342429\pi\)
−0.999592 + 0.0285717i \(0.990904\pi\)
\(798\) 0 0
\(799\) −9.17454e9 5.29693e9i −0.636313 0.367375i
\(800\) 0 0
\(801\) 7.49571e9i 0.515346i
\(802\) 0 0
\(803\) −5.53925e8 9.59426e8i −0.0377526 0.0653894i
\(804\) 0 0
\(805\) −2.53230e10 −1.71092
\(806\) 0 0
\(807\) −6.90272e9 −0.462342
\(808\) 0 0
\(809\) −7.66062e9 1.32686e10i −0.508679 0.881059i −0.999949 0.0100514i \(-0.996800\pi\)
0.491270 0.871007i \(-0.336533\pi\)
\(810\) 0 0
\(811\) 1.14391e10i 0.753041i 0.926408 + 0.376521i \(0.122880\pi\)
−0.926408 + 0.376521i \(0.877120\pi\)
\(812\) 0 0
\(813\) −2.72628e9 1.57402e9i −0.177931 0.102729i
\(814\) 0 0
\(815\) 4.43503e9 7.68170e9i 0.286976 0.497056i
\(816\) 0 0
\(817\) −2.66536e10 + 1.53885e10i −1.70993 + 0.987229i
\(818\) 0 0
\(819\) 1.60113e10 7.49946e9i 1.01843 0.477020i
\(820\) 0 0
\(821\) 1.88617e10 1.08898e10i 1.18954 0.686782i 0.231339 0.972873i \(-0.425689\pi\)
0.958202 + 0.286091i \(0.0923561\pi\)
\(822\) 0 0
\(823\) 1.08157e9 1.87333e9i 0.0676324 0.117143i −0.830226 0.557426i \(-0.811789\pi\)
0.897859 + 0.440284i \(0.145122\pi\)
\(824\) 0 0
\(825\) 3.56699e9 + 2.05941e9i 0.221164 + 0.127689i
\(826\) 0 0
\(827\) 2.27847e10i 1.40079i −0.713755 0.700395i \(-0.753007\pi\)
0.713755 0.700395i \(-0.246993\pi\)
\(828\) 0 0
\(829\) 4.91919e9 + 8.52030e9i 0.299884 + 0.519414i 0.976109 0.217281i \(-0.0697187\pi\)
−0.676225 + 0.736695i \(0.736385\pi\)
\(830\) 0 0
\(831\) −3.36370e10 −2.03336
\(832\) 0 0
\(833\) −9.84168e9 −0.589945
\(834\) 0 0
\(835\) 1.48672e9 + 2.57508e9i 0.0883746 + 0.153069i
\(836\) 0 0
\(837\) 3.60967e9i 0.212779i
\(838\) 0 0
\(839\) 1.81235e10 + 1.04636e10i 1.05944 + 0.611666i 0.925276 0.379294i \(-0.123833\pi\)
0.134160 + 0.990960i \(0.457166\pi\)
\(840\) 0 0
\(841\) −1.96195e9 + 3.39821e9i −0.113737 + 0.196999i
\(842\) 0 0
\(843\) −7.76038e9 + 4.48046e9i −0.446156 + 0.257588i
\(844\) 0 0
\(845\) −4.69253e9 + 2.71539e10i −0.267552 + 1.54822i
\(846\) 0 0
\(847\) −2.16114e10 + 1.24774e10i −1.22206 + 0.705555i
\(848\) 0 0
\(849\) 3.16161e9 5.47607e9i 0.177309 0.307109i
\(850\) 0 0
\(851\) 1.61016e9 + 9.29625e8i 0.0895602 + 0.0517076i
\(852\) 0 0
\(853\) 2.52741e10i 1.39429i −0.716928 0.697147i \(-0.754452\pi\)
0.716928 0.697147i \(-0.245548\pi\)
\(854\) 0 0
\(855\) 1.54440e10 + 2.67498e10i 0.845043 + 1.46366i
\(856\) 0 0
\(857\) −2.67167e10 −1.44994 −0.724969 0.688782i \(-0.758146\pi\)
−0.724969 + 0.688782i \(0.758146\pi\)
\(858\) 0 0
\(859\) 8.51182e9 0.458191 0.229095 0.973404i \(-0.426423\pi\)
0.229095 + 0.973404i \(0.426423\pi\)
\(860\) 0 0
\(861\) −3.56705e9 6.17832e9i −0.190458 0.329882i
\(862\) 0 0
\(863\) 5.94525e9i 0.314871i −0.987529 0.157435i \(-0.949677\pi\)
0.987529 0.157435i \(-0.0503226\pi\)
\(864\) 0 0
\(865\) 3.29754e10 + 1.90384e10i 1.73234 + 1.00017i
\(866\) 0 0
\(867\) −8.84835e9 + 1.53258e10i −0.461100 + 0.798649i
\(868\) 0 0
\(869\) −7.48140e8 + 4.31939e8i −0.0386735 + 0.0223282i
\(870\) 0 0
\(871\) −1.39455e10 + 6.53186e9i −0.715105 + 0.334945i
\(872\) 0 0
\(873\) 2.63184e9 1.51950e9i 0.133878 0.0772947i
\(874\) 0 0
\(875\) 1.04710e10 1.81363e10i 0.528395 0.915207i
\(876\) 0 0
\(877\) 9.21976e9 + 5.32303e9i 0.461552 + 0.266477i 0.712697 0.701472i \(-0.247474\pi\)
−0.251144 + 0.967950i \(0.580807\pi\)
\(878\) 0 0
\(879\) 1.91297e10i 0.950054i
\(880\) 0 0
\(881\) −1.91599e9 3.31860e9i −0.0944014 0.163508i 0.814957 0.579521i \(-0.196760\pi\)
−0.909359 + 0.416013i \(0.863427\pi\)
\(882\) 0 0
\(883\) 1.75487e10 0.857792 0.428896 0.903354i \(-0.358903\pi\)
0.428896 + 0.903354i \(0.358903\pi\)
\(884\) 0 0
\(885\) 1.73431e10 0.841058
\(886\) 0 0
\(887\) −5.37291e9 9.30616e9i −0.258510 0.447752i 0.707333 0.706880i \(-0.249898\pi\)
−0.965843 + 0.259128i \(0.916565\pi\)
\(888\) 0 0
\(889\) 1.05133e10i 0.501860i
\(890\) 0 0
\(891\) −2.78493e9 1.60788e9i −0.131899 0.0761521i
\(892\) 0 0
\(893\) 1.92958e10 3.34214e10i 0.906741 1.57052i
\(894\) 0 0
\(895\) −3.40174e10 + 1.96399e10i −1.58606 + 0.915714i
\(896\) 0 0
\(897\) 1.25302e10 1.79600e10i 0.579673 0.830871i
\(898\) 0 0
\(899\) 1.53798e10 8.87954e9i 0.705980 0.407598i
\(900\) 0 0
\(901\) 5.20727e9 9.01926e9i 0.237178 0.410803i
\(902\) 0 0
\(903\) 5.28244e10 + 3.04982e10i 2.38741 + 1.37837i
\(904\) 0 0
\(905\) 1.12313e10i 0.503687i
\(906\) 0 0
\(907\) 1.03600e10 + 1.79440e10i 0.461034 + 0.798534i 0.999013 0.0444245i \(-0.0141454\pi\)
−0.537979 + 0.842958i \(0.680812\pi\)
\(908\) 0 0
\(909\) 1.65165e10 0.729363
\(910\) 0 0
\(911\) 3.76677e10 1.65065 0.825325 0.564658i \(-0.190992\pi\)
0.825325 + 0.564658i \(0.190992\pi\)
\(912\) 0 0
\(913\) −5.40254e8 9.35747e8i −0.0234936 0.0406921i
\(914\) 0 0
\(915\) 1.76646e9i 0.0762307i
\(916\) 0 0
\(917\) −1.42585e10 8.23217e9i −0.610636 0.352551i
\(918\) 0 0
\(919\) 7.80748e9 1.35229e10i 0.331823 0.574734i −0.651046 0.759038i \(-0.725670\pi\)
0.982869 + 0.184304i \(0.0590030\pi\)
\(920\) 0 0
\(921\) 4.79429e8 2.76798e8i 0.0202216 0.0116749i
\(922\) 0 0
\(923\) −3.06900e10 2.14115e10i −1.28467 0.896273i
\(924\) 0 0
\(925\) −4.17337e9 + 2.40950e9i −0.173377 + 0.100099i
\(926\) 0 0
\(927\) 6.12264e9 1.06047e10i 0.252441 0.437241i
\(928\) 0 0
\(929\) 2.38983e10 + 1.37977e10i 0.977941 + 0.564615i 0.901648 0.432471i \(-0.142358\pi\)
0.0762934 + 0.997085i \(0.475691\pi\)
\(930\) 0 0
\(931\) 3.58516e10i 1.45608i
\(932\) 0 0
\(933\) 1.23459e10 + 2.13838e10i 0.497666 + 0.861982i
\(934\) 0 0
\(935\) 2.84457e9 0.113809
\(936\) 0 0
\(937\) −3.75571e9 −0.149143 −0.0745715 0.997216i \(-0.523759\pi\)
−0.0745715 + 0.997216i \(0.523759\pi\)
\(938\) 0 0
\(939\) −2.77421e10 4.80506e10i −1.09348 1.89395i
\(940\) 0 0
\(941\) 3.77084e10i 1.47528i −0.675193 0.737641i \(-0.735940\pi\)
0.675193 0.737641i \(-0.264060\pi\)
\(942\) 0 0
\(943\) −3.36164e9 1.94084e9i −0.130545 0.0753701i
\(944\) 0 0
\(945\) −8.45988e9 + 1.46529e10i −0.326102 + 0.564825i
\(946\) 0 0
\(947\) 3.96761e10 2.29070e10i 1.51811 0.876483i 0.518340 0.855174i \(-0.326550\pi\)
0.999773 0.0213086i \(-0.00678325\pi\)
\(948\) 0 0
\(949\) 1.30467e9 1.52111e10i 0.0495527 0.577736i
\(950\) 0 0
\(951\) −1.84032e10 + 1.06251e10i −0.693843 + 0.400590i
\(952\) 0 0
\(953\) 9.15154e9 1.58509e10i 0.342507 0.593239i −0.642391 0.766377i \(-0.722057\pi\)
0.984898 + 0.173138i \(0.0553907\pi\)
\(954\) 0 0
\(955\) 5.52538e10 + 3.19008e10i 2.05282 + 1.18519i
\(956\) 0 0
\(957\) 5.22378e9i 0.192661i
\(958\) 0 0
\(959\) 1.84474e10 + 3.19519e10i 0.675415 + 1.16985i
\(960\) 0 0
\(961\) 1.26175e10 0.458609
\(962\) 0 0
\(963\) 3.52974e10 1.27365
\(964\) 0 0
\(965\) −2.00306e10 3.46940e10i −0.717544 1.24282i
\(966\) 0 0
\(967\) 2.62013e10i 0.931816i 0.884833 + 0.465908i \(0.154272\pi\)
−0.884833 + 0.465908i \(0.845728\pi\)
\(968\) 0 0
\(969\) 2.50185e10 + 1.44445e10i 0.883342 + 0.509998i
\(970\) 0 0
\(971\) 1.52480e9 2.64103e9i 0.0534497 0.0925777i −0.838063 0.545574i \(-0.816312\pi\)
0.891512 + 0.452996i \(0.149645\pi\)
\(972\) 0 0
\(973\) −1.00195e10 + 5.78477e9i −0.348700 + 0.201322i
\(974\) 0 0
\(975\) 2.40756e10 + 5.14012e10i 0.831879 + 1.77606i
\(976\) 0 0
\(977\) 3.81568e10 2.20298e10i 1.30900 0.755754i 0.327074 0.944999i \(-0.393937\pi\)
0.981930 + 0.189245i \(0.0606040\pi\)
\(978\) 0 0
\(979\) −1.25733e9 + 2.17775e9i −0.0428261 + 0.0741770i
\(980\) 0 0
\(981\) 1.56864e10 + 9.05656e9i 0.530496 + 0.306282i
\(982\) 0 0
\(983\) 3.19323e10i 1.07224i −0.844141 0.536122i \(-0.819889\pi\)
0.844141 0.536122i \(-0.180111\pi\)
\(984\) 0 0
\(985\) 3.73846e10 + 6.47521e10i 1.24643 + 2.15887i
\(986\) 0 0
\(987\) −7.64843e10 −2.53199
\(988\) 0 0
\(989\) 3.31883e10 1.09093
\(990\) 0 0
\(991\) 1.83299e10 + 3.17483e10i 0.598277 + 1.03625i 0.993075 + 0.117478i \(0.0374811\pi\)
−0.394798 + 0.918768i \(0.629186\pi\)
\(992\) 0 0
\(993\) 3.43124e10i 1.11206i
\(994\) 0 0
\(995\) 5.30632e10 + 3.06360e10i 1.70770 + 0.985943i
\(996\) 0 0
\(997\) −2.93042e10 + 5.07563e10i −0.936476 + 1.62202i −0.164495 + 0.986378i \(0.552600\pi\)
−0.771981 + 0.635646i \(0.780734\pi\)
\(998\) 0 0
\(999\) 1.07584e9 6.21135e8i 0.0341403 0.0197109i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.8.w.a.49.7 14
4.3 odd 2 13.8.e.a.10.4 yes 14
12.11 even 2 117.8.q.b.10.4 14
13.4 even 6 inner 208.8.w.a.17.7 14
52.3 odd 6 169.8.b.d.168.8 14
52.11 even 12 169.8.a.g.1.7 14
52.15 even 12 169.8.a.g.1.8 14
52.23 odd 6 169.8.b.d.168.7 14
52.43 odd 6 13.8.e.a.4.4 14
156.95 even 6 117.8.q.b.82.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.4 14 52.43 odd 6
13.8.e.a.10.4 yes 14 4.3 odd 2
117.8.q.b.10.4 14 12.11 even 2
117.8.q.b.82.4 14 156.95 even 6
169.8.a.g.1.7 14 52.11 even 12
169.8.a.g.1.8 14 52.15 even 12
169.8.b.d.168.7 14 52.23 odd 6
169.8.b.d.168.8 14 52.3 odd 6
208.8.w.a.17.7 14 13.4 even 6 inner
208.8.w.a.49.7 14 1.1 even 1 trivial