Properties

Label 208.8.w.a.49.1
Level $208$
Weight $8$
Character 208.49
Analytic conductor $64.976$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,8,Mod(17,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.17"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 208.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.9760853007\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 1279 x^{12} + 629380 x^{10} + 148562016 x^{8} + 16872573312 x^{6} + 790180980480 x^{4} + \cdots + 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{3}\cdot 13^{4} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.1
Root \(-16.7657i\) of defining polynomial
Character \(\chi\) \(=\) 208.49
Dual form 208.8.w.a.17.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-40.5114 - 70.1679i) q^{3} +223.318i q^{5} +(577.559 + 333.454i) q^{7} +(-2188.85 + 3791.20i) q^{9} +(-6573.82 + 3795.40i) q^{11} +(-6519.11 + 4499.97i) q^{13} +(15669.7 - 9046.93i) q^{15} +(-7051.44 + 12213.4i) q^{17} +(7226.10 + 4171.99i) q^{19} -54034.7i q^{21} +(-29072.6 - 50355.3i) q^{23} +28254.0 q^{25} +177497. q^{27} +(16522.5 + 28617.8i) q^{29} -91450.2i q^{31} +(532630. + 307514. i) q^{33} +(-74466.2 + 128979. i) q^{35} +(-307911. + 177773. i) q^{37} +(579852. + 275132. i) q^{39} +(504092. - 291038. i) q^{41} +(52248.9 - 90497.7i) q^{43} +(-846644. - 488810. i) q^{45} -398024. i q^{47} +(-189389. - 328031. i) q^{49} +1.14266e6 q^{51} +1.49881e6 q^{53} +(-847581. - 1.46805e6i) q^{55} -676053. i q^{57} +(-286332. - 165314. i) q^{59} +(721365. - 1.24944e6i) q^{61} +(-2.52838e6 + 1.45976e6i) q^{63} +(-1.00493e6 - 1.45583e6i) q^{65} +(-2.22292e6 + 1.28340e6i) q^{67} +(-2.35555e6 + 4.07993e6i) q^{69} +(-1.12386e6 - 648863. i) q^{71} -2.66195e6i q^{73} +(-1.14461e6 - 1.98253e6i) q^{75} -5.06236e6 q^{77} -2.13906e6 q^{79} +(-2.40364e6 - 4.16323e6i) q^{81} -1.63158e6i q^{83} +(-2.72748e6 - 1.57471e6i) q^{85} +(1.33870e6 - 2.31870e6i) q^{87} +(-347455. + 200603. i) q^{89} +(-5.26570e6 + 425178. i) q^{91} +(-6.41686e6 + 3.70478e6i) q^{93} +(-931681. + 1.61372e6i) q^{95} +(-9.56294e6 - 5.52117e6i) q^{97} -3.32303e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 26 q^{3} + 2772 q^{7} - 3491 q^{9} - 6516 q^{11} + 5109 q^{13} + 19266 q^{15} - 38403 q^{17} - 43254 q^{19} + 68550 q^{23} + 39380 q^{25} + 432400 q^{27} + 221583 q^{29} + 219756 q^{33} - 659616 q^{35}+ \cdots - 68556288 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −40.5114 70.1679i −0.866270 1.50042i −0.865781 0.500423i \(-0.833178\pi\)
−0.000489031 1.00000i \(-0.500156\pi\)
\(4\) 0 0
\(5\) 223.318i 0.798967i 0.916740 + 0.399483i \(0.130811\pi\)
−0.916740 + 0.399483i \(0.869189\pi\)
\(6\) 0 0
\(7\) 577.559 + 333.454i 0.636433 + 0.367445i 0.783239 0.621720i \(-0.213566\pi\)
−0.146806 + 0.989165i \(0.546899\pi\)
\(8\) 0 0
\(9\) −2188.85 + 3791.20i −1.00085 + 1.73352i
\(10\) 0 0
\(11\) −6573.82 + 3795.40i −1.48917 + 0.859771i −0.999923 0.0123755i \(-0.996061\pi\)
−0.489244 + 0.872147i \(0.662727\pi\)
\(12\) 0 0
\(13\) −6519.11 + 4499.97i −0.822975 + 0.568078i
\(14\) 0 0
\(15\) 15669.7 9046.93i 1.19879 0.692121i
\(16\) 0 0
\(17\) −7051.44 + 12213.4i −0.348102 + 0.602930i −0.985912 0.167263i \(-0.946507\pi\)
0.637810 + 0.770193i \(0.279840\pi\)
\(18\) 0 0
\(19\) 7226.10 + 4171.99i 0.241694 + 0.139542i 0.615955 0.787781i \(-0.288770\pi\)
−0.374261 + 0.927323i \(0.622104\pi\)
\(20\) 0 0
\(21\) 54034.7i 1.27323i
\(22\) 0 0
\(23\) −29072.6 50355.3i −0.498238 0.862974i 0.501760 0.865007i \(-0.332686\pi\)
−0.999998 + 0.00203315i \(0.999353\pi\)
\(24\) 0 0
\(25\) 28254.0 0.361652
\(26\) 0 0
\(27\) 177497. 1.73547
\(28\) 0 0
\(29\) 16522.5 + 28617.8i 0.125801 + 0.217893i 0.922046 0.387081i \(-0.126517\pi\)
−0.796245 + 0.604974i \(0.793183\pi\)
\(30\) 0 0
\(31\) 91450.2i 0.551339i −0.961252 0.275669i \(-0.911100\pi\)
0.961252 0.275669i \(-0.0888995\pi\)
\(32\) 0 0
\(33\) 532630. + 307514.i 2.58004 + 1.48959i
\(34\) 0 0
\(35\) −74466.2 + 128979.i −0.293576 + 0.508489i
\(36\) 0 0
\(37\) −307911. + 177773.i −0.999354 + 0.576977i −0.908057 0.418846i \(-0.862435\pi\)
−0.0912968 + 0.995824i \(0.529101\pi\)
\(38\) 0 0
\(39\) 579852. + 275132.i 1.56528 + 0.742701i
\(40\) 0 0
\(41\) 504092. 291038.i 1.14226 0.659486i 0.195273 0.980749i \(-0.437441\pi\)
0.946990 + 0.321263i \(0.104107\pi\)
\(42\) 0 0
\(43\) 52248.9 90497.7i 0.100216 0.173579i −0.811558 0.584273i \(-0.801380\pi\)
0.911774 + 0.410693i \(0.134713\pi\)
\(44\) 0 0
\(45\) −846644. 488810.i −1.38502 0.799644i
\(46\) 0 0
\(47\) 398024.i 0.559199i −0.960117 0.279600i \(-0.909798\pi\)
0.960117 0.279600i \(-0.0902017\pi\)
\(48\) 0 0
\(49\) −189389. 328031.i −0.229968 0.398317i
\(50\) 0 0
\(51\) 1.14266e6 1.20620
\(52\) 0 0
\(53\) 1.49881e6 1.38287 0.691433 0.722441i \(-0.256980\pi\)
0.691433 + 0.722441i \(0.256980\pi\)
\(54\) 0 0
\(55\) −847581. 1.46805e6i −0.686929 1.18980i
\(56\) 0 0
\(57\) 676053.i 0.483525i
\(58\) 0 0
\(59\) −286332. 165314.i −0.181505 0.104792i 0.406495 0.913653i \(-0.366751\pi\)
−0.588000 + 0.808861i \(0.700084\pi\)
\(60\) 0 0
\(61\) 721365. 1.24944e6i 0.406912 0.704793i −0.587630 0.809130i \(-0.699939\pi\)
0.994542 + 0.104337i \(0.0332721\pi\)
\(62\) 0 0
\(63\) −2.52838e6 + 1.45976e6i −1.27394 + 0.735512i
\(64\) 0 0
\(65\) −1.00493e6 1.45583e6i −0.453876 0.657530i
\(66\) 0 0
\(67\) −2.22292e6 + 1.28340e6i −0.902945 + 0.521316i −0.878155 0.478377i \(-0.841225\pi\)
−0.0247906 + 0.999693i \(0.507892\pi\)
\(68\) 0 0
\(69\) −2.35555e6 + 4.07993e6i −0.863217 + 1.49514i
\(70\) 0 0
\(71\) −1.12386e6 648863.i −0.372657 0.215154i 0.301962 0.953320i \(-0.402359\pi\)
−0.674619 + 0.738166i \(0.735692\pi\)
\(72\) 0 0
\(73\) 2.66195e6i 0.800885i −0.916322 0.400442i \(-0.868856\pi\)
0.916322 0.400442i \(-0.131144\pi\)
\(74\) 0 0
\(75\) −1.14461e6 1.98253e6i −0.313288 0.542631i
\(76\) 0 0
\(77\) −5.06236e6 −1.26367
\(78\) 0 0
\(79\) −2.13906e6 −0.488121 −0.244060 0.969760i \(-0.578480\pi\)
−0.244060 + 0.969760i \(0.578480\pi\)
\(80\) 0 0
\(81\) −2.40364e6 4.16323e6i −0.502542 0.870428i
\(82\) 0 0
\(83\) 1.63158e6i 0.313211i −0.987661 0.156605i \(-0.949945\pi\)
0.987661 0.156605i \(-0.0500550\pi\)
\(84\) 0 0
\(85\) −2.72748e6 1.57471e6i −0.481721 0.278122i
\(86\) 0 0
\(87\) 1.33870e6 2.31870e6i 0.217955 0.377509i
\(88\) 0 0
\(89\) −347455. + 200603.i −0.0522436 + 0.0301629i −0.525894 0.850550i \(-0.676269\pi\)
0.473651 + 0.880713i \(0.342936\pi\)
\(90\) 0 0
\(91\) −5.26570e6 + 425178.i −0.732506 + 0.0591460i
\(92\) 0 0
\(93\) −6.41686e6 + 3.70478e6i −0.827242 + 0.477608i
\(94\) 0 0
\(95\) −931681. + 1.61372e6i −0.111490 + 0.193106i
\(96\) 0 0
\(97\) −9.56294e6 5.52117e6i −1.06387 0.614228i −0.137373 0.990519i \(-0.543866\pi\)
−0.926501 + 0.376291i \(0.877199\pi\)
\(98\) 0 0
\(99\) 3.32303e7i 3.44200i
\(100\) 0 0
\(101\) 3.84159e6 + 6.65383e6i 0.371011 + 0.642610i 0.989721 0.143010i \(-0.0456779\pi\)
−0.618711 + 0.785619i \(0.712345\pi\)
\(102\) 0 0
\(103\) −485826. −0.0438077 −0.0219039 0.999760i \(-0.506973\pi\)
−0.0219039 + 0.999760i \(0.506973\pi\)
\(104\) 0 0
\(105\) 1.20669e7 1.01727
\(106\) 0 0
\(107\) −34987.1 60599.5i −0.00276099 0.00478218i 0.864642 0.502389i \(-0.167546\pi\)
−0.867403 + 0.497607i \(0.834212\pi\)
\(108\) 0 0
\(109\) 4.06366e6i 0.300556i 0.988644 + 0.150278i \(0.0480168\pi\)
−0.988644 + 0.150278i \(0.951983\pi\)
\(110\) 0 0
\(111\) 2.49478e7 + 1.44036e7i 1.73142 + 0.999636i
\(112\) 0 0
\(113\) 1.04977e7 1.81826e7i 0.684417 1.18544i −0.289203 0.957268i \(-0.593390\pi\)
0.973620 0.228177i \(-0.0732764\pi\)
\(114\) 0 0
\(115\) 1.12452e7 6.49245e6i 0.689488 0.398076i
\(116\) 0 0
\(117\) −2.79094e6 3.45650e7i −0.161102 1.99520i
\(118\) 0 0
\(119\) −8.14524e6 + 4.70266e6i −0.443087 + 0.255817i
\(120\) 0 0
\(121\) 1.90665e7 3.30242e7i 0.978414 1.69466i
\(122\) 0 0
\(123\) −4.08430e7 2.35807e7i −1.97902 1.14259i
\(124\) 0 0
\(125\) 2.37564e7i 1.08791i
\(126\) 0 0
\(127\) −4.66784e6 8.08493e6i −0.202210 0.350238i 0.747030 0.664790i \(-0.231479\pi\)
−0.949240 + 0.314552i \(0.898146\pi\)
\(128\) 0 0
\(129\) −8.46671e6 −0.347257
\(130\) 0 0
\(131\) 4.07546e7 1.58390 0.791948 0.610588i \(-0.209067\pi\)
0.791948 + 0.610588i \(0.209067\pi\)
\(132\) 0 0
\(133\) 2.78233e6 + 4.81914e6i 0.102548 + 0.177619i
\(134\) 0 0
\(135\) 3.96383e7i 1.38659i
\(136\) 0 0
\(137\) 4.21961e7 + 2.43619e7i 1.40201 + 0.809449i 0.994598 0.103797i \(-0.0330993\pi\)
0.407408 + 0.913246i \(0.366433\pi\)
\(138\) 0 0
\(139\) −2.66447e7 + 4.61501e7i −0.841511 + 1.45754i 0.0471059 + 0.998890i \(0.485000\pi\)
−0.888617 + 0.458650i \(0.848333\pi\)
\(140\) 0 0
\(141\) −2.79285e7 + 1.61245e7i −0.839036 + 0.484417i
\(142\) 0 0
\(143\) 2.57763e7 5.43246e7i 0.737130 1.55353i
\(144\) 0 0
\(145\) −6.39088e6 + 3.68977e6i −0.174089 + 0.100511i
\(146\) 0 0
\(147\) −1.53448e7 + 2.65780e7i −0.398429 + 0.690100i
\(148\) 0 0
\(149\) −3.13839e7 1.81195e7i −0.777241 0.448740i 0.0582108 0.998304i \(-0.481460\pi\)
−0.835451 + 0.549564i \(0.814794\pi\)
\(150\) 0 0
\(151\) 2.55676e7i 0.604326i −0.953256 0.302163i \(-0.902291\pi\)
0.953256 0.302163i \(-0.0977087\pi\)
\(152\) 0 0
\(153\) −3.08691e7 5.34669e7i −0.696793 1.20688i
\(154\) 0 0
\(155\) 2.04225e7 0.440502
\(156\) 0 0
\(157\) 4.23295e7 0.872960 0.436480 0.899714i \(-0.356225\pi\)
0.436480 + 0.899714i \(0.356225\pi\)
\(158\) 0 0
\(159\) −6.07188e7 1.05168e8i −1.19793 2.07488i
\(160\) 0 0
\(161\) 3.87775e7i 0.732301i
\(162\) 0 0
\(163\) 2.98690e7 + 1.72449e7i 0.540213 + 0.311892i 0.745165 0.666880i \(-0.232371\pi\)
−0.204952 + 0.978772i \(0.565704\pi\)
\(164\) 0 0
\(165\) −6.86734e7 + 1.18946e8i −1.19013 + 2.06137i
\(166\) 0 0
\(167\) −6.93649e6 + 4.00479e6i −0.115248 + 0.0665383i −0.556516 0.830837i \(-0.687862\pi\)
0.441268 + 0.897375i \(0.354529\pi\)
\(168\) 0 0
\(169\) 2.22490e7 5.86716e7i 0.354574 0.935028i
\(170\) 0 0
\(171\) −3.16337e7 + 1.82637e7i −0.483798 + 0.279321i
\(172\) 0 0
\(173\) 1.86570e7 3.23149e7i 0.273956 0.474506i −0.695915 0.718124i \(-0.745001\pi\)
0.969871 + 0.243618i \(0.0783343\pi\)
\(174\) 0 0
\(175\) 1.63184e7 + 9.42142e6i 0.230167 + 0.132887i
\(176\) 0 0
\(177\) 2.67884e7i 0.363112i
\(178\) 0 0
\(179\) 3.42603e7 + 5.93407e7i 0.446484 + 0.773333i 0.998154 0.0607291i \(-0.0193426\pi\)
−0.551670 + 0.834062i \(0.686009\pi\)
\(180\) 0 0
\(181\) −1.20860e8 −1.51498 −0.757489 0.652848i \(-0.773574\pi\)
−0.757489 + 0.652848i \(0.773574\pi\)
\(182\) 0 0
\(183\) −1.16894e8 −1.40998
\(184\) 0 0
\(185\) −3.96998e7 6.87621e7i −0.460986 0.798451i
\(186\) 0 0
\(187\) 1.07052e8i 1.19715i
\(188\) 0 0
\(189\) 1.02515e8 + 5.91871e7i 1.10451 + 0.637691i
\(190\) 0 0
\(191\) −4.20222e7 + 7.27846e7i −0.436377 + 0.755828i −0.997407 0.0719679i \(-0.977072\pi\)
0.561029 + 0.827796i \(0.310405\pi\)
\(192\) 0 0
\(193\) −3.85466e7 + 2.22549e7i −0.385954 + 0.222830i −0.680405 0.732836i \(-0.738196\pi\)
0.294452 + 0.955666i \(0.404863\pi\)
\(194\) 0 0
\(195\) −6.14418e7 + 1.29491e8i −0.593394 + 1.25060i
\(196\) 0 0
\(197\) −1.09554e8 + 6.32512e7i −1.02093 + 0.589437i −0.914374 0.404870i \(-0.867317\pi\)
−0.106560 + 0.994306i \(0.533984\pi\)
\(198\) 0 0
\(199\) 4.81092e7 8.33276e7i 0.432755 0.749554i −0.564354 0.825533i \(-0.690875\pi\)
0.997109 + 0.0759785i \(0.0242080\pi\)
\(200\) 0 0
\(201\) 1.80107e8 + 1.03985e8i 1.56439 + 0.903200i
\(202\) 0 0
\(203\) 2.20380e7i 0.184899i
\(204\) 0 0
\(205\) 6.49939e7 + 1.12573e8i 0.526908 + 0.912631i
\(206\) 0 0
\(207\) 2.54543e8 1.99464
\(208\) 0 0
\(209\) −6.33375e7 −0.479898
\(210\) 0 0
\(211\) −2.51766e7 4.36072e7i −0.184505 0.319573i 0.758904 0.651202i \(-0.225735\pi\)
−0.943410 + 0.331629i \(0.892402\pi\)
\(212\) 0 0
\(213\) 1.05145e8i 0.745524i
\(214\) 0 0
\(215\) 2.02098e7 + 1.16681e7i 0.138684 + 0.0800693i
\(216\) 0 0
\(217\) 3.04944e7 5.28178e7i 0.202587 0.350890i
\(218\) 0 0
\(219\) −1.86783e8 + 1.07839e8i −1.20167 + 0.693782i
\(220\) 0 0
\(221\) −8.99109e6 1.11352e8i −0.0560324 0.693945i
\(222\) 0 0
\(223\) 2.12315e8 1.22580e8i 1.28208 0.740208i 0.304851 0.952400i \(-0.401393\pi\)
0.977228 + 0.212192i \(0.0680602\pi\)
\(224\) 0 0
\(225\) −6.18439e7 + 1.07117e8i −0.361958 + 0.626930i
\(226\) 0 0
\(227\) 1.65319e6 + 954470.i 0.00938064 + 0.00541591i 0.504683 0.863305i \(-0.331609\pi\)
−0.495302 + 0.868721i \(0.664943\pi\)
\(228\) 0 0
\(229\) 2.07407e8i 1.14130i −0.821194 0.570650i \(-0.806691\pi\)
0.821194 0.570650i \(-0.193309\pi\)
\(230\) 0 0
\(231\) 2.05083e8 + 3.55215e8i 1.09468 + 1.89605i
\(232\) 0 0
\(233\) 3.42955e8 1.77620 0.888099 0.459652i \(-0.152026\pi\)
0.888099 + 0.459652i \(0.152026\pi\)
\(234\) 0 0
\(235\) 8.88859e7 0.446782
\(236\) 0 0
\(237\) 8.66562e7 + 1.50093e8i 0.422844 + 0.732388i
\(238\) 0 0
\(239\) 3.94963e8i 1.87139i 0.352815 + 0.935693i \(0.385225\pi\)
−0.352815 + 0.935693i \(0.614775\pi\)
\(240\) 0 0
\(241\) 6.73226e7 + 3.88687e7i 0.309814 + 0.178871i 0.646843 0.762623i \(-0.276089\pi\)
−0.337029 + 0.941494i \(0.609422\pi\)
\(242\) 0 0
\(243\) −656866. + 1.13773e6i −0.00293667 + 0.00508646i
\(244\) 0 0
\(245\) 7.32552e7 4.22939e7i 0.318242 0.183737i
\(246\) 0 0
\(247\) −6.58816e7 + 5.31959e6i −0.278179 + 0.0224615i
\(248\) 0 0
\(249\) −1.14485e8 + 6.60978e7i −0.469948 + 0.271325i
\(250\) 0 0
\(251\) 1.75438e8 3.03868e8i 0.700272 1.21291i −0.268099 0.963391i \(-0.586396\pi\)
0.968371 0.249515i \(-0.0802711\pi\)
\(252\) 0 0
\(253\) 3.82237e8 + 2.20684e8i 1.48392 + 0.856742i
\(254\) 0 0
\(255\) 2.55176e8i 0.963715i
\(256\) 0 0
\(257\) −1.79600e8 3.11076e8i −0.659995 1.14314i −0.980616 0.195937i \(-0.937225\pi\)
0.320622 0.947207i \(-0.396108\pi\)
\(258\) 0 0
\(259\) −2.37116e8 −0.848030
\(260\) 0 0
\(261\) −1.44661e8 −0.503629
\(262\) 0 0
\(263\) −9.97562e7 1.72783e8i −0.338139 0.585673i 0.645944 0.763385i \(-0.276464\pi\)
−0.984083 + 0.177712i \(0.943131\pi\)
\(264\) 0 0
\(265\) 3.34711e8i 1.10486i
\(266\) 0 0
\(267\) 2.81518e7 + 1.62534e7i 0.0905142 + 0.0522584i
\(268\) 0 0
\(269\) 3.22428e7 5.58463e7i 0.100995 0.174929i −0.811100 0.584908i \(-0.801131\pi\)
0.912095 + 0.409979i \(0.134464\pi\)
\(270\) 0 0
\(271\) 4.15254e7 2.39747e7i 0.126742 0.0731747i −0.435288 0.900291i \(-0.643354\pi\)
0.562031 + 0.827116i \(0.310020\pi\)
\(272\) 0 0
\(273\) 2.43155e8 + 3.52258e8i 0.723292 + 1.04783i
\(274\) 0 0
\(275\) −1.85737e8 + 1.07235e8i −0.538560 + 0.310938i
\(276\) 0 0
\(277\) 2.96509e8 5.13568e8i 0.838221 1.45184i −0.0531601 0.998586i \(-0.516929\pi\)
0.891381 0.453255i \(-0.149737\pi\)
\(278\) 0 0
\(279\) 3.46706e8 + 2.00171e8i 0.955756 + 0.551806i
\(280\) 0 0
\(281\) 1.74758e8i 0.469856i 0.972013 + 0.234928i \(0.0754854\pi\)
−0.972013 + 0.234928i \(0.924515\pi\)
\(282\) 0 0
\(283\) −3.30559e8 5.72544e8i −0.866954 1.50161i −0.865094 0.501609i \(-0.832741\pi\)
−0.00185936 0.999998i \(-0.500592\pi\)
\(284\) 0 0
\(285\) 1.50975e8 0.386321
\(286\) 0 0
\(287\) 3.88190e8 0.969299
\(288\) 0 0
\(289\) 1.05724e8 + 1.83119e8i 0.257650 + 0.446263i
\(290\) 0 0
\(291\) 8.94681e8i 2.12835i
\(292\) 0 0
\(293\) −4.64833e8 2.68372e8i −1.07959 0.623304i −0.148807 0.988866i \(-0.547543\pi\)
−0.930787 + 0.365562i \(0.880877\pi\)
\(294\) 0 0
\(295\) 3.69176e7 6.39432e7i 0.0837253 0.145016i
\(296\) 0 0
\(297\) −1.16683e9 + 6.73672e8i −2.58441 + 1.49211i
\(298\) 0 0
\(299\) 4.16125e8 + 1.97445e8i 0.900274 + 0.427167i
\(300\) 0 0
\(301\) 6.03536e7 3.48452e7i 0.127562 0.0736478i
\(302\) 0 0
\(303\) 3.11257e8 5.39113e8i 0.642791 1.11335i
\(304\) 0 0
\(305\) 2.79023e8 + 1.61094e8i 0.563106 + 0.325110i
\(306\) 0 0
\(307\) 3.58135e8i 0.706419i −0.935544 0.353209i \(-0.885090\pi\)
0.935544 0.353209i \(-0.114910\pi\)
\(308\) 0 0
\(309\) 1.96815e7 + 3.40894e7i 0.0379493 + 0.0657301i
\(310\) 0 0
\(311\) −4.95093e8 −0.933309 −0.466655 0.884440i \(-0.654541\pi\)
−0.466655 + 0.884440i \(0.654541\pi\)
\(312\) 0 0
\(313\) −3.14797e8 −0.580263 −0.290131 0.956987i \(-0.593699\pi\)
−0.290131 + 0.956987i \(0.593699\pi\)
\(314\) 0 0
\(315\) −3.25991e8 5.64633e8i −0.587650 1.01784i
\(316\) 0 0
\(317\) 6.24177e8i 1.10053i −0.834991 0.550263i \(-0.814527\pi\)
0.834991 0.550263i \(-0.185473\pi\)
\(318\) 0 0
\(319\) −2.17232e8 1.25419e8i −0.374677 0.216320i
\(320\) 0 0
\(321\) −2.83476e6 + 4.90994e6i −0.00478353 + 0.00828531i
\(322\) 0 0
\(323\) −1.01909e8 + 5.88371e7i −0.168269 + 0.0971499i
\(324\) 0 0
\(325\) −1.84191e8 + 1.27142e8i −0.297630 + 0.205446i
\(326\) 0 0
\(327\) 2.85139e8 1.64625e8i 0.450961 0.260362i
\(328\) 0 0
\(329\) 1.32722e8 2.29882e8i 0.205475 0.355893i
\(330\) 0 0
\(331\) 4.36304e8 + 2.51900e8i 0.661289 + 0.381795i 0.792768 0.609524i \(-0.208639\pi\)
−0.131479 + 0.991319i \(0.541973\pi\)
\(332\) 0 0
\(333\) 1.55647e9i 2.30986i
\(334\) 0 0
\(335\) −2.86607e8 4.96417e8i −0.416514 0.721423i
\(336\) 0 0
\(337\) −9.64189e8 −1.37233 −0.686164 0.727447i \(-0.740707\pi\)
−0.686164 + 0.727447i \(0.740707\pi\)
\(338\) 0 0
\(339\) −1.70111e9 −2.37156
\(340\) 0 0
\(341\) 3.47090e8 + 6.01177e8i 0.474025 + 0.821036i
\(342\) 0 0
\(343\) 8.01836e8i 1.07289i
\(344\) 0 0
\(345\) −9.11122e8 5.26036e8i −1.19456 0.689682i
\(346\) 0 0
\(347\) 2.30234e8 3.98777e8i 0.295812 0.512362i −0.679361 0.733804i \(-0.737743\pi\)
0.975173 + 0.221442i \(0.0710764\pi\)
\(348\) 0 0
\(349\) −2.11799e8 + 1.22282e8i −0.266707 + 0.153984i −0.627390 0.778705i \(-0.715877\pi\)
0.360683 + 0.932688i \(0.382544\pi\)
\(350\) 0 0
\(351\) −1.15712e9 + 7.98732e8i −1.42825 + 0.985885i
\(352\) 0 0
\(353\) 4.69439e8 2.71031e8i 0.568025 0.327949i −0.188335 0.982105i \(-0.560309\pi\)
0.756360 + 0.654155i \(0.226976\pi\)
\(354\) 0 0
\(355\) 1.44903e8 2.50979e8i 0.171901 0.297741i
\(356\) 0 0
\(357\) 6.59950e8 + 3.81023e8i 0.767667 + 0.443212i
\(358\) 0 0
\(359\) 5.16223e8i 0.588853i 0.955674 + 0.294427i \(0.0951286\pi\)
−0.955674 + 0.294427i \(0.904871\pi\)
\(360\) 0 0
\(361\) −4.12125e8 7.13821e8i −0.461056 0.798572i
\(362\) 0 0
\(363\) −3.08965e9 −3.39028
\(364\) 0 0
\(365\) 5.94462e8 0.639880
\(366\) 0 0
\(367\) 5.16064e8 + 8.93849e8i 0.544969 + 0.943915i 0.998609 + 0.0527295i \(0.0167921\pi\)
−0.453639 + 0.891185i \(0.649875\pi\)
\(368\) 0 0
\(369\) 2.54815e9i 2.64018i
\(370\) 0 0
\(371\) 8.65649e8 + 4.99783e8i 0.880102 + 0.508127i
\(372\) 0 0
\(373\) 9.00042e8 1.55892e9i 0.898012 1.55540i 0.0679796 0.997687i \(-0.478345\pi\)
0.830032 0.557715i \(-0.188322\pi\)
\(374\) 0 0
\(375\) 1.66693e9 9.62404e8i 1.63233 0.942428i
\(376\) 0 0
\(377\) −2.36491e8 1.12212e8i −0.227311 0.107856i
\(378\) 0 0
\(379\) −6.87995e8 + 3.97214e8i −0.649155 + 0.374790i −0.788132 0.615506i \(-0.788952\pi\)
0.138978 + 0.990296i \(0.455618\pi\)
\(380\) 0 0
\(381\) −3.78201e8 + 6.55064e8i −0.350337 + 0.606801i
\(382\) 0 0
\(383\) 1.63844e9 + 9.45952e8i 1.49016 + 0.860346i 0.999937 0.0112491i \(-0.00358078\pi\)
0.490226 + 0.871595i \(0.336914\pi\)
\(384\) 0 0
\(385\) 1.13052e9i 1.00963i
\(386\) 0 0
\(387\) 2.28730e8 + 3.96172e8i 0.200602 + 0.347453i
\(388\) 0 0
\(389\) −9.79194e8 −0.843422 −0.421711 0.906730i \(-0.638570\pi\)
−0.421711 + 0.906730i \(0.638570\pi\)
\(390\) 0 0
\(391\) 8.20016e8 0.693751
\(392\) 0 0
\(393\) −1.65103e9 2.85966e9i −1.37208 2.37651i
\(394\) 0 0
\(395\) 4.77690e8i 0.389993i
\(396\) 0 0
\(397\) 1.02057e9 + 5.89224e8i 0.818605 + 0.472622i 0.849935 0.526887i \(-0.176641\pi\)
−0.0313301 + 0.999509i \(0.509974\pi\)
\(398\) 0 0
\(399\) 2.25433e8 3.90461e8i 0.177669 0.307732i
\(400\) 0 0
\(401\) 8.16601e8 4.71465e8i 0.632418 0.365127i −0.149270 0.988797i \(-0.547692\pi\)
0.781688 + 0.623670i \(0.214359\pi\)
\(402\) 0 0
\(403\) 4.11523e8 + 5.96174e8i 0.313204 + 0.453738i
\(404\) 0 0
\(405\) 9.29724e8 5.36777e8i 0.695443 0.401514i
\(406\) 0 0
\(407\) 1.34944e9 2.33729e9i 0.992137 1.71843i
\(408\) 0 0
\(409\) 1.70476e9 + 9.84245e8i 1.23206 + 0.711331i 0.967459 0.253027i \(-0.0814262\pi\)
0.264602 + 0.964358i \(0.414760\pi\)
\(410\) 0 0
\(411\) 3.94774e9i 2.80480i
\(412\) 0 0
\(413\) −1.10249e8 1.90957e8i −0.0770105 0.133386i
\(414\) 0 0
\(415\) 3.64362e8 0.250245
\(416\) 0 0
\(417\) 4.31767e9 2.91590
\(418\) 0 0
\(419\) −9.78364e8 1.69458e9i −0.649758 1.12541i −0.983181 0.182636i \(-0.941537\pi\)
0.333423 0.942777i \(-0.391796\pi\)
\(420\) 0 0
\(421\) 2.92602e8i 0.191113i −0.995424 0.0955563i \(-0.969537\pi\)
0.995424 0.0955563i \(-0.0304630\pi\)
\(422\) 0 0
\(423\) 1.50899e9 + 8.71215e8i 0.969382 + 0.559673i
\(424\) 0 0
\(425\) −1.99232e8 + 3.45079e8i −0.125892 + 0.218051i
\(426\) 0 0
\(427\) 8.33262e8 4.81084e8i 0.517945 0.299036i
\(428\) 0 0
\(429\) −4.85608e9 + 3.92103e8i −2.96951 + 0.239772i
\(430\) 0 0
\(431\) 8.46643e7 4.88810e7i 0.0509366 0.0294083i −0.474315 0.880355i \(-0.657304\pi\)
0.525252 + 0.850947i \(0.323971\pi\)
\(432\) 0 0
\(433\) −3.26639e8 + 5.65755e8i −0.193357 + 0.334904i −0.946361 0.323112i \(-0.895271\pi\)
0.753004 + 0.658016i \(0.228604\pi\)
\(434\) 0 0
\(435\) 5.17807e8 + 2.98956e8i 0.301617 + 0.174139i
\(436\) 0 0
\(437\) 4.85163e8i 0.278101i
\(438\) 0 0
\(439\) −7.87825e8 1.36455e9i −0.444431 0.769777i 0.553582 0.832795i \(-0.313261\pi\)
−0.998012 + 0.0630183i \(0.979927\pi\)
\(440\) 0 0
\(441\) 1.65818e9 0.920652
\(442\) 0 0
\(443\) −2.36999e9 −1.29519 −0.647594 0.761985i \(-0.724225\pi\)
−0.647594 + 0.761985i \(0.724225\pi\)
\(444\) 0 0
\(445\) −4.47983e7 7.75930e7i −0.0240991 0.0417409i
\(446\) 0 0
\(447\) 2.93619e9i 1.55492i
\(448\) 0 0
\(449\) 1.77974e8 + 1.02754e8i 0.0927887 + 0.0535716i 0.545676 0.837996i \(-0.316273\pi\)
−0.452888 + 0.891568i \(0.649606\pi\)
\(450\) 0 0
\(451\) −2.20921e9 + 3.82646e9i −1.13401 + 1.96417i
\(452\) 0 0
\(453\) −1.79403e9 + 1.03578e9i −0.906745 + 0.523509i
\(454\) 0 0
\(455\) −9.49498e7 1.17593e9i −0.0472557 0.585248i
\(456\) 0 0
\(457\) −2.33582e9 + 1.34858e9i −1.14481 + 0.660954i −0.947616 0.319411i \(-0.896515\pi\)
−0.197190 + 0.980365i \(0.563182\pi\)
\(458\) 0 0
\(459\) −1.25161e9 + 2.16785e9i −0.604122 + 1.04637i
\(460\) 0 0
\(461\) 1.66805e9 + 9.63051e8i 0.792970 + 0.457821i 0.841007 0.541024i \(-0.181963\pi\)
−0.0480374 + 0.998846i \(0.515297\pi\)
\(462\) 0 0
\(463\) 2.34776e9i 1.09931i 0.835391 + 0.549655i \(0.185241\pi\)
−0.835391 + 0.549655i \(0.814759\pi\)
\(464\) 0 0
\(465\) −8.27344e8 1.43300e9i −0.381593 0.660939i
\(466\) 0 0
\(467\) 1.71342e9 0.778493 0.389246 0.921134i \(-0.372736\pi\)
0.389246 + 0.921134i \(0.372736\pi\)
\(468\) 0 0
\(469\) −1.71182e9 −0.766219
\(470\) 0 0
\(471\) −1.71483e9 2.97017e9i −0.756219 1.30981i
\(472\) 0 0
\(473\) 7.93221e8i 0.344652i
\(474\) 0 0
\(475\) 2.04167e8 + 1.17876e8i 0.0874092 + 0.0504657i
\(476\) 0 0
\(477\) −3.28067e9 + 5.68228e9i −1.38404 + 2.39722i
\(478\) 0 0
\(479\) −9.86746e7 + 5.69698e7i −0.0410234 + 0.0236848i −0.520371 0.853940i \(-0.674206\pi\)
0.479348 + 0.877625i \(0.340873\pi\)
\(480\) 0 0
\(481\) 1.20733e9 2.54451e9i 0.494675 1.04255i
\(482\) 0 0
\(483\) −2.72093e9 + 1.57093e9i −1.09876 + 0.634370i
\(484\) 0 0
\(485\) 1.23298e9 2.13558e9i 0.490748 0.850001i
\(486\) 0 0
\(487\) −6.89579e8 3.98129e8i −0.270541 0.156197i 0.358593 0.933494i \(-0.383257\pi\)
−0.629133 + 0.777297i \(0.716590\pi\)
\(488\) 0 0
\(489\) 2.79446e9i 1.08073i
\(490\) 0 0
\(491\) −1.82811e9 3.16637e9i −0.696973 1.20719i −0.969511 0.245048i \(-0.921196\pi\)
0.272538 0.962145i \(-0.412137\pi\)
\(492\) 0 0
\(493\) −4.66030e8 −0.175166
\(494\) 0 0
\(495\) 7.42092e9 2.75004
\(496\) 0 0
\(497\) −4.32731e8 7.49513e8i −0.158114 0.273862i
\(498\) 0 0
\(499\) 7.46131e8i 0.268821i 0.990926 + 0.134411i \(0.0429141\pi\)
−0.990926 + 0.134411i \(0.957086\pi\)
\(500\) 0 0
\(501\) 5.62015e8 + 3.24479e8i 0.199671 + 0.115280i
\(502\) 0 0
\(503\) −2.34080e8 + 4.05438e8i −0.0820117 + 0.142048i −0.904114 0.427291i \(-0.859468\pi\)
0.822102 + 0.569340i \(0.192801\pi\)
\(504\) 0 0
\(505\) −1.48592e9 + 8.57897e8i −0.513424 + 0.296425i
\(506\) 0 0
\(507\) −5.01820e9 + 8.15705e8i −1.71009 + 0.277975i
\(508\) 0 0
\(509\) −5.13887e8 + 2.96693e8i −0.172725 + 0.0997229i −0.583870 0.811847i \(-0.698462\pi\)
0.411145 + 0.911570i \(0.365129\pi\)
\(510\) 0 0
\(511\) 8.87637e8 1.53743e9i 0.294281 0.509710i
\(512\) 0 0
\(513\) 1.28261e9 + 7.40516e8i 0.419454 + 0.242172i
\(514\) 0 0
\(515\) 1.08494e8i 0.0350009i
\(516\) 0 0
\(517\) 1.51066e9 + 2.61654e9i 0.480783 + 0.832741i
\(518\) 0 0
\(519\) −3.02329e9 −0.949280
\(520\) 0 0
\(521\) 2.35950e9 0.730950 0.365475 0.930821i \(-0.380907\pi\)
0.365475 + 0.930821i \(0.380907\pi\)
\(522\) 0 0
\(523\) 2.74632e8 + 4.75677e8i 0.0839451 + 0.145397i 0.904941 0.425537i \(-0.139915\pi\)
−0.820996 + 0.570934i \(0.806581\pi\)
\(524\) 0 0
\(525\) 1.52670e9i 0.460465i
\(526\) 0 0
\(527\) 1.11692e9 + 6.44855e8i 0.332419 + 0.191922i
\(528\) 0 0
\(529\) 1.19760e7 2.07431e7i 0.00351737 0.00609227i
\(530\) 0 0
\(531\) 1.25348e9 7.23696e8i 0.363317 0.209761i
\(532\) 0 0
\(533\) −1.97657e9 + 4.16570e9i −0.565414 + 1.19164i
\(534\) 0 0
\(535\) 1.35330e7 7.81326e6i 0.00382080 0.00220594i
\(536\) 0 0
\(537\) 2.77587e9 4.80795e9i 0.773552 1.33983i
\(538\) 0 0
\(539\) 2.49002e9 + 1.43761e9i 0.684923 + 0.395440i
\(540\) 0 0
\(541\) 6.19192e7i 0.0168126i −0.999965 0.00840630i \(-0.997324\pi\)
0.999965 0.00840630i \(-0.00267584\pi\)
\(542\) 0 0
\(543\) 4.89620e9 + 8.48047e9i 1.31238 + 2.27311i
\(544\) 0 0
\(545\) −9.07489e8 −0.240134
\(546\) 0 0
\(547\) 4.11747e9 1.07566 0.537830 0.843053i \(-0.319244\pi\)
0.537830 + 0.843053i \(0.319244\pi\)
\(548\) 0 0
\(549\) 3.15792e9 + 5.46968e9i 0.814514 + 1.41078i
\(550\) 0 0
\(551\) 2.75727e8i 0.0702181i
\(552\) 0 0
\(553\) −1.23543e9 7.13276e8i −0.310656 0.179358i
\(554\) 0 0
\(555\) −3.21659e9 + 5.57130e9i −0.798676 + 1.38335i
\(556\) 0 0
\(557\) 3.49708e9 2.01904e9i 0.857456 0.495052i −0.00570362 0.999984i \(-0.501816\pi\)
0.863160 + 0.504931i \(0.168482\pi\)
\(558\) 0 0
\(559\) 6.66211e7 + 8.25083e8i 0.0161313 + 0.199782i
\(560\) 0 0
\(561\) −7.51161e9 + 4.33683e9i −1.79624 + 1.03706i
\(562\) 0 0
\(563\) 3.26975e8 5.66337e8i 0.0772209 0.133751i −0.824829 0.565382i \(-0.808729\pi\)
0.902050 + 0.431632i \(0.142062\pi\)
\(564\) 0 0
\(565\) 4.06050e9 + 2.34433e9i 0.947131 + 0.546826i
\(566\) 0 0
\(567\) 3.20601e9i 0.738626i
\(568\) 0 0
\(569\) 1.89049e9 + 3.27443e9i 0.430211 + 0.745148i 0.996891 0.0787902i \(-0.0251057\pi\)
−0.566680 + 0.823938i \(0.691772\pi\)
\(570\) 0 0
\(571\) 1.41244e9 0.317499 0.158750 0.987319i \(-0.449254\pi\)
0.158750 + 0.987319i \(0.449254\pi\)
\(572\) 0 0
\(573\) 6.80952e9 1.51208
\(574\) 0 0
\(575\) −8.21420e8 1.42274e9i −0.180189 0.312096i
\(576\) 0 0
\(577\) 2.80901e9i 0.608749i −0.952553 0.304374i \(-0.901553\pi\)
0.952553 0.304374i \(-0.0984474\pi\)
\(578\) 0 0
\(579\) 3.12315e9 + 1.80315e9i 0.668680 + 0.386063i
\(580\) 0 0
\(581\) 5.44058e8 9.42336e8i 0.115088 0.199338i
\(582\) 0 0
\(583\) −9.85289e9 + 5.68857e9i −2.05932 + 1.18895i
\(584\) 0 0
\(585\) 7.71900e9 6.23268e8i 1.59410 0.128715i
\(586\) 0 0
\(587\) −4.64252e9 + 2.68036e9i −0.947371 + 0.546965i −0.892263 0.451516i \(-0.850884\pi\)
−0.0551076 + 0.998480i \(0.517550\pi\)
\(588\) 0 0
\(589\) 3.81529e8 6.60828e8i 0.0769351 0.133255i
\(590\) 0 0
\(591\) 8.87641e9 + 5.12480e9i 1.76881 + 1.02122i
\(592\) 0 0
\(593\) 2.19757e9i 0.432765i 0.976309 + 0.216382i \(0.0694258\pi\)
−0.976309 + 0.216382i \(0.930574\pi\)
\(594\) 0 0
\(595\) −1.05019e9 1.81898e9i −0.204389 0.354012i
\(596\) 0 0
\(597\) −7.79589e9 −1.49953
\(598\) 0 0
\(599\) 9.75825e9 1.85515 0.927573 0.373642i \(-0.121891\pi\)
0.927573 + 0.373642i \(0.121891\pi\)
\(600\) 0 0
\(601\) −1.84366e9 3.19331e9i −0.346434 0.600041i 0.639179 0.769058i \(-0.279274\pi\)
−0.985613 + 0.169017i \(0.945941\pi\)
\(602\) 0 0
\(603\) 1.12367e10i 2.08703i
\(604\) 0 0
\(605\) 7.37489e9 + 4.25790e9i 1.35398 + 0.781720i
\(606\) 0 0
\(607\) 2.95249e9 5.11386e9i 0.535831 0.928086i −0.463292 0.886206i \(-0.653332\pi\)
0.999123 0.0418806i \(-0.0133349\pi\)
\(608\) 0 0
\(609\) 1.54636e9 8.92789e8i 0.277427 0.160173i
\(610\) 0 0
\(611\) 1.79110e9 + 2.59476e9i 0.317669 + 0.460207i
\(612\) 0 0
\(613\) −7.28326e9 + 4.20499e9i −1.27707 + 0.737316i −0.976308 0.216384i \(-0.930574\pi\)
−0.300760 + 0.953700i \(0.597240\pi\)
\(614\) 0 0
\(615\) 5.26600e9 9.12097e9i 0.912888 1.58117i
\(616\) 0 0
\(617\) 7.37210e9 + 4.25629e9i 1.26355 + 0.729512i 0.973760 0.227577i \(-0.0730803\pi\)
0.289793 + 0.957089i \(0.406414\pi\)
\(618\) 0 0
\(619\) 8.70392e9i 1.47502i −0.675337 0.737509i \(-0.736002\pi\)
0.675337 0.737509i \(-0.263998\pi\)
\(620\) 0 0
\(621\) −5.16031e9 8.93792e9i −0.864679 1.49767i
\(622\) 0 0
\(623\) −2.67568e8 −0.0443328
\(624\) 0 0
\(625\) −3.09788e9 −0.507556
\(626\) 0 0
\(627\) 2.56589e9 + 4.44426e9i 0.415721 + 0.720050i
\(628\) 0 0
\(629\) 5.01421e9i 0.803388i
\(630\) 0 0
\(631\) −8.56201e9 4.94328e9i −1.35667 0.783272i −0.367494 0.930026i \(-0.619784\pi\)
−0.989173 + 0.146754i \(0.953117\pi\)
\(632\) 0 0
\(633\) −2.03988e9 + 3.53318e9i −0.319663 + 0.553672i
\(634\) 0 0
\(635\) 1.80551e9 1.04241e9i 0.279829 0.161559i
\(636\) 0 0
\(637\) 2.71078e9 + 1.28623e9i 0.415533 + 0.197165i
\(638\) 0 0
\(639\) 4.91994e9 2.84053e9i 0.745945 0.430672i
\(640\) 0 0
\(641\) −3.38085e9 + 5.85580e9i −0.507017 + 0.878179i 0.492950 + 0.870058i \(0.335918\pi\)
−0.999967 + 0.00812132i \(0.997415\pi\)
\(642\) 0 0
\(643\) −2.43813e9 1.40766e9i −0.361676 0.208814i 0.308140 0.951341i \(-0.400294\pi\)
−0.669816 + 0.742528i \(0.733627\pi\)
\(644\) 0 0
\(645\) 1.89077e9i 0.277447i
\(646\) 0 0
\(647\) 5.96746e9 + 1.03360e10i 0.866213 + 1.50033i 0.865837 + 0.500326i \(0.166786\pi\)
0.000375912 1.00000i \(0.499880\pi\)
\(648\) 0 0
\(649\) 2.50973e9 0.360388
\(650\) 0 0
\(651\) −4.94149e9 −0.701979
\(652\) 0 0
\(653\) −6.41202e8 1.11059e9i −0.0901153 0.156084i 0.817444 0.576008i \(-0.195390\pi\)
−0.907559 + 0.419924i \(0.862057\pi\)
\(654\) 0 0
\(655\) 9.10123e9i 1.26548i
\(656\) 0 0
\(657\) 1.00920e10 + 5.82662e9i 1.38835 + 0.801563i
\(658\) 0 0
\(659\) −2.42623e9 + 4.20235e9i −0.330242 + 0.571996i −0.982559 0.185950i \(-0.940464\pi\)
0.652317 + 0.757946i \(0.273797\pi\)
\(660\) 0 0
\(661\) −4.12321e9 + 2.38054e9i −0.555304 + 0.320605i −0.751258 0.660008i \(-0.770553\pi\)
0.195955 + 0.980613i \(0.437219\pi\)
\(662\) 0 0
\(663\) −7.44909e9 + 5.14192e9i −0.992673 + 0.685216i
\(664\) 0 0
\(665\) −1.07620e9 + 6.21345e8i −0.141912 + 0.0819327i
\(666\) 0 0
\(667\) 9.60706e8 1.66399e9i 0.125357 0.217125i
\(668\) 0 0
\(669\) −1.72024e10 9.93181e9i −2.22125 1.28244i
\(670\) 0 0
\(671\) 1.09515e10i 1.39941i
\(672\) 0 0
\(673\) −5.17406e9 8.96173e9i −0.654303 1.13329i −0.982068 0.188526i \(-0.939629\pi\)
0.327766 0.944759i \(-0.393704\pi\)
\(674\) 0 0
\(675\) 5.01501e9 0.627637
\(676\) 0 0
\(677\) −1.09230e9 −0.135295 −0.0676477 0.997709i \(-0.521549\pi\)
−0.0676477 + 0.997709i \(0.521549\pi\)
\(678\) 0 0
\(679\) −3.68211e9 6.37760e9i −0.451390 0.781831i
\(680\) 0 0
\(681\) 1.54668e8i 0.0187666i
\(682\) 0 0
\(683\) −6.69361e9 3.86456e9i −0.803875 0.464117i 0.0409497 0.999161i \(-0.486962\pi\)
−0.844824 + 0.535044i \(0.820295\pi\)
\(684\) 0 0
\(685\) −5.44046e9 + 9.42314e9i −0.646723 + 1.12016i
\(686\) 0 0
\(687\) −1.45533e10 + 8.40236e9i −1.71243 + 0.988673i
\(688\) 0 0
\(689\) −9.77088e9 + 6.74459e9i −1.13806 + 0.785576i
\(690\) 0 0
\(691\) −7.44583e9 + 4.29885e9i −0.858500 + 0.495655i −0.863510 0.504332i \(-0.831739\pi\)
0.00500987 + 0.999987i \(0.498405\pi\)
\(692\) 0 0
\(693\) 1.10808e10 1.91924e10i 1.26474 2.19060i
\(694\) 0 0
\(695\) −1.03061e10 5.95025e9i −1.16453 0.672340i
\(696\) 0 0
\(697\) 8.20893e9i 0.918273i
\(698\) 0 0
\(699\) −1.38936e10 2.40644e10i −1.53867 2.66505i
\(700\) 0 0
\(701\) 4.34708e9 0.476633 0.238317 0.971188i \(-0.423404\pi\)
0.238317 + 0.971188i \(0.423404\pi\)
\(702\) 0 0
\(703\) −2.96666e9 −0.322051
\(704\) 0 0
\(705\) −3.60089e9 6.23693e9i −0.387033 0.670362i
\(706\) 0 0
\(707\) 5.12397e9i 0.545304i
\(708\) 0 0
\(709\) −1.06035e10 6.12194e9i −1.11735 0.645100i −0.176624 0.984278i \(-0.556518\pi\)
−0.940722 + 0.339178i \(0.889851\pi\)
\(710\) 0 0
\(711\) 4.68208e9 8.10960e9i 0.488534 0.846166i
\(712\) 0 0
\(713\) −4.60500e9 + 2.65870e9i −0.475791 + 0.274698i
\(714\) 0 0
\(715\) 1.21317e10 + 5.75631e9i 1.24122 + 0.588942i
\(716\) 0 0
\(717\) 2.77137e10 1.60005e10i 2.80787 1.62113i
\(718\) 0 0
\(719\) 1.14736e9 1.98729e9i 0.115119 0.199393i −0.802708 0.596372i \(-0.796608\pi\)
0.917828 + 0.396979i \(0.129942\pi\)
\(720\) 0 0
\(721\) −2.80593e8 1.62001e8i −0.0278807 0.0160969i
\(722\) 0 0
\(723\) 6.29851e9i 0.619803i
\(724\) 0 0
\(725\) 4.66828e8 + 8.08569e8i 0.0454960 + 0.0788015i
\(726\) 0 0
\(727\) 5.74619e9 0.554638 0.277319 0.960778i \(-0.410554\pi\)
0.277319 + 0.960778i \(0.410554\pi\)
\(728\) 0 0
\(729\) −1.04071e10 −0.994908
\(730\) 0 0
\(731\) 7.36860e8 + 1.27628e9i 0.0697708 + 0.120847i
\(732\) 0 0
\(733\) 1.26955e9i 0.119065i −0.998226 0.0595326i \(-0.981039\pi\)
0.998226 0.0595326i \(-0.0189610\pi\)
\(734\) 0 0
\(735\) −5.93535e9 3.42678e9i −0.551367 0.318332i
\(736\) 0 0
\(737\) 9.74204e9 1.68737e10i 0.896424 1.55265i
\(738\) 0 0
\(739\) −2.22921e9 + 1.28703e9i −0.203187 + 0.117310i −0.598141 0.801391i \(-0.704094\pi\)
0.394954 + 0.918701i \(0.370760\pi\)
\(740\) 0 0
\(741\) 3.04222e9 + 4.40727e9i 0.274680 + 0.397929i
\(742\) 0 0
\(743\) 4.19446e9 2.42167e9i 0.375159 0.216598i −0.300551 0.953766i \(-0.597171\pi\)
0.675710 + 0.737168i \(0.263837\pi\)
\(744\) 0 0
\(745\) 4.04642e9 7.00860e9i 0.358529 0.620990i
\(746\) 0 0
\(747\) 6.18567e9 + 3.57130e9i 0.542956 + 0.313476i
\(748\) 0 0
\(749\) 4.66664e7i 0.00405805i
\(750\) 0 0
\(751\) −1.03699e10 1.79612e10i −0.893378 1.54738i −0.835800 0.549034i \(-0.814996\pi\)
−0.0575779 0.998341i \(-0.518338\pi\)
\(752\) 0 0
\(753\) −2.84290e10 −2.42650
\(754\) 0 0
\(755\) 5.70971e9 0.482836
\(756\) 0 0
\(757\) −1.49204e9 2.58429e9i −0.125010 0.216524i 0.796727 0.604340i \(-0.206563\pi\)
−0.921737 + 0.387816i \(0.873230\pi\)
\(758\) 0 0
\(759\) 3.57610e10i 2.96868i
\(760\) 0 0
\(761\) −1.83097e10 1.05711e10i −1.50603 0.869507i −0.999975 0.00700633i \(-0.997770\pi\)
−0.506055 0.862501i \(-0.668897\pi\)
\(762\) 0 0
\(763\) −1.35504e9 + 2.34700e9i −0.110438 + 0.191284i
\(764\) 0 0
\(765\) 1.19401e10 6.89363e9i 0.964258 0.556715i
\(766\) 0 0
\(767\) 2.61054e9 2.10787e8i 0.208904 0.0168679i
\(768\) 0 0
\(769\) 1.19184e8 6.88110e7i 0.00945097 0.00545652i −0.495267 0.868741i \(-0.664930\pi\)
0.504718 + 0.863284i \(0.331596\pi\)
\(770\) 0 0
\(771\) −1.45517e10 + 2.52043e10i −1.14347 + 1.98054i
\(772\) 0 0
\(773\) 3.53984e9 + 2.04373e9i 0.275649 + 0.159146i 0.631452 0.775415i \(-0.282459\pi\)
−0.355803 + 0.934561i \(0.615793\pi\)
\(774\) 0 0
\(775\) 2.58384e9i 0.199393i
\(776\) 0 0
\(777\) 9.60589e9 + 1.66379e10i 0.734622 + 1.27240i
\(778\) 0 0
\(779\) 4.85683e9 0.368105
\(780\) 0 0
\(781\) 9.85077e9 0.739932
\(782\) 0 0
\(783\) 2.93270e9 + 5.07958e9i 0.218324 + 0.378148i
\(784\) 0 0
\(785\) 9.45295e9i 0.697466i
\(786\) 0 0
\(787\) 1.59259e10 + 9.19480e9i 1.16464 + 0.672404i 0.952411 0.304816i \(-0.0985950\pi\)
0.212227 + 0.977220i \(0.431928\pi\)
\(788\) 0 0
\(789\) −8.08253e9 + 1.39994e10i −0.585839 + 1.01470i
\(790\) 0 0
\(791\) 1.21261e10 7.00101e9i 0.871171 0.502971i
\(792\) 0 0
\(793\) 9.19793e8 + 1.13914e10i 0.0654989 + 0.811185i
\(794\) 0 0
\(795\) 2.34859e10 1.35596e10i 1.65776 0.957110i
\(796\) 0 0
\(797\) −5.37705e9 + 9.31332e9i −0.376218 + 0.651629i −0.990509 0.137451i \(-0.956109\pi\)
0.614290 + 0.789080i \(0.289442\pi\)
\(798\) 0 0
\(799\) 4.86124e9 + 2.80664e9i 0.337158 + 0.194658i
\(800\) 0 0
\(801\) 1.75636e9i 0.120754i
\(802\) 0 0
\(803\) 1.01032e10 + 1.74992e10i 0.688578 + 1.19265i
\(804\) 0 0
\(805\) 8.65972e9 0.585084
\(806\) 0 0
\(807\) −5.22482e9 −0.349956
\(808\) 0 0
\(809\) −3.96695e9 6.87096e9i −0.263413 0.456245i 0.703734 0.710464i \(-0.251515\pi\)
−0.967147 + 0.254219i \(0.918182\pi\)
\(810\) 0 0
\(811\) 2.50497e10i 1.64903i 0.565837 + 0.824517i \(0.308553\pi\)
−0.565837 + 0.824517i \(0.691447\pi\)
\(812\) 0 0
\(813\) −3.36451e9 1.94250e9i −0.219586 0.126778i
\(814\) 0 0
\(815\) −3.85110e9 + 6.67030e9i −0.249191 + 0.431612i
\(816\) 0 0
\(817\) 7.55112e8 4.35964e8i 0.0484433 0.0279688i
\(818\) 0 0
\(819\) 9.91390e9 2.08940e10i 0.630596 1.32901i
\(820\) 0 0
\(821\) 4.79566e9 2.76877e9i 0.302445 0.174617i −0.341095 0.940029i \(-0.610798\pi\)
0.643541 + 0.765412i \(0.277465\pi\)
\(822\) 0 0
\(823\) −1.47330e10 + 2.55183e10i −0.921282 + 1.59571i −0.123847 + 0.992301i \(0.539523\pi\)
−0.797435 + 0.603405i \(0.793810\pi\)
\(824\) 0 0
\(825\) 1.50490e10 + 8.68852e9i 0.933077 + 0.538712i
\(826\) 0 0
\(827\) 2.47966e10i 1.52448i −0.647294 0.762241i \(-0.724099\pi\)
0.647294 0.762241i \(-0.275901\pi\)
\(828\) 0 0
\(829\) −5.43179e9 9.40814e9i −0.331133 0.573539i 0.651601 0.758562i \(-0.274098\pi\)
−0.982734 + 0.185022i \(0.940764\pi\)
\(830\) 0 0
\(831\) −4.80480e10 −2.90450
\(832\) 0 0
\(833\) 5.34185e9 0.320210
\(834\) 0 0
\(835\) −8.94341e8 1.54904e9i −0.0531619 0.0920791i
\(836\) 0 0
\(837\) 1.62321e10i 0.956834i
\(838\) 0 0
\(839\) −1.24298e10 7.17633e9i −0.726602 0.419504i 0.0905759 0.995890i \(-0.471129\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(840\) 0 0
\(841\) 8.07895e9 1.39932e10i 0.468348 0.811203i
\(842\) 0 0
\(843\) 1.22624e10 7.07969e9i 0.704982 0.407022i
\(844\) 0 0
\(845\) 1.31024e10 + 4.96861e9i 0.747056 + 0.283293i
\(846\) 0 0
\(847\) 2.20241e10 1.27156e10i 1.24539 0.719026i
\(848\) 0 0
\(849\) −2.67828e10 + 4.63892e10i −1.50203 + 2.60159i
\(850\) 0 0
\(851\) 1.79036e10 + 1.03366e10i 0.995833 + 0.574944i
\(852\) 0 0
\(853\) 2.42734e10i 1.33909i 0.742774 + 0.669543i \(0.233510\pi\)
−0.742774 + 0.669543i \(0.766490\pi\)
\(854\) 0 0
\(855\) −4.07862e9 7.06438e9i −0.223168 0.386539i
\(856\) 0 0
\(857\) 9.63070e9 0.522667 0.261334 0.965249i \(-0.415838\pi\)
0.261334 + 0.965249i \(0.415838\pi\)
\(858\) 0 0
\(859\) −2.19480e10 −1.18146 −0.590729 0.806870i \(-0.701160\pi\)
−0.590729 + 0.806870i \(0.701160\pi\)
\(860\) 0 0
\(861\) −1.57261e10 2.72385e10i −0.839675 1.45436i
\(862\) 0 0
\(863\) 1.90983e10i 1.01148i −0.862686 0.505740i \(-0.831220\pi\)
0.862686 0.505740i \(-0.168780\pi\)
\(864\) 0 0
\(865\) 7.21651e9 + 4.16645e9i 0.379115 + 0.218882i
\(866\) 0 0
\(867\) 8.56604e9 1.48368e10i 0.446389 0.773168i
\(868\) 0 0
\(869\) 1.40618e10 8.11857e9i 0.726894 0.419672i
\(870\) 0 0
\(871\) 8.71616e9 1.83697e10i 0.446953 0.941973i
\(872\) 0 0
\(873\) 4.18637e10 2.41700e10i 2.12955 1.22950i
\(874\) 0 0
\(875\) −7.92165e9 + 1.37207e10i −0.399749 + 0.692385i
\(876\) 0 0
\(877\) −2.41084e10 1.39190e10i −1.20690 0.696802i −0.244817 0.969569i \(-0.578728\pi\)
−0.962080 + 0.272767i \(0.912061\pi\)
\(878\) 0 0
\(879\) 4.34885e10i 2.15980i
\(880\) 0 0
\(881\) 1.12237e10 + 1.94400e10i 0.552992 + 0.957811i 0.998057 + 0.0623123i \(0.0198475\pi\)
−0.445064 + 0.895499i \(0.646819\pi\)
\(882\) 0 0
\(883\) −1.41508e10 −0.691700 −0.345850 0.938290i \(-0.612409\pi\)
−0.345850 + 0.938290i \(0.612409\pi\)
\(884\) 0 0
\(885\) −5.98234e9 −0.290115
\(886\) 0 0
\(887\) 1.63692e10 + 2.83523e10i 0.787582 + 1.36413i 0.927445 + 0.373961i \(0.122000\pi\)
−0.139863 + 0.990171i \(0.544666\pi\)
\(888\) 0 0
\(889\) 6.22603e9i 0.297204i
\(890\) 0 0
\(891\) 3.16022e10 + 1.82456e10i 1.49674 + 0.864142i
\(892\) 0 0
\(893\) 1.66055e9 2.87616e9i 0.0780319 0.135155i
\(894\) 0 0
\(895\) −1.32518e10 + 7.65095e9i −0.617868 + 0.356726i
\(896\) 0 0
\(897\) −3.00349e9 3.71974e10i −0.138948 1.72083i
\(898\) 0 0
\(899\) 2.61710e9 1.51099e9i 0.120133 0.0693588i
\(900\) 0 0
\(901\) −1.05687e10 + 1.83056e10i −0.481378 + 0.833772i
\(902\) 0 0
\(903\) −4.89002e9 2.82326e9i −0.221006 0.127598i
\(904\) 0 0
\(905\) 2.69902e10i 1.21042i
\(906\) 0 0
\(907\) −2.32474e9 4.02657e9i −0.103454 0.179188i 0.809651 0.586911i \(-0.199656\pi\)
−0.913106 + 0.407723i \(0.866323\pi\)
\(908\) 0 0
\(909\) −3.36347e10 −1.48530
\(910\) 0 0
\(911\) 1.91286e9 0.0838242 0.0419121 0.999121i \(-0.486655\pi\)
0.0419121 + 0.999121i \(0.486655\pi\)
\(912\) 0 0
\(913\) 6.19251e9 + 1.07258e10i 0.269289 + 0.466423i
\(914\) 0 0
\(915\) 2.61046e10i 1.12653i
\(916\) 0 0
\(917\) 2.35382e10 + 1.35898e10i 1.00804 + 0.581995i
\(918\) 0 0
\(919\) −2.25653e10 + 3.90842e10i −0.959039 + 1.66110i −0.234196 + 0.972189i \(0.575246\pi\)
−0.724843 + 0.688914i \(0.758088\pi\)
\(920\) 0 0
\(921\) −2.51296e10 + 1.45086e10i −1.05993 + 0.611949i
\(922\) 0 0
\(923\) 1.02464e10 8.27347e8i 0.428911 0.0346323i
\(924\) 0 0
\(925\) −8.69973e9 + 5.02279e9i −0.361418 + 0.208665i
\(926\) 0 0
\(927\) 1.06340e9 1.84187e9i 0.0438448 0.0759415i
\(928\) 0 0
\(929\) −5.68298e9 3.28107e9i −0.232553 0.134264i 0.379196 0.925316i \(-0.376200\pi\)
−0.611749 + 0.791052i \(0.709534\pi\)
\(930\) 0 0
\(931\) 3.16051e9i 0.128361i
\(932\) 0 0
\(933\) 2.00569e10 + 3.47396e10i 0.808498 + 1.40036i
\(934\) 0 0
\(935\) 2.39067e10 0.956485
\(936\) 0 0
\(937\) −1.55199e10 −0.616314 −0.308157 0.951336i \(-0.599712\pi\)
−0.308157 + 0.951336i \(0.599712\pi\)
\(938\) 0 0
\(939\) 1.27529e10 + 2.20886e10i 0.502664 + 0.870640i
\(940\) 0 0
\(941\) 1.49766e10i 0.585933i 0.956123 + 0.292967i \(0.0946425\pi\)
−0.956123 + 0.292967i \(0.905358\pi\)
\(942\) 0 0
\(943\) −2.93106e10 1.69225e10i −1.13824 0.657162i
\(944\) 0 0
\(945\) −1.32175e10 + 2.28934e10i −0.509494 + 0.882470i
\(946\) 0 0
\(947\) −1.03810e10 + 5.99345e9i −0.397203 + 0.229325i −0.685276 0.728283i \(-0.740319\pi\)
0.288073 + 0.957608i \(0.406985\pi\)
\(948\) 0 0
\(949\) 1.19787e10 + 1.73535e10i 0.454965 + 0.659108i
\(950\) 0 0
\(951\) −4.37972e10 + 2.52863e10i −1.65126 + 0.953353i
\(952\) 0 0
\(953\) −3.02214e9 + 5.23451e9i −0.113107 + 0.195907i −0.917022 0.398838i \(-0.869414\pi\)
0.803914 + 0.594745i \(0.202747\pi\)
\(954\) 0 0
\(955\) −1.62541e10 9.38432e9i −0.603882 0.348651i
\(956\) 0 0
\(957\) 2.03236e10i 0.749565i
\(958\) 0 0
\(959\) 1.62471e10 + 2.81409e10i 0.594856 + 1.03032i
\(960\) 0 0
\(961\) 1.91495e10 0.696025
\(962\) 0 0
\(963\) 3.06327e8 0.0110533
\(964\) 0 0
\(965\) −4.96991e9 8.60815e9i −0.178034 0.308364i
\(966\) 0 0
\(967\) 4.09241e9i 0.145541i 0.997349 + 0.0727706i \(0.0231841\pi\)
−0.997349 + 0.0727706i \(0.976816\pi\)
\(968\) 0 0
\(969\) 8.25694e9 + 4.76715e9i 0.291532 + 0.168316i
\(970\) 0 0
\(971\) 2.47218e10 4.28194e10i 0.866587 1.50097i 0.00112478 0.999999i \(-0.499642\pi\)
0.865462 0.500974i \(-0.167025\pi\)
\(972\) 0 0
\(973\) −3.07778e10 + 1.77696e10i −1.07113 + 0.618418i
\(974\) 0 0
\(975\) 1.63832e10 + 7.77358e9i 0.566085 + 0.268599i
\(976\) 0 0
\(977\) 4.23697e10 2.44622e10i 1.45353 0.839197i 0.454852 0.890567i \(-0.349692\pi\)
0.998680 + 0.0513706i \(0.0163590\pi\)
\(978\) 0 0
\(979\) 1.52274e9 2.63746e9i 0.0518664 0.0898352i
\(980\) 0 0
\(981\) −1.54062e10 8.89476e9i −0.521019 0.300810i
\(982\) 0 0
\(983\) 1.74370e10i 0.585511i 0.956187 + 0.292755i \(0.0945722\pi\)
−0.956187 + 0.292755i \(0.905428\pi\)
\(984\) 0 0
\(985\) −1.41251e10 2.44655e10i −0.470940 0.815693i
\(986\) 0 0
\(987\) −2.15071e10 −0.711987
\(988\) 0 0
\(989\) −6.07605e9 −0.199726
\(990\) 0 0
\(991\) −2.42425e10 4.19893e10i −0.791262 1.37051i −0.925186 0.379514i \(-0.876091\pi\)
0.133924 0.990992i \(-0.457242\pi\)
\(992\) 0 0
\(993\) 4.08193e10i 1.32295i
\(994\) 0 0
\(995\) 1.86086e10 + 1.07437e10i 0.598869 + 0.345757i
\(996\) 0 0
\(997\) −1.09796e10 + 1.90172e10i −0.350876 + 0.607735i −0.986403 0.164343i \(-0.947450\pi\)
0.635527 + 0.772079i \(0.280783\pi\)
\(998\) 0 0
\(999\) −5.46533e10 + 3.15541e10i −1.73435 + 1.00133i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.8.w.a.49.1 14
4.3 odd 2 13.8.e.a.10.1 yes 14
12.11 even 2 117.8.q.b.10.7 14
13.4 even 6 inner 208.8.w.a.17.1 14
52.3 odd 6 169.8.b.d.168.2 14
52.11 even 12 169.8.a.g.1.13 14
52.15 even 12 169.8.a.g.1.2 14
52.23 odd 6 169.8.b.d.168.13 14
52.43 odd 6 13.8.e.a.4.1 14
156.95 even 6 117.8.q.b.82.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.1 14 52.43 odd 6
13.8.e.a.10.1 yes 14 4.3 odd 2
117.8.q.b.10.7 14 12.11 even 2
117.8.q.b.82.7 14 156.95 even 6
169.8.a.g.1.2 14 52.15 even 12
169.8.a.g.1.13 14 52.11 even 12
169.8.b.d.168.2 14 52.3 odd 6
169.8.b.d.168.13 14 52.23 odd 6
208.8.w.a.17.1 14 13.4 even 6 inner
208.8.w.a.49.1 14 1.1 even 1 trivial