Properties

Label 208.8.w.a.17.7
Level $208$
Weight $8$
Character 208.17
Analytic conductor $64.976$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,8,Mod(17,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.17"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 208.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.9760853007\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 1279 x^{12} + 629380 x^{10} + 148562016 x^{8} + 16872573312 x^{6} + 790180980480 x^{4} + \cdots + 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{3}\cdot 13^{4} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.7
Root \(-0.679146i\) of defining polynomial
Character \(\chi\) \(=\) 208.17
Dual form 208.8.w.a.49.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(31.2267 - 54.0862i) q^{3} -439.155i q^{5} +(1128.14 - 651.329i) q^{7} +(-856.712 - 1483.87i) q^{9} +(-497.807 - 287.409i) q^{11} +(-7892.42 + 676.938i) q^{13} +(-23752.2 - 13713.4i) q^{15} +(-5634.27 - 9758.85i) q^{17} +(-35549.9 + 20524.7i) q^{19} -81355.4i q^{21} +(22132.8 - 38335.2i) q^{23} -114732. q^{25} +29576.4 q^{27} +(72756.1 - 126017. i) q^{29} +122045. i q^{31} +(-31089.7 + 17949.6i) q^{33} +(-286035. - 495427. i) q^{35} +(36374.8 + 21001.0i) q^{37} +(-209841. + 448010. i) q^{39} +(-75942.3 - 43845.3i) q^{41} +(374876. + 649305. i) q^{43} +(-651649. + 376230. i) q^{45} -940126. i q^{47} +(436688. - 756366. i) q^{49} -703759. q^{51} -924214. q^{53} +(-126217. + 218614. i) q^{55} +2.56368e6i q^{57} +(-547626. + 316172. i) q^{59} +(32203.2 + 55777.7i) q^{61} +(-1.93297e6 - 1.11600e6i) q^{63} +(297281. + 3.46600e6i) q^{65} +(1.68358e6 + 972013. i) q^{67} +(-1.38227e6 - 2.39416e6i) q^{69} +(4.09113e6 - 2.36202e6i) q^{71} -1.92731e6i q^{73} +(-3.58271e6 + 6.20544e6i) q^{75} -748791. q^{77} +1.50287e6 q^{79} +(2.79720e6 - 4.84490e6i) q^{81} -1.87974e6i q^{83} +(-4.28565e6 + 2.47432e6i) q^{85} +(-4.54386e6 - 7.87020e6i) q^{87} +(3.78860e6 + 2.18735e6i) q^{89} +(-8.46281e6 + 5.90424e6i) q^{91} +(6.60097e6 + 3.81107e6i) q^{93} +(9.01354e6 + 1.56119e7i) q^{95} +(-1.53602e6 + 886819. i) q^{97} +984906. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 26 q^{3} + 2772 q^{7} - 3491 q^{9} - 6516 q^{11} + 5109 q^{13} + 19266 q^{15} - 38403 q^{17} - 43254 q^{19} + 68550 q^{23} + 39380 q^{25} + 432400 q^{27} + 221583 q^{29} + 219756 q^{33} - 659616 q^{35}+ \cdots - 68556288 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 31.2267 54.0862i 0.667731 1.15654i −0.310806 0.950473i \(-0.600599\pi\)
0.978537 0.206071i \(-0.0660677\pi\)
\(4\) 0 0
\(5\) 439.155i 1.57117i −0.618754 0.785585i \(-0.712362\pi\)
0.618754 0.785585i \(-0.287638\pi\)
\(6\) 0 0
\(7\) 1128.14 651.329i 1.24313 0.717724i 0.273403 0.961899i \(-0.411851\pi\)
0.969731 + 0.244175i \(0.0785173\pi\)
\(8\) 0 0
\(9\) −856.712 1483.87i −0.391729 0.678495i
\(10\) 0 0
\(11\) −497.807 287.409i −0.112768 0.0651067i 0.442555 0.896741i \(-0.354072\pi\)
−0.555323 + 0.831635i \(0.687405\pi\)
\(12\) 0 0
\(13\) −7892.42 + 676.938i −0.996342 + 0.0854568i
\(14\) 0 0
\(15\) −23752.2 13713.4i −1.81713 1.04912i
\(16\) 0 0
\(17\) −5634.27 9758.85i −0.278142 0.481756i 0.692781 0.721148i \(-0.256385\pi\)
−0.970923 + 0.239392i \(0.923052\pi\)
\(18\) 0 0
\(19\) −35549.9 + 20524.7i −1.18905 + 0.686499i −0.958091 0.286464i \(-0.907520\pi\)
−0.230960 + 0.972963i \(0.574187\pi\)
\(20\) 0 0
\(21\) 81355.4i 1.91699i
\(22\) 0 0
\(23\) 22132.8 38335.2i 0.379306 0.656977i −0.611655 0.791124i \(-0.709496\pi\)
0.990961 + 0.134147i \(0.0428294\pi\)
\(24\) 0 0
\(25\) −114732. −1.46857
\(26\) 0 0
\(27\) 29576.4 0.289183
\(28\) 0 0
\(29\) 72756.1 126017.i 0.553957 0.959482i −0.444027 0.896014i \(-0.646450\pi\)
0.997984 0.0634685i \(-0.0202162\pi\)
\(30\) 0 0
\(31\) 122045.i 0.735793i 0.929867 + 0.367896i \(0.119922\pi\)
−0.929867 + 0.367896i \(0.880078\pi\)
\(32\) 0 0
\(33\) −31089.7 + 17949.6i −0.150597 + 0.0869475i
\(34\) 0 0
\(35\) −286035. 495427.i −1.12767 1.95318i
\(36\) 0 0
\(37\) 36374.8 + 21001.0i 0.118058 + 0.0681608i 0.557866 0.829931i \(-0.311620\pi\)
−0.439808 + 0.898092i \(0.644954\pi\)
\(38\) 0 0
\(39\) −209841. + 448010.i −0.566454 + 1.20938i
\(40\) 0 0
\(41\) −75942.3 43845.3i −0.172084 0.0993526i 0.411484 0.911417i \(-0.365011\pi\)
−0.583568 + 0.812064i \(0.698344\pi\)
\(42\) 0 0
\(43\) 374876. + 649305.i 0.719032 + 1.24540i 0.961384 + 0.275212i \(0.0887479\pi\)
−0.242352 + 0.970188i \(0.577919\pi\)
\(44\) 0 0
\(45\) −651649. + 376230.i −1.06603 + 0.615473i
\(46\) 0 0
\(47\) 940126.i 1.32082i −0.750905 0.660410i \(-0.770383\pi\)
0.750905 0.660410i \(-0.229617\pi\)
\(48\) 0 0
\(49\) 436688. 756366.i 0.530255 0.918429i
\(50\) 0 0
\(51\) −703759. −0.742896
\(52\) 0 0
\(53\) −924214. −0.852721 −0.426360 0.904553i \(-0.640204\pi\)
−0.426360 + 0.904553i \(0.640204\pi\)
\(54\) 0 0
\(55\) −126217. + 218614.i −0.102294 + 0.177178i
\(56\) 0 0
\(57\) 2.56368e6i 1.83359i
\(58\) 0 0
\(59\) −547626. + 316172.i −0.347138 + 0.200420i −0.663424 0.748244i \(-0.730897\pi\)
0.316286 + 0.948664i \(0.397564\pi\)
\(60\) 0 0
\(61\) 32203.2 + 55777.7i 0.0181654 + 0.0314634i 0.874965 0.484186i \(-0.160884\pi\)
−0.856800 + 0.515649i \(0.827551\pi\)
\(62\) 0 0
\(63\) −1.93297e6 1.11600e6i −0.973944 0.562307i
\(64\) 0 0
\(65\) 297281. + 3.46600e6i 0.134267 + 1.56542i
\(66\) 0 0
\(67\) 1.68358e6 + 972013.i 0.683866 + 0.394830i 0.801310 0.598249i \(-0.204137\pi\)
−0.117444 + 0.993079i \(0.537470\pi\)
\(68\) 0 0
\(69\) −1.38227e6 2.39416e6i −0.506549 0.877368i
\(70\) 0 0
\(71\) 4.09113e6 2.36202e6i 1.35656 0.783211i 0.367402 0.930062i \(-0.380247\pi\)
0.989159 + 0.146851i \(0.0469139\pi\)
\(72\) 0 0
\(73\) 1.92731e6i 0.579857i −0.957048 0.289928i \(-0.906368\pi\)
0.957048 0.289928i \(-0.0936315\pi\)
\(74\) 0 0
\(75\) −3.58271e6 + 6.20544e6i −0.980612 + 1.69847i
\(76\) 0 0
\(77\) −748791. −0.186915
\(78\) 0 0
\(79\) 1.50287e6 0.342947 0.171474 0.985189i \(-0.445147\pi\)
0.171474 + 0.985189i \(0.445147\pi\)
\(80\) 0 0
\(81\) 2.79720e6 4.84490e6i 0.584826 1.01295i
\(82\) 0 0
\(83\) 1.87974e6i 0.360848i −0.983589 0.180424i \(-0.942253\pi\)
0.983589 0.180424i \(-0.0577470\pi\)
\(84\) 0 0
\(85\) −4.28565e6 + 2.47432e6i −0.756921 + 0.437008i
\(86\) 0 0
\(87\) −4.54386e6 7.87020e6i −0.739789 1.28135i
\(88\) 0 0
\(89\) 3.78860e6 + 2.18735e6i 0.569657 + 0.328892i 0.757012 0.653400i \(-0.226658\pi\)
−0.187355 + 0.982292i \(0.559992\pi\)
\(90\) 0 0
\(91\) −8.46281e6 + 5.90424e6i −1.17725 + 0.821333i
\(92\) 0 0
\(93\) 6.60097e6 + 3.81107e6i 0.850977 + 0.491312i
\(94\) 0 0
\(95\) 9.01354e6 + 1.56119e7i 1.07861 + 1.86820i
\(96\) 0 0
\(97\) −1.53602e6 + 886819.i −0.170881 + 0.0986583i −0.583001 0.812471i \(-0.698122\pi\)
0.412120 + 0.911130i \(0.364788\pi\)
\(98\) 0 0
\(99\) 984906.i 0.102017i
\(100\) 0 0
\(101\) −4.81973e6 + 8.34802e6i −0.465477 + 0.806229i −0.999223 0.0394154i \(-0.987450\pi\)
0.533746 + 0.845645i \(0.320784\pi\)
\(102\) 0 0
\(103\) −7.14668e6 −0.644427 −0.322214 0.946667i \(-0.604427\pi\)
−0.322214 + 0.946667i \(0.604427\pi\)
\(104\) 0 0
\(105\) −3.57277e7 −3.01191
\(106\) 0 0
\(107\) −1.03003e7 + 1.78406e7i −0.812839 + 1.40788i 0.0980299 + 0.995183i \(0.468746\pi\)
−0.910869 + 0.412695i \(0.864587\pi\)
\(108\) 0 0
\(109\) 1.05713e7i 0.781872i 0.920418 + 0.390936i \(0.127849\pi\)
−0.920418 + 0.390936i \(0.872151\pi\)
\(110\) 0 0
\(111\) 2.27173e6 1.31158e6i 0.157662 0.0910261i
\(112\) 0 0
\(113\) −1.34036e7 2.32157e7i −0.873868 1.51358i −0.857964 0.513711i \(-0.828270\pi\)
−0.0159047 0.999874i \(-0.505063\pi\)
\(114\) 0 0
\(115\) −1.68351e7 9.71976e6i −1.03222 0.595954i
\(116\) 0 0
\(117\) 7.76602e6 + 1.11314e7i 0.448278 + 0.642537i
\(118\) 0 0
\(119\) −1.27124e7 7.33953e6i −0.691536 0.399258i
\(120\) 0 0
\(121\) −9.57838e6 1.65902e7i −0.491522 0.851341i
\(122\) 0 0
\(123\) −4.74285e6 + 2.73829e6i −0.229811 + 0.132682i
\(124\) 0 0
\(125\) 1.60763e7i 0.736209i
\(126\) 0 0
\(127\) 4.03532e6 6.98938e6i 0.174810 0.302779i −0.765286 0.643691i \(-0.777402\pi\)
0.940095 + 0.340912i \(0.110736\pi\)
\(128\) 0 0
\(129\) 4.68246e7 1.92048
\(130\) 0 0
\(131\) −1.26390e7 −0.491206 −0.245603 0.969370i \(-0.578986\pi\)
−0.245603 + 0.969370i \(0.578986\pi\)
\(132\) 0 0
\(133\) −2.67367e7 + 4.63094e7i −0.985434 + 1.70682i
\(134\) 0 0
\(135\) 1.29886e7i 0.454355i
\(136\) 0 0
\(137\) 2.45282e7 1.41614e7i 0.814975 0.470526i −0.0337058 0.999432i \(-0.510731\pi\)
0.848680 + 0.528906i \(0.177398\pi\)
\(138\) 0 0
\(139\) −4.44074e6 7.69159e6i −0.140250 0.242920i 0.787341 0.616518i \(-0.211457\pi\)
−0.927591 + 0.373598i \(0.878124\pi\)
\(140\) 0 0
\(141\) −5.08478e7 2.93570e7i −1.52759 0.881952i
\(142\) 0 0
\(143\) 4.12346e6 + 1.93137e6i 0.117919 + 0.0552317i
\(144\) 0 0
\(145\) −5.53411e7 3.19512e7i −1.50751 0.870361i
\(146\) 0 0
\(147\) −2.72726e7 4.72376e7i −0.708136 1.22653i
\(148\) 0 0
\(149\) −4.40391e7 + 2.54260e7i −1.09065 + 0.629689i −0.933750 0.357926i \(-0.883484\pi\)
−0.156902 + 0.987614i \(0.550151\pi\)
\(150\) 0 0
\(151\) 9.76974e6i 0.230921i −0.993312 0.115461i \(-0.963166\pi\)
0.993312 0.115461i \(-0.0368344\pi\)
\(152\) 0 0
\(153\) −9.65390e6 + 1.67210e7i −0.217913 + 0.377436i
\(154\) 0 0
\(155\) 5.35969e7 1.15606
\(156\) 0 0
\(157\) 6.53474e7 1.34766 0.673828 0.738888i \(-0.264649\pi\)
0.673828 + 0.738888i \(0.264649\pi\)
\(158\) 0 0
\(159\) −2.88601e7 + 4.99872e7i −0.569388 + 0.986209i
\(160\) 0 0
\(161\) 5.76631e7i 1.08895i
\(162\) 0 0
\(163\) −1.74920e7 + 1.00990e7i −0.316361 + 0.182651i −0.649769 0.760132i \(-0.725134\pi\)
0.333409 + 0.942782i \(0.391801\pi\)
\(164\) 0 0
\(165\) 7.88268e6 + 1.36532e7i 0.136609 + 0.236614i
\(166\) 0 0
\(167\) 5.86371e6 + 3.38542e6i 0.0974238 + 0.0562477i 0.547920 0.836531i \(-0.315420\pi\)
−0.450497 + 0.892778i \(0.648753\pi\)
\(168\) 0 0
\(169\) 6.18320e7 1.06853e7i 0.985394 0.170288i
\(170\) 0 0
\(171\) 6.09120e7 + 3.51676e7i 0.931572 + 0.537843i
\(172\) 0 0
\(173\) 4.33522e7 + 7.50883e7i 0.636576 + 1.10258i 0.986179 + 0.165684i \(0.0529831\pi\)
−0.349603 + 0.936898i \(0.613684\pi\)
\(174\) 0 0
\(175\) −1.29434e8 + 7.47285e7i −1.82563 + 1.05403i
\(176\) 0 0
\(177\) 3.94920e7i 0.535307i
\(178\) 0 0
\(179\) 4.47221e7 7.74609e7i 0.582823 1.00948i −0.412320 0.911039i \(-0.635281\pi\)
0.995143 0.0984398i \(-0.0313852\pi\)
\(180\) 0 0
\(181\) −2.55748e7 −0.320581 −0.160290 0.987070i \(-0.551243\pi\)
−0.160290 + 0.987070i \(0.551243\pi\)
\(182\) 0 0
\(183\) 4.02240e6 0.0485184
\(184\) 0 0
\(185\) 9.22271e6 1.59742e7i 0.107092 0.185489i
\(186\) 0 0
\(187\) 6.47736e6i 0.0724356i
\(188\) 0 0
\(189\) 3.33662e7 1.92640e7i 0.359493 0.207553i
\(190\) 0 0
\(191\) 7.26412e7 + 1.25818e8i 0.754339 + 1.30655i 0.945702 + 0.325034i \(0.105376\pi\)
−0.191364 + 0.981519i \(0.561291\pi\)
\(192\) 0 0
\(193\) −7.90017e7 4.56117e7i −0.791017 0.456694i 0.0493033 0.998784i \(-0.484300\pi\)
−0.840321 + 0.542090i \(0.817633\pi\)
\(194\) 0 0
\(195\) 1.96746e8 + 9.21528e7i 1.90013 + 0.889995i
\(196\) 0 0
\(197\) 1.47447e8 + 8.51285e7i 1.37405 + 0.793311i 0.991436 0.130595i \(-0.0416889\pi\)
0.382619 + 0.923906i \(0.375022\pi\)
\(198\) 0 0
\(199\) 6.97613e7 + 1.20830e8i 0.627521 + 1.08690i 0.988047 + 0.154150i \(0.0492639\pi\)
−0.360526 + 0.932749i \(0.617403\pi\)
\(200\) 0 0
\(201\) 1.05145e8 6.07055e7i 0.913277 0.527281i
\(202\) 0 0
\(203\) 1.89553e8i 1.59035i
\(204\) 0 0
\(205\) −1.92549e7 + 3.33504e7i −0.156100 + 0.270373i
\(206\) 0 0
\(207\) −7.58459e7 −0.594341
\(208\) 0 0
\(209\) 2.35960e7 0.178783
\(210\) 0 0
\(211\) 4.18539e7 7.24931e7i 0.306724 0.531261i −0.670920 0.741530i \(-0.734101\pi\)
0.977644 + 0.210269i \(0.0674338\pi\)
\(212\) 0 0
\(213\) 2.95032e8i 2.09190i
\(214\) 0 0
\(215\) 2.85146e8 1.64629e8i 1.95673 1.12972i
\(216\) 0 0
\(217\) 7.94917e7 + 1.37684e8i 0.528096 + 0.914689i
\(218\) 0 0
\(219\) −1.04241e8 6.01834e7i −0.670630 0.387188i
\(220\) 0 0
\(221\) 5.10742e7 + 7.32069e7i 0.318294 + 0.456225i
\(222\) 0 0
\(223\) 8.23600e7 + 4.75506e7i 0.497335 + 0.287137i 0.727612 0.685988i \(-0.240630\pi\)
−0.230277 + 0.973125i \(0.573963\pi\)
\(224\) 0 0
\(225\) 9.82926e7 + 1.70248e8i 0.575283 + 0.996420i
\(226\) 0 0
\(227\) −8.55988e7 + 4.94205e7i −0.485710 + 0.280425i −0.722793 0.691064i \(-0.757142\pi\)
0.237083 + 0.971489i \(0.423809\pi\)
\(228\) 0 0
\(229\) 8.72426e7i 0.480070i −0.970764 0.240035i \(-0.922841\pi\)
0.970764 0.240035i \(-0.0771589\pi\)
\(230\) 0 0
\(231\) −2.33823e7 + 4.04993e7i −0.124809 + 0.216175i
\(232\) 0 0
\(233\) −2.42490e8 −1.25588 −0.627940 0.778262i \(-0.716102\pi\)
−0.627940 + 0.778262i \(0.716102\pi\)
\(234\) 0 0
\(235\) −4.12861e8 −2.07523
\(236\) 0 0
\(237\) 4.69298e7 8.12847e7i 0.228997 0.396634i
\(238\) 0 0
\(239\) 4.08512e8i 1.93558i −0.251750 0.967792i \(-0.581006\pi\)
0.251750 0.967792i \(-0.418994\pi\)
\(240\) 0 0
\(241\) 1.89875e8 1.09624e8i 0.873792 0.504484i 0.00518518 0.999987i \(-0.498349\pi\)
0.868606 + 0.495503i \(0.165016\pi\)
\(242\) 0 0
\(243\) −1.42353e8 2.46563e8i −0.636421 1.10231i
\(244\) 0 0
\(245\) −3.32162e8 1.91774e8i −1.44301 0.833121i
\(246\) 0 0
\(247\) 2.66681e8 1.86055e8i 1.12604 0.785600i
\(248\) 0 0
\(249\) −1.01668e8 5.86980e7i −0.417337 0.240949i
\(250\) 0 0
\(251\) −7.42822e6 1.28661e7i −0.0296501 0.0513556i 0.850820 0.525458i \(-0.176106\pi\)
−0.880470 + 0.474102i \(0.842773\pi\)
\(252\) 0 0
\(253\) −2.20358e7 + 1.27223e7i −0.0855473 + 0.0493907i
\(254\) 0 0
\(255\) 3.09059e8i 1.16722i
\(256\) 0 0
\(257\) 2.49812e8 4.32688e8i 0.918011 1.59004i 0.115579 0.993298i \(-0.463128\pi\)
0.802432 0.596744i \(-0.203539\pi\)
\(258\) 0 0
\(259\) 5.47143e7 0.195682
\(260\) 0 0
\(261\) −2.49324e8 −0.868005
\(262\) 0 0
\(263\) 1.51725e7 2.62796e7i 0.0514295 0.0890785i −0.839165 0.543878i \(-0.816956\pi\)
0.890594 + 0.454799i \(0.150289\pi\)
\(264\) 0 0
\(265\) 4.05873e8i 1.33977i
\(266\) 0 0
\(267\) 2.36611e8 1.36607e8i 0.760756 0.439222i
\(268\) 0 0
\(269\) −5.52630e7 9.57183e7i −0.173102 0.299821i 0.766401 0.642363i \(-0.222046\pi\)
−0.939503 + 0.342541i \(0.888712\pi\)
\(270\) 0 0
\(271\) −4.36530e7 2.52031e7i −0.133236 0.0769238i 0.431901 0.901921i \(-0.357843\pi\)
−0.565136 + 0.824997i \(0.691176\pi\)
\(272\) 0 0
\(273\) 5.50725e7 + 6.42091e8i 0.163820 + 1.90997i
\(274\) 0 0
\(275\) 5.71145e7 + 3.29751e7i 0.165608 + 0.0956140i
\(276\) 0 0
\(277\) −2.69297e8 4.66436e8i −0.761294 1.31860i −0.942184 0.335097i \(-0.891231\pi\)
0.180889 0.983503i \(-0.442102\pi\)
\(278\) 0 0
\(279\) 1.81099e8 1.04558e8i 0.499232 0.288232i
\(280\) 0 0
\(281\) 1.43482e8i 0.385766i −0.981222 0.192883i \(-0.938216\pi\)
0.981222 0.192883i \(-0.0617839\pi\)
\(282\) 0 0
\(283\) −5.06236e7 + 8.76826e7i −0.132770 + 0.229964i −0.924743 0.380591i \(-0.875721\pi\)
0.791973 + 0.610556i \(0.209054\pi\)
\(284\) 0 0
\(285\) 1.12585e9 2.88088
\(286\) 0 0
\(287\) −1.14231e8 −0.285231
\(288\) 0 0
\(289\) 1.41679e8 2.45396e8i 0.345274 0.598032i
\(290\) 0 0
\(291\) 1.10770e8i 0.263509i
\(292\) 0 0
\(293\) −2.65267e8 + 1.53152e8i −0.616094 + 0.355702i −0.775347 0.631536i \(-0.782425\pi\)
0.159252 + 0.987238i \(0.449092\pi\)
\(294\) 0 0
\(295\) 1.38849e8 + 2.40493e8i 0.314894 + 0.545413i
\(296\) 0 0
\(297\) −1.47233e7 8.50052e6i −0.0326106 0.0188277i
\(298\) 0 0
\(299\) −1.48731e8 + 3.17540e8i −0.321775 + 0.686988i
\(300\) 0 0
\(301\) 8.45822e8 + 4.88336e8i 1.78771 + 1.03213i
\(302\) 0 0
\(303\) 3.01008e8 + 5.21362e8i 0.621626 + 1.07669i
\(304\) 0 0
\(305\) 2.44951e7 1.41422e7i 0.0494344 0.0285409i
\(306\) 0 0
\(307\) 8.86416e6i 0.0174845i 0.999962 + 0.00874225i \(0.00278278\pi\)
−0.999962 + 0.00874225i \(0.997217\pi\)
\(308\) 0 0
\(309\) −2.23167e8 + 3.86537e8i −0.430304 + 0.745308i
\(310\) 0 0
\(311\) 3.95364e8 0.745309 0.372654 0.927970i \(-0.378448\pi\)
0.372654 + 0.927970i \(0.378448\pi\)
\(312\) 0 0
\(313\) −8.88408e8 −1.63760 −0.818799 0.574080i \(-0.805360\pi\)
−0.818799 + 0.574080i \(0.805360\pi\)
\(314\) 0 0
\(315\) −4.90099e8 + 8.48876e8i −0.883480 + 1.53023i
\(316\) 0 0
\(317\) 3.40256e8i 0.599928i −0.953951 0.299964i \(-0.903025\pi\)
0.953951 0.299964i \(-0.0969746\pi\)
\(318\) 0 0
\(319\) −7.24369e7 + 4.18215e7i −0.124937 + 0.0721326i
\(320\) 0 0
\(321\) 6.43286e8 + 1.11420e9i 1.08552 + 1.88017i
\(322\) 0 0
\(323\) 4.00595e8 + 2.31284e8i 0.661450 + 0.381888i
\(324\) 0 0
\(325\) 9.05516e8 7.76666e7i 1.46320 0.125500i
\(326\) 0 0
\(327\) 5.71762e8 + 3.30107e8i 0.904270 + 0.522080i
\(328\) 0 0
\(329\) −6.12331e8 1.06059e9i −0.947984 1.64196i
\(330\) 0 0
\(331\) 4.75802e8 2.74704e8i 0.721154 0.416359i −0.0940230 0.995570i \(-0.529973\pi\)
0.815177 + 0.579211i \(0.196639\pi\)
\(332\) 0 0
\(333\) 7.19673e7i 0.106802i
\(334\) 0 0
\(335\) 4.26865e8 7.39351e8i 0.620345 1.07447i
\(336\) 0 0
\(337\) −6.88538e8 −0.979993 −0.489997 0.871724i \(-0.663002\pi\)
−0.489997 + 0.871724i \(0.663002\pi\)
\(338\) 0 0
\(339\) −1.67420e9 −2.33404
\(340\) 0 0
\(341\) 3.50769e7 6.07550e7i 0.0479050 0.0829739i
\(342\) 0 0
\(343\) 6.49158e7i 0.0868602i
\(344\) 0 0
\(345\) −1.05141e9 + 6.07032e8i −1.37849 + 0.795874i
\(346\) 0 0
\(347\) −3.43577e8 5.95094e8i −0.441440 0.764596i 0.556357 0.830943i \(-0.312199\pi\)
−0.997797 + 0.0663474i \(0.978865\pi\)
\(348\) 0 0
\(349\) −8.95711e8 5.17139e8i −1.12792 0.651206i −0.184510 0.982831i \(-0.559070\pi\)
−0.943411 + 0.331625i \(0.892403\pi\)
\(350\) 0 0
\(351\) −2.33430e8 + 2.00214e7i −0.288125 + 0.0247127i
\(352\) 0 0
\(353\) 9.29168e8 + 5.36455e8i 1.12430 + 0.649116i 0.942496 0.334219i \(-0.108472\pi\)
0.181806 + 0.983334i \(0.441806\pi\)
\(354\) 0 0
\(355\) −1.03729e9 1.79664e9i −1.23056 2.13139i
\(356\) 0 0
\(357\) −7.93935e8 + 4.58379e8i −0.923520 + 0.533194i
\(358\) 0 0
\(359\) 6.57582e8i 0.750100i −0.927005 0.375050i \(-0.877626\pi\)
0.927005 0.375050i \(-0.122374\pi\)
\(360\) 0 0
\(361\) 3.95593e8 6.85188e8i 0.442562 0.766539i
\(362\) 0 0
\(363\) −1.19640e9 −1.31282
\(364\) 0 0
\(365\) −8.46387e8 −0.911054
\(366\) 0 0
\(367\) −4.47343e8 + 7.74821e8i −0.472400 + 0.818220i −0.999501 0.0315822i \(-0.989945\pi\)
0.527102 + 0.849802i \(0.323279\pi\)
\(368\) 0 0
\(369\) 1.50251e8i 0.155677i
\(370\) 0 0
\(371\) −1.04264e9 + 6.01967e8i −1.06005 + 0.612018i
\(372\) 0 0
\(373\) −3.42088e8 5.92515e8i −0.341317 0.591178i 0.643361 0.765563i \(-0.277540\pi\)
−0.984677 + 0.174385i \(0.944206\pi\)
\(374\) 0 0
\(375\) 8.69507e8 + 5.02010e8i 0.851458 + 0.491590i
\(376\) 0 0
\(377\) −4.88916e8 + 1.04383e9i −0.469937 + 1.00331i
\(378\) 0 0
\(379\) 9.87024e8 + 5.69859e8i 0.931302 + 0.537687i 0.887223 0.461341i \(-0.152631\pi\)
0.0440788 + 0.999028i \(0.485965\pi\)
\(380\) 0 0
\(381\) −2.52019e8 4.36510e8i −0.233451 0.404350i
\(382\) 0 0
\(383\) −1.16426e9 + 6.72186e8i −1.05890 + 0.611355i −0.925127 0.379657i \(-0.876042\pi\)
−0.133771 + 0.991012i \(0.542709\pi\)
\(384\) 0 0
\(385\) 3.28835e8i 0.293674i
\(386\) 0 0
\(387\) 6.42322e8 1.11253e9i 0.563332 0.975719i
\(388\) 0 0
\(389\) 4.06758e8 0.350359 0.175179 0.984537i \(-0.443949\pi\)
0.175179 + 0.984537i \(0.443949\pi\)
\(390\) 0 0
\(391\) −4.98810e8 −0.422004
\(392\) 0 0
\(393\) −3.94675e8 + 6.83597e8i −0.327994 + 0.568102i
\(394\) 0 0
\(395\) 6.59995e8i 0.538829i
\(396\) 0 0
\(397\) 1.70506e8 9.84416e7i 0.136764 0.0789609i −0.430057 0.902802i \(-0.641506\pi\)
0.566821 + 0.823841i \(0.308173\pi\)
\(398\) 0 0
\(399\) 1.66980e9 + 2.89218e9i 1.31601 + 2.27939i
\(400\) 0 0
\(401\) 8.66177e8 + 5.00088e8i 0.670813 + 0.387294i 0.796385 0.604791i \(-0.206743\pi\)
−0.125572 + 0.992085i \(0.540077\pi\)
\(402\) 0 0
\(403\) −8.26171e7 9.63233e8i −0.0628785 0.733101i
\(404\) 0 0
\(405\) −2.12766e9 1.22841e9i −1.59151 0.918860i
\(406\) 0 0
\(407\) −1.20718e7 2.09089e7i −0.00887544 0.0153727i
\(408\) 0 0
\(409\) 1.40643e9 8.12004e8i 1.01645 0.586850i 0.103379 0.994642i \(-0.467035\pi\)
0.913075 + 0.407793i \(0.133701\pi\)
\(410\) 0 0
\(411\) 1.76885e9i 1.25674i
\(412\) 0 0
\(413\) −4.11864e8 + 7.13370e8i −0.287693 + 0.498299i
\(414\) 0 0
\(415\) −8.25497e8 −0.566953
\(416\) 0 0
\(417\) −5.54678e8 −0.374598
\(418\) 0 0
\(419\) −9.59601e7 + 1.66208e8i −0.0637297 + 0.110383i −0.896130 0.443792i \(-0.853633\pi\)
0.832400 + 0.554175i \(0.186966\pi\)
\(420\) 0 0
\(421\) 1.17016e9i 0.764292i 0.924102 + 0.382146i \(0.124815\pi\)
−0.924102 + 0.382146i \(0.875185\pi\)
\(422\) 0 0
\(423\) −1.39502e9 + 8.05417e8i −0.896169 + 0.517404i
\(424\) 0 0
\(425\) 6.46433e8 + 1.11966e9i 0.408472 + 0.707495i
\(426\) 0 0
\(427\) 7.26592e7 + 4.19498e7i 0.0451641 + 0.0260755i
\(428\) 0 0
\(429\) 2.33222e8 1.62712e8i 0.142616 0.0994990i
\(430\) 0 0
\(431\) 1.83241e8 + 1.05794e8i 0.110243 + 0.0636491i 0.554108 0.832445i \(-0.313059\pi\)
−0.443864 + 0.896094i \(0.646393\pi\)
\(432\) 0 0
\(433\) −5.87978e8 1.01841e9i −0.348060 0.602857i 0.637845 0.770165i \(-0.279826\pi\)
−0.985905 + 0.167308i \(0.946493\pi\)
\(434\) 0 0
\(435\) −3.45624e9 + 1.99546e9i −2.01322 + 1.16233i
\(436\) 0 0
\(437\) 1.81708e9i 1.04157i
\(438\) 0 0
\(439\) 1.21215e9 2.09950e9i 0.683802 1.18438i −0.290010 0.957024i \(-0.593659\pi\)
0.973812 0.227356i \(-0.0730081\pi\)
\(440\) 0 0
\(441\) −1.49646e9 −0.830866
\(442\) 0 0
\(443\) −8.11271e7 −0.0443356 −0.0221678 0.999754i \(-0.507057\pi\)
−0.0221678 + 0.999754i \(0.507057\pi\)
\(444\) 0 0
\(445\) 9.60586e8 1.66378e9i 0.516745 0.895028i
\(446\) 0 0
\(447\) 3.17588e9i 1.68185i
\(448\) 0 0
\(449\) −2.29405e7 + 1.32447e7i −0.0119603 + 0.00690525i −0.505968 0.862552i \(-0.668865\pi\)
0.494008 + 0.869457i \(0.335531\pi\)
\(450\) 0 0
\(451\) 2.52030e7 + 4.36529e7i 0.0129370 + 0.0224076i
\(452\) 0 0
\(453\) −5.28408e8 3.05077e8i −0.267070 0.154193i
\(454\) 0 0
\(455\) 2.59288e9 + 3.71649e9i 1.29045 + 1.84966i
\(456\) 0 0
\(457\) −2.28711e9 1.32046e9i −1.12094 0.647172i −0.179296 0.983795i \(-0.557382\pi\)
−0.941640 + 0.336623i \(0.890715\pi\)
\(458\) 0 0
\(459\) −1.66642e8 2.88632e8i −0.0804339 0.139316i
\(460\) 0 0
\(461\) −1.91120e8 + 1.10343e8i −0.0908558 + 0.0524556i −0.544740 0.838605i \(-0.683371\pi\)
0.453884 + 0.891061i \(0.350038\pi\)
\(462\) 0 0
\(463\) 1.40461e9i 0.657691i −0.944384 0.328845i \(-0.893341\pi\)
0.944384 0.328845i \(-0.106659\pi\)
\(464\) 0 0
\(465\) 1.67365e9 2.89885e9i 0.771934 1.33703i
\(466\) 0 0
\(467\) −1.70943e9 −0.776681 −0.388341 0.921516i \(-0.626952\pi\)
−0.388341 + 0.921516i \(0.626952\pi\)
\(468\) 0 0
\(469\) 2.53240e9 1.13352
\(470\) 0 0
\(471\) 2.04058e9 3.53439e9i 0.899872 1.55862i
\(472\) 0 0
\(473\) 4.30971e8i 0.187255i
\(474\) 0 0
\(475\) 4.07872e9 2.35485e9i 1.74621 1.00817i
\(476\) 0 0
\(477\) 7.91785e8 + 1.37141e9i 0.334036 + 0.578567i
\(478\) 0 0
\(479\) 1.87473e9 + 1.08237e9i 0.779405 + 0.449990i 0.836220 0.548395i \(-0.184761\pi\)
−0.0568141 + 0.998385i \(0.518094\pi\)
\(480\) 0 0
\(481\) −3.01302e8 1.41125e8i −0.123451 0.0578226i
\(482\) 0 0
\(483\) −3.11878e9 1.80063e9i −1.25942 0.727125i
\(484\) 0 0
\(485\) 3.89451e8 + 6.74549e8i 0.155009 + 0.268483i
\(486\) 0 0
\(487\) −3.13354e9 + 1.80915e9i −1.22937 + 0.709779i −0.966899 0.255160i \(-0.917872\pi\)
−0.262474 + 0.964939i \(0.584538\pi\)
\(488\) 0 0
\(489\) 1.26143e9i 0.487847i
\(490\) 0 0
\(491\) 8.96441e8 1.55268e9i 0.341772 0.591966i −0.642990 0.765875i \(-0.722306\pi\)
0.984762 + 0.173908i \(0.0556397\pi\)
\(492\) 0 0
\(493\) −1.63971e9 −0.616315
\(494\) 0 0
\(495\) 4.32527e8 0.160286
\(496\) 0 0
\(497\) 3.07690e9 5.32935e9i 1.12426 1.94727i
\(498\) 0 0
\(499\) 1.87794e9i 0.676596i 0.941039 + 0.338298i \(0.109851\pi\)
−0.941039 + 0.338298i \(0.890149\pi\)
\(500\) 0 0
\(501\) 3.66209e8 2.11431e8i 0.130106 0.0751166i
\(502\) 0 0
\(503\) −5.65977e7 9.80300e7i −0.0198294 0.0343456i 0.855940 0.517074i \(-0.172979\pi\)
−0.875770 + 0.482729i \(0.839646\pi\)
\(504\) 0 0
\(505\) 3.66608e9 + 2.11661e9i 1.26672 + 0.731343i
\(506\) 0 0
\(507\) 1.35288e9 3.67793e9i 0.461032 1.25336i
\(508\) 0 0
\(509\) 4.69915e9 + 2.71305e9i 1.57945 + 0.911898i 0.994935 + 0.100516i \(0.0320495\pi\)
0.584517 + 0.811381i \(0.301284\pi\)
\(510\) 0 0
\(511\) −1.25531e9 2.17426e9i −0.416177 0.720840i
\(512\) 0 0
\(513\) −1.05144e9 + 6.07048e8i −0.343853 + 0.198524i
\(514\) 0 0
\(515\) 3.13850e9i 1.01250i
\(516\) 0 0
\(517\) −2.70200e8 + 4.68001e8i −0.0859942 + 0.148946i
\(518\) 0 0
\(519\) 5.41499e9 1.70025
\(520\) 0 0
\(521\) −2.65903e9 −0.823741 −0.411871 0.911242i \(-0.635124\pi\)
−0.411871 + 0.911242i \(0.635124\pi\)
\(522\) 0 0
\(523\) 2.02223e9 3.50260e9i 0.618122 1.07062i −0.371706 0.928350i \(-0.621227\pi\)
0.989828 0.142268i \(-0.0454395\pi\)
\(524\) 0 0
\(525\) 9.33410e9i 2.81524i
\(526\) 0 0
\(527\) 1.19102e9 6.87637e8i 0.354473 0.204655i
\(528\) 0 0
\(529\) 7.22687e8 + 1.25173e9i 0.212254 + 0.367634i
\(530\) 0 0
\(531\) 9.38316e8 + 5.41737e8i 0.271968 + 0.157021i
\(532\) 0 0
\(533\) 6.29049e8 + 2.94637e8i 0.179945 + 0.0842835i
\(534\) 0 0
\(535\) 7.83478e9 + 4.52341e9i 2.21202 + 1.27711i
\(536\) 0 0
\(537\) −2.79305e9 4.83770e9i −0.778338 1.34812i
\(538\) 0 0
\(539\) −4.34772e8 + 2.51016e8i −0.119592 + 0.0690463i
\(540\) 0 0
\(541\) 6.97904e9i 1.89498i −0.319782 0.947491i \(-0.603610\pi\)
0.319782 0.947491i \(-0.396390\pi\)
\(542\) 0 0
\(543\) −7.98617e8 + 1.38325e9i −0.214062 + 0.370766i
\(544\) 0 0
\(545\) 4.64244e9 1.22845
\(546\) 0 0
\(547\) −5.47434e7 −0.0143013 −0.00715065 0.999974i \(-0.502276\pi\)
−0.00715065 + 0.999974i \(0.502276\pi\)
\(548\) 0 0
\(549\) 5.51778e7 9.55708e7i 0.0142318 0.0246503i
\(550\) 0 0
\(551\) 5.97320e9i 1.52116i
\(552\) 0 0
\(553\) 1.69544e9 9.78866e8i 0.426330 0.246142i
\(554\) 0 0
\(555\) −5.75989e8 9.97643e8i −0.143017 0.247713i
\(556\) 0 0
\(557\) 1.87977e8 + 1.08528e8i 0.0460905 + 0.0266103i 0.522868 0.852414i \(-0.324862\pi\)
−0.476778 + 0.879024i \(0.658195\pi\)
\(558\) 0 0
\(559\) −3.39822e9 4.87082e9i −0.822830 1.17940i
\(560\) 0 0
\(561\) 3.50336e8 + 2.02266e8i 0.0837750 + 0.0483675i
\(562\) 0 0
\(563\) −2.39971e9 4.15643e9i −0.566735 0.981614i −0.996886 0.0788572i \(-0.974873\pi\)
0.430151 0.902757i \(-0.358460\pi\)
\(564\) 0 0
\(565\) −1.01953e10 + 5.88625e9i −2.37810 + 1.37300i
\(566\) 0 0
\(567\) 7.28760e9i 1.67897i
\(568\) 0 0
\(569\) 2.61206e9 4.52422e9i 0.594415 1.02956i −0.399214 0.916858i \(-0.630717\pi\)
0.993629 0.112699i \(-0.0359497\pi\)
\(570\) 0 0
\(571\) 9.53468e8 0.214328 0.107164 0.994241i \(-0.465823\pi\)
0.107164 + 0.994241i \(0.465823\pi\)
\(572\) 0 0
\(573\) 9.07338e9 2.01478
\(574\) 0 0
\(575\) −2.53935e9 + 4.39829e9i −0.557039 + 0.964820i
\(576\) 0 0
\(577\) 7.41729e6i 0.00160742i −1.00000 0.000803711i \(-0.999744\pi\)
1.00000 0.000803711i \(-0.000255829\pi\)
\(578\) 0 0
\(579\) −4.93392e9 + 2.84860e9i −1.05637 + 0.609898i
\(580\) 0 0
\(581\) −1.22433e9 2.12060e9i −0.258989 0.448583i
\(582\) 0 0
\(583\) 4.60080e8 + 2.65627e8i 0.0961597 + 0.0555178i
\(584\) 0 0
\(585\) 4.88840e9 3.41049e9i 1.00953 0.704321i
\(586\) 0 0
\(587\) −5.20465e9 3.00490e9i −1.06208 0.613193i −0.136074 0.990699i \(-0.543449\pi\)
−0.926007 + 0.377505i \(0.876782\pi\)
\(588\) 0 0
\(589\) −2.50495e9 4.33870e9i −0.505121 0.874895i
\(590\) 0 0
\(591\) 9.20856e9 5.31656e9i 1.83500 1.05944i
\(592\) 0 0
\(593\) 1.00461e9i 0.197836i −0.995096 0.0989178i \(-0.968462\pi\)
0.995096 0.0989178i \(-0.0315381\pi\)
\(594\) 0 0
\(595\) −3.22320e9 + 5.58274e9i −0.627303 + 1.08652i
\(596\) 0 0
\(597\) 8.71365e9 1.67606
\(598\) 0 0
\(599\) 4.70768e9 0.894979 0.447489 0.894289i \(-0.352318\pi\)
0.447489 + 0.894289i \(0.352318\pi\)
\(600\) 0 0
\(601\) −3.02639e9 + 5.24187e9i −0.568676 + 0.984975i 0.428022 + 0.903768i \(0.359211\pi\)
−0.996697 + 0.0812066i \(0.974123\pi\)
\(602\) 0 0
\(603\) 3.33094e9i 0.618666i
\(604\) 0 0
\(605\) −7.28569e9 + 4.20640e9i −1.33760 + 0.772265i
\(606\) 0 0
\(607\) −3.56363e9 6.17239e9i −0.646744 1.12019i −0.983896 0.178743i \(-0.942797\pi\)
0.337152 0.941450i \(-0.390536\pi\)
\(608\) 0 0
\(609\) −1.02522e10 5.91910e9i −1.83931 1.06193i
\(610\) 0 0
\(611\) 6.36406e8 + 7.41987e9i 0.112873 + 1.31599i
\(612\) 0 0
\(613\) −8.66562e8 5.00310e8i −0.151946 0.0877258i 0.422100 0.906549i \(-0.361293\pi\)
−0.574045 + 0.818824i \(0.694627\pi\)
\(614\) 0 0
\(615\) 1.20253e9 + 2.08285e9i 0.208465 + 0.361073i
\(616\) 0 0
\(617\) −3.21958e9 + 1.85882e9i −0.551825 + 0.318596i −0.749858 0.661599i \(-0.769878\pi\)
0.198033 + 0.980195i \(0.436545\pi\)
\(618\) 0 0
\(619\) 8.30664e9i 1.40769i 0.710352 + 0.703847i \(0.248536\pi\)
−0.710352 + 0.703847i \(0.751464\pi\)
\(620\) 0 0
\(621\) 6.54611e8 1.13382e9i 0.109689 0.189987i
\(622\) 0 0
\(623\) 5.69874e9 0.944214
\(624\) 0 0
\(625\) −1.90347e9 −0.311864
\(626\) 0 0
\(627\) 7.36823e8 1.27622e9i 0.119379 0.206770i
\(628\) 0 0
\(629\) 4.73302e8i 0.0758335i
\(630\) 0 0
\(631\) −6.78879e9 + 3.91951e9i −1.07570 + 0.621053i −0.929732 0.368237i \(-0.879962\pi\)
−0.145963 + 0.989290i \(0.546628\pi\)
\(632\) 0 0
\(633\) −2.61392e9 4.52744e9i −0.409618 0.709479i
\(634\) 0 0
\(635\) −3.06942e9 1.77213e9i −0.475717 0.274655i
\(636\) 0 0
\(637\) −2.93451e9 + 6.26517e9i −0.449830 + 0.960384i
\(638\) 0 0
\(639\) −7.00984e9 4.04713e9i −1.06281 0.613613i
\(640\) 0 0
\(641\) 6.36068e8 + 1.10170e9i 0.0953895 + 0.165220i 0.909771 0.415110i \(-0.136257\pi\)
−0.814382 + 0.580330i \(0.802924\pi\)
\(642\) 0 0
\(643\) −4.91826e9 + 2.83956e9i −0.729581 + 0.421224i −0.818269 0.574836i \(-0.805066\pi\)
0.0886881 + 0.996059i \(0.471733\pi\)
\(644\) 0 0
\(645\) 2.05633e10i 3.01740i
\(646\) 0 0
\(647\) 4.91513e9 8.51325e9i 0.713460 1.23575i −0.250091 0.968222i \(-0.580460\pi\)
0.963551 0.267526i \(-0.0862063\pi\)
\(648\) 0 0
\(649\) 3.63483e8 0.0521948
\(650\) 0 0
\(651\) 9.92905e9 1.41050
\(652\) 0 0
\(653\) 1.92707e9 3.33778e9i 0.270832 0.469096i −0.698243 0.715861i \(-0.746034\pi\)
0.969075 + 0.246765i \(0.0793677\pi\)
\(654\) 0 0
\(655\) 5.55049e9i 0.771769i
\(656\) 0 0
\(657\) −2.85987e9 + 1.65115e9i −0.393430 + 0.227147i
\(658\) 0 0
\(659\) −2.45749e9 4.25650e9i −0.334498 0.579367i 0.648891 0.760882i \(-0.275233\pi\)
−0.983388 + 0.181515i \(0.941900\pi\)
\(660\) 0 0
\(661\) 1.10777e10 + 6.39573e9i 1.49192 + 0.861360i 0.999957 0.00925625i \(-0.00294640\pi\)
0.491962 + 0.870616i \(0.336280\pi\)
\(662\) 0 0
\(663\) 5.55436e9 4.76401e8i 0.740179 0.0634856i
\(664\) 0 0
\(665\) 2.03370e10 + 1.17416e10i 2.68171 + 1.54828i
\(666\) 0 0
\(667\) −3.22060e9 5.57824e9i −0.420239 0.727875i
\(668\) 0 0
\(669\) 5.14366e9 2.96969e9i 0.664172 0.383460i
\(670\) 0 0
\(671\) 3.70220e7i 0.00473076i
\(672\) 0 0
\(673\) −5.49257e9 + 9.51341e9i −0.694581 + 1.20305i 0.275741 + 0.961232i \(0.411077\pi\)
−0.970322 + 0.241818i \(0.922256\pi\)
\(674\) 0 0
\(675\) −3.39337e9 −0.424686
\(676\) 0 0
\(677\) 3.14306e9 0.389307 0.194653 0.980872i \(-0.437642\pi\)
0.194653 + 0.980872i \(0.437642\pi\)
\(678\) 0 0
\(679\) −1.15522e9 + 2.00090e9i −0.141619 + 0.245291i
\(680\) 0 0
\(681\) 6.17296e9i 0.748994i
\(682\) 0 0
\(683\) 1.33989e10 7.73584e9i 1.60915 0.929042i 0.619586 0.784929i \(-0.287301\pi\)
0.989561 0.144113i \(-0.0460328\pi\)
\(684\) 0 0
\(685\) −6.21904e9 1.07717e10i −0.739276 1.28046i
\(686\) 0 0
\(687\) −4.71862e9 2.72430e9i −0.555222 0.320557i
\(688\) 0 0
\(689\) 7.29428e9 6.25635e8i 0.849601 0.0728708i
\(690\) 0 0
\(691\) 4.00359e9 + 2.31148e9i 0.461612 + 0.266512i 0.712722 0.701447i \(-0.247462\pi\)
−0.251110 + 0.967959i \(0.580796\pi\)
\(692\) 0 0
\(693\) 6.41498e8 + 1.11111e9i 0.0732199 + 0.126821i
\(694\) 0 0
\(695\) −3.37780e9 + 1.95017e9i −0.381669 + 0.220357i
\(696\) 0 0
\(697\) 9.88145e8i 0.110537i
\(698\) 0 0
\(699\) −7.57216e9 + 1.31154e10i −0.838590 + 1.45248i
\(700\) 0 0
\(701\) −1.41767e10 −1.55440 −0.777200 0.629253i \(-0.783361\pi\)
−0.777200 + 0.629253i \(0.783361\pi\)
\(702\) 0 0
\(703\) −1.72416e9 −0.187169
\(704\) 0 0
\(705\) −1.28923e10 + 2.23301e10i −1.38570 + 2.40010i
\(706\) 0 0
\(707\) 1.25569e10i 1.33634i
\(708\) 0 0
\(709\) 7.07624e9 4.08547e9i 0.745660 0.430507i −0.0784635 0.996917i \(-0.525001\pi\)
0.824124 + 0.566410i \(0.191668\pi\)
\(710\) 0 0
\(711\) −1.28753e9 2.23007e9i −0.134343 0.232688i
\(712\) 0 0
\(713\) 4.67864e9 + 2.70121e9i 0.483399 + 0.279091i
\(714\) 0 0
\(715\) 8.48170e8 1.81084e9i 0.0867784 0.185271i
\(716\) 0 0
\(717\) −2.20949e10 1.27565e10i −2.23859 1.29245i
\(718\) 0 0
\(719\) 7.71168e9 + 1.33570e10i 0.773745 + 1.34017i 0.935497 + 0.353334i \(0.114952\pi\)
−0.161752 + 0.986831i \(0.551714\pi\)
\(720\) 0 0
\(721\) −8.06242e9 + 4.65484e9i −0.801110 + 0.462521i
\(722\) 0 0
\(723\) 1.36928e10i 1.34744i
\(724\) 0 0
\(725\) −8.34748e9 + 1.44583e10i −0.813527 + 1.40907i
\(726\) 0 0
\(727\) −5.70391e9 −0.550557 −0.275279 0.961365i \(-0.588770\pi\)
−0.275279 + 0.961365i \(0.588770\pi\)
\(728\) 0 0
\(729\) −5.54588e9 −0.530181
\(730\) 0 0
\(731\) 4.22431e9 7.31672e9i 0.399986 0.692796i
\(732\) 0 0
\(733\) 1.66495e10i 1.56148i 0.624854 + 0.780742i \(0.285159\pi\)
−0.624854 + 0.780742i \(0.714841\pi\)
\(734\) 0 0
\(735\) −2.07446e10 + 1.19769e10i −1.92708 + 1.11260i
\(736\) 0 0
\(737\) −5.58730e8 9.67749e8i −0.0514122 0.0890485i
\(738\) 0 0
\(739\) 4.26718e9 + 2.46366e9i 0.388943 + 0.224556i 0.681702 0.731630i \(-0.261240\pi\)
−0.292759 + 0.956186i \(0.594573\pi\)
\(740\) 0 0
\(741\) −1.73545e9 2.02336e10i −0.156693 1.82688i
\(742\) 0 0
\(743\) 8.58753e9 + 4.95801e9i 0.768082 + 0.443452i 0.832190 0.554491i \(-0.187087\pi\)
−0.0641082 + 0.997943i \(0.520420\pi\)
\(744\) 0 0
\(745\) 1.11660e10 + 1.93400e10i 0.989348 + 1.71360i
\(746\) 0 0
\(747\) −2.78929e9 + 1.61040e9i −0.244834 + 0.141355i
\(748\) 0 0
\(749\) 2.68354e10i 2.33358i
\(750\) 0 0
\(751\) −1.12646e10 + 1.95109e10i −0.970456 + 1.68088i −0.276276 + 0.961078i \(0.589100\pi\)
−0.694180 + 0.719801i \(0.744233\pi\)
\(752\) 0 0
\(753\) −9.27835e8 −0.0791933
\(754\) 0 0
\(755\) −4.29043e9 −0.362816
\(756\) 0 0
\(757\) 1.10819e10 1.91944e10i 0.928493 1.60820i 0.142647 0.989774i \(-0.454439\pi\)
0.785846 0.618423i \(-0.212228\pi\)
\(758\) 0 0
\(759\) 1.58911e9i 0.131919i
\(760\) 0 0
\(761\) 6.64485e9 3.83641e9i 0.546561 0.315557i −0.201173 0.979556i \(-0.564475\pi\)
0.747734 + 0.663999i \(0.231142\pi\)
\(762\) 0 0
\(763\) 6.88540e9 + 1.19259e10i 0.561168 + 0.971972i
\(764\) 0 0
\(765\) 7.34313e9 + 4.23956e9i 0.593016 + 0.342378i
\(766\) 0 0
\(767\) 4.10807e9 2.86607e9i 0.328741 0.229352i
\(768\) 0 0
\(769\) −7.77528e9 4.48906e9i −0.616558 0.355970i 0.158970 0.987283i \(-0.449183\pi\)
−0.775528 + 0.631314i \(0.782516\pi\)
\(770\) 0 0
\(771\) −1.56016e10 2.70228e10i −1.22597 2.12344i
\(772\) 0 0
\(773\) 9.70027e9 5.60045e9i 0.755363 0.436109i −0.0722655 0.997385i \(-0.523023\pi\)
0.827628 + 0.561276i \(0.189690\pi\)
\(774\) 0 0
\(775\) 1.40026e10i 1.08057i
\(776\) 0 0
\(777\) 1.70855e9 2.95929e9i 0.130663 0.226315i
\(778\) 0 0
\(779\) 3.59965e9 0.272822
\(780\) 0 0
\(781\) −2.71546e9 −0.203969
\(782\) 0 0
\(783\) 2.15186e9 3.72714e9i 0.160195 0.277466i
\(784\) 0 0
\(785\) 2.86976e10i 2.11740i
\(786\) 0 0
\(787\) 9.57297e8 5.52696e8i 0.0700060 0.0404180i −0.464588 0.885527i \(-0.653798\pi\)
0.534594 + 0.845109i \(0.320464\pi\)
\(788\) 0 0
\(789\) −9.47575e8 1.64125e9i −0.0686822 0.118961i
\(790\) 0 0
\(791\) −3.02421e10 1.74603e10i −2.17267 1.25439i
\(792\) 0 0
\(793\) −2.91920e8 4.18421e8i −0.0207877 0.0297960i
\(794\) 0 0
\(795\) 2.19521e10 + 1.26741e10i 1.54950 + 0.894605i
\(796\) 0 0
\(797\) −7.49691e9 1.29850e10i −0.524540 0.908529i −0.999592 0.0285717i \(-0.990904\pi\)
0.475052 0.879958i \(-0.342429\pi\)
\(798\) 0 0
\(799\) −9.17454e9 + 5.29693e9i −0.636313 + 0.367375i
\(800\) 0 0
\(801\) 7.49571e9i 0.515346i
\(802\) 0 0
\(803\) −5.53925e8 + 9.59426e8i −0.0377526 + 0.0653894i
\(804\) 0 0
\(805\) −2.53230e10 −1.71092
\(806\) 0 0
\(807\) −6.90272e9 −0.462342
\(808\) 0 0
\(809\) −7.66062e9 + 1.32686e10i −0.508679 + 0.881059i 0.491270 + 0.871007i \(0.336533\pi\)
−0.999949 + 0.0100514i \(0.996800\pi\)
\(810\) 0 0
\(811\) 1.14391e10i 0.753041i −0.926408 0.376521i \(-0.877120\pi\)
0.926408 0.376521i \(-0.122880\pi\)
\(812\) 0 0
\(813\) −2.72628e9 + 1.57402e9i −0.177931 + 0.102729i
\(814\) 0 0
\(815\) 4.43503e9 + 7.68170e9i 0.286976 + 0.497056i
\(816\) 0 0
\(817\) −2.66536e10 1.53885e10i −1.70993 0.987229i
\(818\) 0 0
\(819\) 1.60113e10 + 7.49946e9i 1.01843 + 0.477020i
\(820\) 0 0
\(821\) 1.88617e10 + 1.08898e10i 1.18954 + 0.686782i 0.958202 0.286091i \(-0.0923561\pi\)
0.231339 + 0.972873i \(0.425689\pi\)
\(822\) 0 0
\(823\) 1.08157e9 + 1.87333e9i 0.0676324 + 0.117143i 0.897859 0.440284i \(-0.145122\pi\)
−0.830226 + 0.557426i \(0.811789\pi\)
\(824\) 0 0
\(825\) 3.56699e9 2.05941e9i 0.221164 0.127689i
\(826\) 0 0
\(827\) 2.27847e10i 1.40079i 0.713755 + 0.700395i \(0.246993\pi\)
−0.713755 + 0.700395i \(0.753007\pi\)
\(828\) 0 0
\(829\) 4.91919e9 8.52030e9i 0.299884 0.519414i −0.676225 0.736695i \(-0.736385\pi\)
0.976109 + 0.217281i \(0.0697187\pi\)
\(830\) 0 0
\(831\) −3.36370e10 −2.03336
\(832\) 0 0
\(833\) −9.84168e9 −0.589945
\(834\) 0 0
\(835\) 1.48672e9 2.57508e9i 0.0883746 0.153069i
\(836\) 0 0
\(837\) 3.60967e9i 0.212779i
\(838\) 0 0
\(839\) 1.81235e10 1.04636e10i 1.05944 0.611666i 0.134160 0.990960i \(-0.457166\pi\)
0.925276 + 0.379294i \(0.123833\pi\)
\(840\) 0 0
\(841\) −1.96195e9 3.39821e9i −0.113737 0.196999i
\(842\) 0 0
\(843\) −7.76038e9 4.48046e9i −0.446156 0.257588i
\(844\) 0 0
\(845\) −4.69253e9 2.71539e10i −0.267552 1.54822i
\(846\) 0 0
\(847\) −2.16114e10 1.24774e10i −1.22206 0.705555i
\(848\) 0 0
\(849\) 3.16161e9 + 5.47607e9i 0.177309 + 0.307109i
\(850\) 0 0
\(851\) 1.61016e9 9.29625e8i 0.0895602 0.0517076i
\(852\) 0 0
\(853\) 2.52741e10i 1.39429i 0.716928 + 0.697147i \(0.245548\pi\)
−0.716928 + 0.697147i \(0.754452\pi\)
\(854\) 0 0
\(855\) 1.54440e10 2.67498e10i 0.845043 1.46366i
\(856\) 0 0
\(857\) −2.67167e10 −1.44994 −0.724969 0.688782i \(-0.758146\pi\)
−0.724969 + 0.688782i \(0.758146\pi\)
\(858\) 0 0
\(859\) 8.51182e9 0.458191 0.229095 0.973404i \(-0.426423\pi\)
0.229095 + 0.973404i \(0.426423\pi\)
\(860\) 0 0
\(861\) −3.56705e9 + 6.17832e9i −0.190458 + 0.329882i
\(862\) 0 0
\(863\) 5.94525e9i 0.314871i 0.987529 + 0.157435i \(0.0503226\pi\)
−0.987529 + 0.157435i \(0.949677\pi\)
\(864\) 0 0
\(865\) 3.29754e10 1.90384e10i 1.73234 1.00017i
\(866\) 0 0
\(867\) −8.84835e9 1.53258e10i −0.461100 0.798649i
\(868\) 0 0
\(869\) −7.48140e8 4.31939e8i −0.0386735 0.0223282i
\(870\) 0 0
\(871\) −1.39455e10 6.53186e9i −0.715105 0.334945i
\(872\) 0 0
\(873\) 2.63184e9 + 1.51950e9i 0.133878 + 0.0772947i
\(874\) 0 0
\(875\) 1.04710e10 + 1.81363e10i 0.528395 + 0.915207i
\(876\) 0 0
\(877\) 9.21976e9 5.32303e9i 0.461552 0.266477i −0.251144 0.967950i \(-0.580807\pi\)
0.712697 + 0.701472i \(0.247474\pi\)
\(878\) 0 0
\(879\) 1.91297e10i 0.950054i
\(880\) 0 0
\(881\) −1.91599e9 + 3.31860e9i −0.0944014 + 0.163508i −0.909359 0.416013i \(-0.863427\pi\)
0.814957 + 0.579521i \(0.196760\pi\)
\(882\) 0 0
\(883\) 1.75487e10 0.857792 0.428896 0.903354i \(-0.358903\pi\)
0.428896 + 0.903354i \(0.358903\pi\)
\(884\) 0 0
\(885\) 1.73431e10 0.841058
\(886\) 0 0
\(887\) −5.37291e9 + 9.30616e9i −0.258510 + 0.447752i −0.965843 0.259128i \(-0.916565\pi\)
0.707333 + 0.706880i \(0.249898\pi\)
\(888\) 0 0
\(889\) 1.05133e10i 0.501860i
\(890\) 0 0
\(891\) −2.78493e9 + 1.60788e9i −0.131899 + 0.0761521i
\(892\) 0 0
\(893\) 1.92958e10 + 3.34214e10i 0.906741 + 1.57052i
\(894\) 0 0
\(895\) −3.40174e10 1.96399e10i −1.58606 0.915714i
\(896\) 0 0
\(897\) 1.25302e10 + 1.79600e10i 0.579673 + 0.830871i
\(898\) 0 0
\(899\) 1.53798e10 + 8.87954e9i 0.705980 + 0.407598i
\(900\) 0 0
\(901\) 5.20727e9 + 9.01926e9i 0.237178 + 0.410803i
\(902\) 0 0
\(903\) 5.28244e10 3.04982e10i 2.38741 1.37837i
\(904\) 0 0
\(905\) 1.12313e10i 0.503687i
\(906\) 0 0
\(907\) 1.03600e10 1.79440e10i 0.461034 0.798534i −0.537979 0.842958i \(-0.680812\pi\)
0.999013 + 0.0444245i \(0.0141454\pi\)
\(908\) 0 0
\(909\) 1.65165e10 0.729363
\(910\) 0 0
\(911\) 3.76677e10 1.65065 0.825325 0.564658i \(-0.190992\pi\)
0.825325 + 0.564658i \(0.190992\pi\)
\(912\) 0 0
\(913\) −5.40254e8 + 9.35747e8i −0.0234936 + 0.0406921i
\(914\) 0 0
\(915\) 1.76646e9i 0.0762307i
\(916\) 0 0
\(917\) −1.42585e10 + 8.23217e9i −0.610636 + 0.352551i
\(918\) 0 0
\(919\) 7.80748e9 + 1.35229e10i 0.331823 + 0.574734i 0.982869 0.184304i \(-0.0590030\pi\)
−0.651046 + 0.759038i \(0.725670\pi\)
\(920\) 0 0
\(921\) 4.79429e8 + 2.76798e8i 0.0202216 + 0.0116749i
\(922\) 0 0
\(923\) −3.06900e10 + 2.14115e10i −1.28467 + 0.896273i
\(924\) 0 0
\(925\) −4.17337e9 2.40950e9i −0.173377 0.100099i
\(926\) 0 0
\(927\) 6.12264e9 + 1.06047e10i 0.252441 + 0.437241i
\(928\) 0 0
\(929\) 2.38983e10 1.37977e10i 0.977941 0.564615i 0.0762934 0.997085i \(-0.475691\pi\)
0.901648 + 0.432471i \(0.142358\pi\)
\(930\) 0 0
\(931\) 3.58516e10i 1.45608i
\(932\) 0 0
\(933\) 1.23459e10 2.13838e10i 0.497666 0.861982i
\(934\) 0 0
\(935\) 2.84457e9 0.113809
\(936\) 0 0
\(937\) −3.75571e9 −0.149143 −0.0745715 0.997216i \(-0.523759\pi\)
−0.0745715 + 0.997216i \(0.523759\pi\)
\(938\) 0 0
\(939\) −2.77421e10 + 4.80506e10i −1.09348 + 1.89395i
\(940\) 0 0
\(941\) 3.77084e10i 1.47528i 0.675193 + 0.737641i \(0.264060\pi\)
−0.675193 + 0.737641i \(0.735940\pi\)
\(942\) 0 0
\(943\) −3.36164e9 + 1.94084e9i −0.130545 + 0.0753701i
\(944\) 0 0
\(945\) −8.45988e9 1.46529e10i −0.326102 0.564825i
\(946\) 0 0
\(947\) 3.96761e10 + 2.29070e10i 1.51811 + 0.876483i 0.999773 + 0.0213086i \(0.00678325\pi\)
0.518340 + 0.855174i \(0.326550\pi\)
\(948\) 0 0
\(949\) 1.30467e9 + 1.52111e10i 0.0495527 + 0.577736i
\(950\) 0 0
\(951\) −1.84032e10 1.06251e10i −0.693843 0.400590i
\(952\) 0 0
\(953\) 9.15154e9 + 1.58509e10i 0.342507 + 0.593239i 0.984898 0.173138i \(-0.0553907\pi\)
−0.642391 + 0.766377i \(0.722057\pi\)
\(954\) 0 0
\(955\) 5.52538e10 3.19008e10i 2.05282 1.18519i
\(956\) 0 0
\(957\) 5.22378e9i 0.192661i
\(958\) 0 0
\(959\) 1.84474e10 3.19519e10i 0.675415 1.16985i
\(960\) 0 0
\(961\) 1.26175e10 0.458609
\(962\) 0 0
\(963\) 3.52974e10 1.27365
\(964\) 0 0
\(965\) −2.00306e10 + 3.46940e10i −0.717544 + 1.24282i
\(966\) 0 0
\(967\) 2.62013e10i 0.931816i −0.884833 0.465908i \(-0.845728\pi\)
0.884833 0.465908i \(-0.154272\pi\)
\(968\) 0 0
\(969\) 2.50185e10 1.44445e10i 0.883342 0.509998i
\(970\) 0 0
\(971\) 1.52480e9 + 2.64103e9i 0.0534497 + 0.0925777i 0.891512 0.452996i \(-0.149645\pi\)
−0.838063 + 0.545574i \(0.816312\pi\)
\(972\) 0 0
\(973\) −1.00195e10 5.78477e9i −0.348700 0.201322i
\(974\) 0 0
\(975\) 2.40756e10 5.14012e10i 0.831879 1.77606i
\(976\) 0 0
\(977\) 3.81568e10 + 2.20298e10i 1.30900 + 0.755754i 0.981930 0.189245i \(-0.0606040\pi\)
0.327074 + 0.944999i \(0.393937\pi\)
\(978\) 0 0
\(979\) −1.25733e9 2.17775e9i −0.0428261 0.0741770i
\(980\) 0 0
\(981\) 1.56864e10 9.05656e9i 0.530496 0.306282i
\(982\) 0 0
\(983\) 3.19323e10i 1.07224i 0.844141 + 0.536122i \(0.180111\pi\)
−0.844141 + 0.536122i \(0.819889\pi\)
\(984\) 0 0
\(985\) 3.73846e10 6.47521e10i 1.24643 2.15887i
\(986\) 0 0
\(987\) −7.64843e10 −2.53199
\(988\) 0 0
\(989\) 3.31883e10 1.09093
\(990\) 0 0
\(991\) 1.83299e10 3.17483e10i 0.598277 1.03625i −0.394798 0.918768i \(-0.629186\pi\)
0.993075 0.117478i \(-0.0374811\pi\)
\(992\) 0 0
\(993\) 3.43124e10i 1.11206i
\(994\) 0 0
\(995\) 5.30632e10 3.06360e10i 1.70770 0.985943i
\(996\) 0 0
\(997\) −2.93042e10 5.07563e10i −0.936476 1.62202i −0.771981 0.635646i \(-0.780734\pi\)
−0.164495 0.986378i \(-0.552600\pi\)
\(998\) 0 0
\(999\) 1.07584e9 + 6.21135e8i 0.0341403 + 0.0197109i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.8.w.a.17.7 14
4.3 odd 2 13.8.e.a.4.4 14
12.11 even 2 117.8.q.b.82.4 14
13.10 even 6 inner 208.8.w.a.49.7 14
52.7 even 12 169.8.a.g.1.8 14
52.19 even 12 169.8.a.g.1.7 14
52.23 odd 6 13.8.e.a.10.4 yes 14
52.35 odd 6 169.8.b.d.168.7 14
52.43 odd 6 169.8.b.d.168.8 14
156.23 even 6 117.8.q.b.10.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.4 14 4.3 odd 2
13.8.e.a.10.4 yes 14 52.23 odd 6
117.8.q.b.10.4 14 156.23 even 6
117.8.q.b.82.4 14 12.11 even 2
169.8.a.g.1.7 14 52.19 even 12
169.8.a.g.1.8 14 52.7 even 12
169.8.b.d.168.7 14 52.35 odd 6
169.8.b.d.168.8 14 52.43 odd 6
208.8.w.a.17.7 14 1.1 even 1 trivial
208.8.w.a.49.7 14 13.10 even 6 inner