Properties

Label 208.6.a
Level $208$
Weight $6$
Character orbit 208.a
Rep. character $\chi_{208}(1,\cdot)$
Character field $\Q$
Dimension $30$
Newform subspaces $13$
Sturm bound $168$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(168\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(208))\).

Total New Old
Modular forms 146 30 116
Cusp forms 134 30 104
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(7\)
\(+\)\(-\)\(-\)\(8\)
\(-\)\(+\)\(-\)\(8\)
\(-\)\(-\)\(+\)\(7\)
Plus space\(+\)\(14\)
Minus space\(-\)\(16\)

Trace form

\( 30 q - 98 q^{7} + 2474 q^{9} + O(q^{10}) \) \( 30 q - 98 q^{7} + 2474 q^{9} + 1330 q^{11} - 3768 q^{15} + 1004 q^{17} + 4526 q^{19} - 1640 q^{21} - 4664 q^{23} + 16022 q^{25} - 4308 q^{27} + 12032 q^{29} + 1394 q^{31} + 7512 q^{33} - 14400 q^{35} - 10648 q^{37} - 6084 q^{39} - 5804 q^{41} - 16364 q^{43} + 11800 q^{45} + 42230 q^{47} + 90422 q^{49} - 18620 q^{51} - 33484 q^{53} + 27524 q^{55} - 48000 q^{57} + 62658 q^{59} + 54364 q^{61} + 84166 q^{63} + 40982 q^{67} - 43160 q^{69} - 112102 q^{71} - 60196 q^{73} - 21268 q^{75} + 21236 q^{77} + 7780 q^{79} + 241758 q^{81} + 333382 q^{83} - 231936 q^{85} + 272456 q^{87} - 108716 q^{89} + 49686 q^{91} + 1584 q^{93} - 368604 q^{95} + 182380 q^{97} + 237042 q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(208))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 13
208.6.a.a 208.a 1.a $1$ $33.360$ \(\Q\) None 52.6.a.b \(0\) \(-17\) \(-91\) \(233\) $-$ $-$ $\mathrm{SU}(2)$ \(q-17q^{3}-91q^{5}+233q^{7}+46q^{9}+\cdots\)
208.6.a.b 208.a 1.a $1$ $33.360$ \(\Q\) None 26.6.a.a \(0\) \(0\) \(-14\) \(170\) $-$ $+$ $\mathrm{SU}(2)$ \(q-14q^{5}+170q^{7}-3^{5}q^{9}+250q^{11}+\cdots\)
208.6.a.c 208.a 1.a $1$ $33.360$ \(\Q\) None 52.6.a.a \(0\) \(5\) \(-3\) \(-53\) $-$ $-$ $\mathrm{SU}(2)$ \(q+5q^{3}-3q^{5}-53q^{7}-218q^{9}+702q^{11}+\cdots\)
208.6.a.d 208.a 1.a $1$ $33.360$ \(\Q\) None 104.6.a.a \(0\) \(23\) \(-9\) \(-165\) $+$ $+$ $\mathrm{SU}(2)$ \(q+23q^{3}-9q^{5}-165q^{7}+286q^{9}+\cdots\)
208.6.a.e 208.a 1.a $2$ $33.360$ \(\Q(\sqrt{337}) \) None 104.6.a.b \(0\) \(-23\) \(-47\) \(95\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-11-\beta )q^{3}+(-21-5\beta )q^{5}+(7^{2}+\cdots)q^{7}+\cdots\)
208.6.a.f 208.a 1.a $2$ $33.360$ \(\Q(\sqrt{2785}) \) None 26.6.a.b \(0\) \(-9\) \(-37\) \(-327\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-4-\beta )q^{3}+(-18-\beta )q^{5}+(-164+\cdots)q^{7}+\cdots\)
208.6.a.g 208.a 1.a $2$ $33.360$ \(\Q(\sqrt{849}) \) None 26.6.a.c \(0\) \(-9\) \(73\) \(-155\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-4-\beta )q^{3}+(38-3\beta )q^{5}+(-82+\cdots)q^{7}+\cdots\)
208.6.a.h 208.a 1.a $2$ $33.360$ \(\Q(\sqrt{17}) \) None 13.6.a.a \(0\) \(28\) \(-42\) \(36\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(14-3\beta )q^{3}+(-21-20\beta )q^{5}+(18+\cdots)q^{7}+\cdots\)
208.6.a.i 208.a 1.a $3$ $33.360$ 3.3.203961.1 None 52.6.a.c \(0\) \(-12\) \(8\) \(-138\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-5-2\beta _{1}+\beta _{2})q^{3}+(6+5\beta _{1}-5\beta _{2})q^{5}+\cdots\)
208.6.a.j 208.a 1.a $3$ $33.360$ 3.3.168897.1 None 13.6.a.b \(0\) \(-8\) \(56\) \(60\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{3}+(21-4\beta _{1}+3\beta _{2})q^{5}+\cdots\)
208.6.a.k 208.a 1.a $3$ $33.360$ 3.3.1848689.1 None 104.6.a.c \(0\) \(20\) \(56\) \(76\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(7-\beta _{1})q^{3}+(19+\beta _{2})q^{5}+(5^{2}+5\beta _{1}+\cdots)q^{7}+\cdots\)
208.6.a.l 208.a 1.a $4$ $33.360$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 104.6.a.d \(0\) \(11\) \(31\) \(-39\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(3-\beta _{2})q^{3}+(7+\beta _{1}+3\beta _{2}+\beta _{3})q^{5}+\cdots\)
208.6.a.m 208.a 1.a $5$ $33.360$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 104.6.a.e \(0\) \(-9\) \(19\) \(109\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{3}+(4-\beta _{1}+\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(208))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(208)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 2}\)