Properties

Label 208.4.i.b.81.1
Level $208$
Weight $4$
Character 208.81
Analytic conductor $12.272$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,4,Mod(81,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 208.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2723972812\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 208.81
Dual form 208.4.i.b.113.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{3} +17.0000 q^{5} +(10.0000 - 17.3205i) q^{7} +(11.5000 - 19.9186i) q^{9} +O(q^{10})\) \(q+(1.00000 + 1.73205i) q^{3} +17.0000 q^{5} +(10.0000 - 17.3205i) q^{7} +(11.5000 - 19.9186i) q^{9} +(-16.0000 - 27.7128i) q^{11} +(-45.5000 + 11.2583i) q^{13} +(17.0000 + 29.4449i) q^{15} +(6.50000 - 11.2583i) q^{17} +(15.0000 - 25.9808i) q^{19} +40.0000 q^{21} +(39.0000 + 67.5500i) q^{23} +164.000 q^{25} +100.000 q^{27} +(-98.5000 - 170.607i) q^{29} +74.0000 q^{31} +(32.0000 - 55.4256i) q^{33} +(170.000 - 294.449i) q^{35} +(113.500 + 196.588i) q^{37} +(-65.0000 - 67.5500i) q^{39} +(82.5000 + 142.894i) q^{41} +(-78.0000 + 135.100i) q^{43} +(195.500 - 338.616i) q^{45} +162.000 q^{47} +(-28.5000 - 49.3634i) q^{49} +26.0000 q^{51} +93.0000 q^{53} +(-272.000 - 471.118i) q^{55} +60.0000 q^{57} +(-432.000 + 748.246i) q^{59} +(-72.5000 + 125.574i) q^{61} +(-230.000 - 398.372i) q^{63} +(-773.500 + 191.392i) q^{65} +(431.000 + 746.514i) q^{67} +(-78.0000 + 135.100i) q^{69} +(327.000 - 566.381i) q^{71} +215.000 q^{73} +(164.000 + 284.056i) q^{75} -640.000 q^{77} +76.0000 q^{79} +(-210.500 - 364.597i) q^{81} -628.000 q^{83} +(110.500 - 191.392i) q^{85} +(197.000 - 341.214i) q^{87} +(133.000 + 230.363i) q^{89} +(-260.000 + 900.666i) q^{91} +(74.0000 + 128.172i) q^{93} +(255.000 - 441.673i) q^{95} +(-119.000 + 206.114i) q^{97} -736.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 34 q^{5} + 20 q^{7} + 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} + 34 q^{5} + 20 q^{7} + 23 q^{9} - 32 q^{11} - 91 q^{13} + 34 q^{15} + 13 q^{17} + 30 q^{19} + 80 q^{21} + 78 q^{23} + 328 q^{25} + 200 q^{27} - 197 q^{29} + 148 q^{31} + 64 q^{33} + 340 q^{35} + 227 q^{37} - 130 q^{39} + 165 q^{41} - 156 q^{43} + 391 q^{45} + 324 q^{47} - 57 q^{49} + 52 q^{51} + 186 q^{53} - 544 q^{55} + 120 q^{57} - 864 q^{59} - 145 q^{61} - 460 q^{63} - 1547 q^{65} + 862 q^{67} - 156 q^{69} + 654 q^{71} + 430 q^{73} + 328 q^{75} - 1280 q^{77} + 152 q^{79} - 421 q^{81} - 1256 q^{83} + 221 q^{85} + 394 q^{87} + 266 q^{89} - 520 q^{91} + 148 q^{93} + 510 q^{95} - 238 q^{97} - 1472 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 + 1.73205i 0.192450 + 0.333333i 0.946062 0.323987i \(-0.105023\pi\)
−0.753612 + 0.657320i \(0.771690\pi\)
\(4\) 0 0
\(5\) 17.0000 1.52053 0.760263 0.649615i \(-0.225070\pi\)
0.760263 + 0.649615i \(0.225070\pi\)
\(6\) 0 0
\(7\) 10.0000 17.3205i 0.539949 0.935220i −0.458957 0.888459i \(-0.651777\pi\)
0.998906 0.0467610i \(-0.0148899\pi\)
\(8\) 0 0
\(9\) 11.5000 19.9186i 0.425926 0.737725i
\(10\) 0 0
\(11\) −16.0000 27.7128i −0.438562 0.759612i 0.559017 0.829156i \(-0.311179\pi\)
−0.997579 + 0.0695447i \(0.977845\pi\)
\(12\) 0 0
\(13\) −45.5000 + 11.2583i −0.970725 + 0.240192i
\(14\) 0 0
\(15\) 17.0000 + 29.4449i 0.292625 + 0.506842i
\(16\) 0 0
\(17\) 6.50000 11.2583i 0.0927342 0.160620i −0.815927 0.578156i \(-0.803773\pi\)
0.908661 + 0.417535i \(0.137106\pi\)
\(18\) 0 0
\(19\) 15.0000 25.9808i 0.181118 0.313705i −0.761144 0.648583i \(-0.775362\pi\)
0.942261 + 0.334878i \(0.108695\pi\)
\(20\) 0 0
\(21\) 40.0000 0.415653
\(22\) 0 0
\(23\) 39.0000 + 67.5500i 0.353568 + 0.612398i 0.986872 0.161506i \(-0.0516350\pi\)
−0.633304 + 0.773903i \(0.718302\pi\)
\(24\) 0 0
\(25\) 164.000 1.31200
\(26\) 0 0
\(27\) 100.000 0.712778
\(28\) 0 0
\(29\) −98.5000 170.607i −0.630724 1.09245i −0.987404 0.158219i \(-0.949425\pi\)
0.356680 0.934227i \(-0.383909\pi\)
\(30\) 0 0
\(31\) 74.0000 0.428735 0.214368 0.976753i \(-0.431231\pi\)
0.214368 + 0.976753i \(0.431231\pi\)
\(32\) 0 0
\(33\) 32.0000 55.4256i 0.168803 0.292375i
\(34\) 0 0
\(35\) 170.000 294.449i 0.821007 1.42203i
\(36\) 0 0
\(37\) 113.500 + 196.588i 0.504305 + 0.873482i 0.999988 + 0.00497814i \(0.00158460\pi\)
−0.495683 + 0.868504i \(0.665082\pi\)
\(38\) 0 0
\(39\) −65.0000 67.5500i −0.266880 0.277350i
\(40\) 0 0
\(41\) 82.5000 + 142.894i 0.314252 + 0.544301i 0.979278 0.202520i \(-0.0649130\pi\)
−0.665026 + 0.746820i \(0.731580\pi\)
\(42\) 0 0
\(43\) −78.0000 + 135.100i −0.276625 + 0.479129i −0.970544 0.240924i \(-0.922549\pi\)
0.693919 + 0.720053i \(0.255883\pi\)
\(44\) 0 0
\(45\) 195.500 338.616i 0.647632 1.12173i
\(46\) 0 0
\(47\) 162.000 0.502769 0.251384 0.967887i \(-0.419114\pi\)
0.251384 + 0.967887i \(0.419114\pi\)
\(48\) 0 0
\(49\) −28.5000 49.3634i −0.0830904 0.143917i
\(50\) 0 0
\(51\) 26.0000 0.0713868
\(52\) 0 0
\(53\) 93.0000 0.241029 0.120514 0.992712i \(-0.461546\pi\)
0.120514 + 0.992712i \(0.461546\pi\)
\(54\) 0 0
\(55\) −272.000 471.118i −0.666845 1.15501i
\(56\) 0 0
\(57\) 60.0000 0.139424
\(58\) 0 0
\(59\) −432.000 + 748.246i −0.953248 + 1.65107i −0.214919 + 0.976632i \(0.568949\pi\)
−0.738328 + 0.674442i \(0.764384\pi\)
\(60\) 0 0
\(61\) −72.5000 + 125.574i −0.152175 + 0.263575i −0.932027 0.362389i \(-0.881961\pi\)
0.779852 + 0.625964i \(0.215294\pi\)
\(62\) 0 0
\(63\) −230.000 398.372i −0.459957 0.796668i
\(64\) 0 0
\(65\) −773.500 + 191.392i −1.47601 + 0.365219i
\(66\) 0 0
\(67\) 431.000 + 746.514i 0.785896 + 1.36121i 0.928462 + 0.371427i \(0.121131\pi\)
−0.142566 + 0.989785i \(0.545535\pi\)
\(68\) 0 0
\(69\) −78.0000 + 135.100i −0.136088 + 0.235712i
\(70\) 0 0
\(71\) 327.000 566.381i 0.546588 0.946718i −0.451917 0.892060i \(-0.649260\pi\)
0.998505 0.0546585i \(-0.0174070\pi\)
\(72\) 0 0
\(73\) 215.000 0.344710 0.172355 0.985035i \(-0.444862\pi\)
0.172355 + 0.985035i \(0.444862\pi\)
\(74\) 0 0
\(75\) 164.000 + 284.056i 0.252495 + 0.437333i
\(76\) 0 0
\(77\) −640.000 −0.947205
\(78\) 0 0
\(79\) 76.0000 0.108236 0.0541182 0.998535i \(-0.482765\pi\)
0.0541182 + 0.998535i \(0.482765\pi\)
\(80\) 0 0
\(81\) −210.500 364.597i −0.288752 0.500133i
\(82\) 0 0
\(83\) −628.000 −0.830505 −0.415253 0.909706i \(-0.636307\pi\)
−0.415253 + 0.909706i \(0.636307\pi\)
\(84\) 0 0
\(85\) 110.500 191.392i 0.141005 0.244227i
\(86\) 0 0
\(87\) 197.000 341.214i 0.242766 0.420483i
\(88\) 0 0
\(89\) 133.000 + 230.363i 0.158404 + 0.274364i 0.934293 0.356505i \(-0.116032\pi\)
−0.775889 + 0.630869i \(0.782698\pi\)
\(90\) 0 0
\(91\) −260.000 + 900.666i −0.299510 + 1.03753i
\(92\) 0 0
\(93\) 74.0000 + 128.172i 0.0825101 + 0.142912i
\(94\) 0 0
\(95\) 255.000 441.673i 0.275394 0.476997i
\(96\) 0 0
\(97\) −119.000 + 206.114i −0.124563 + 0.215750i −0.921562 0.388231i \(-0.873086\pi\)
0.796999 + 0.603981i \(0.206420\pi\)
\(98\) 0 0
\(99\) −736.000 −0.747180
\(100\) 0 0
\(101\) 409.500 + 709.275i 0.403433 + 0.698767i 0.994138 0.108121i \(-0.0344834\pi\)
−0.590704 + 0.806888i \(0.701150\pi\)
\(102\) 0 0
\(103\) −1638.00 −1.56696 −0.783480 0.621417i \(-0.786557\pi\)
−0.783480 + 0.621417i \(0.786557\pi\)
\(104\) 0 0
\(105\) 680.000 0.632011
\(106\) 0 0
\(107\) 261.000 + 452.065i 0.235811 + 0.408437i 0.959508 0.281681i \(-0.0908919\pi\)
−0.723697 + 0.690118i \(0.757559\pi\)
\(108\) 0 0
\(109\) −1634.00 −1.43586 −0.717930 0.696115i \(-0.754910\pi\)
−0.717930 + 0.696115i \(0.754910\pi\)
\(110\) 0 0
\(111\) −227.000 + 393.176i −0.194107 + 0.336203i
\(112\) 0 0
\(113\) −163.500 + 283.190i −0.136113 + 0.235755i −0.926022 0.377469i \(-0.876794\pi\)
0.789909 + 0.613224i \(0.210128\pi\)
\(114\) 0 0
\(115\) 663.000 + 1148.35i 0.537609 + 0.931167i
\(116\) 0 0
\(117\) −299.000 + 1035.77i −0.236261 + 0.818433i
\(118\) 0 0
\(119\) −130.000 225.167i −0.100144 0.173454i
\(120\) 0 0
\(121\) 153.500 265.870i 0.115327 0.199752i
\(122\) 0 0
\(123\) −165.000 + 285.788i −0.120956 + 0.209501i
\(124\) 0 0
\(125\) 663.000 0.474404
\(126\) 0 0
\(127\) −1079.00 1868.88i −0.753904 1.30580i −0.945918 0.324407i \(-0.894835\pi\)
0.192014 0.981392i \(-0.438498\pi\)
\(128\) 0 0
\(129\) −312.000 −0.212946
\(130\) 0 0
\(131\) −730.000 −0.486873 −0.243437 0.969917i \(-0.578275\pi\)
−0.243437 + 0.969917i \(0.578275\pi\)
\(132\) 0 0
\(133\) −300.000 519.615i −0.195589 0.338770i
\(134\) 0 0
\(135\) 1700.00 1.08380
\(136\) 0 0
\(137\) −835.500 + 1447.13i −0.521033 + 0.902456i 0.478667 + 0.877996i \(0.341120\pi\)
−0.999701 + 0.0244601i \(0.992213\pi\)
\(138\) 0 0
\(139\) 456.000 789.815i 0.278255 0.481951i −0.692696 0.721229i \(-0.743577\pi\)
0.970951 + 0.239278i \(0.0769107\pi\)
\(140\) 0 0
\(141\) 162.000 + 280.592i 0.0967579 + 0.167590i
\(142\) 0 0
\(143\) 1040.00 + 1080.80i 0.608176 + 0.632035i
\(144\) 0 0
\(145\) −1674.50 2900.32i −0.959032 1.66109i
\(146\) 0 0
\(147\) 57.0000 98.7269i 0.0319815 0.0553936i
\(148\) 0 0
\(149\) 1057.50 1831.64i 0.581435 1.00707i −0.413875 0.910334i \(-0.635825\pi\)
0.995310 0.0967407i \(-0.0308418\pi\)
\(150\) 0 0
\(151\) −514.000 −0.277011 −0.138506 0.990362i \(-0.544230\pi\)
−0.138506 + 0.990362i \(0.544230\pi\)
\(152\) 0 0
\(153\) −149.500 258.942i −0.0789958 0.136825i
\(154\) 0 0
\(155\) 1258.00 0.651903
\(156\) 0 0
\(157\) 2901.00 1.47468 0.737341 0.675521i \(-0.236081\pi\)
0.737341 + 0.675521i \(0.236081\pi\)
\(158\) 0 0
\(159\) 93.0000 + 161.081i 0.0463860 + 0.0803430i
\(160\) 0 0
\(161\) 1560.00 0.763635
\(162\) 0 0
\(163\) 1180.00 2043.82i 0.567023 0.982112i −0.429835 0.902907i \(-0.641428\pi\)
0.996858 0.0792052i \(-0.0252382\pi\)
\(164\) 0 0
\(165\) 544.000 942.236i 0.256669 0.444563i
\(166\) 0 0
\(167\) 140.000 + 242.487i 0.0648714 + 0.112361i 0.896637 0.442767i \(-0.146003\pi\)
−0.831766 + 0.555127i \(0.812670\pi\)
\(168\) 0 0
\(169\) 1943.50 1024.51i 0.884615 0.466321i
\(170\) 0 0
\(171\) −345.000 597.558i −0.154285 0.267230i
\(172\) 0 0
\(173\) −663.000 + 1148.35i −0.291370 + 0.504667i −0.974134 0.225972i \(-0.927444\pi\)
0.682764 + 0.730639i \(0.260778\pi\)
\(174\) 0 0
\(175\) 1640.00 2840.56i 0.708413 1.22701i
\(176\) 0 0
\(177\) −1728.00 −0.733810
\(178\) 0 0
\(179\) 2132.00 + 3692.73i 0.890241 + 1.54194i 0.839586 + 0.543227i \(0.182798\pi\)
0.0506550 + 0.998716i \(0.483869\pi\)
\(180\) 0 0
\(181\) −403.000 −0.165496 −0.0827479 0.996571i \(-0.526370\pi\)
−0.0827479 + 0.996571i \(0.526370\pi\)
\(182\) 0 0
\(183\) −290.000 −0.117144
\(184\) 0 0
\(185\) 1929.50 + 3341.99i 0.766809 + 1.32815i
\(186\) 0 0
\(187\) −416.000 −0.162679
\(188\) 0 0
\(189\) 1000.00 1732.05i 0.384864 0.666604i
\(190\) 0 0
\(191\) −623.000 + 1079.07i −0.236014 + 0.408788i −0.959567 0.281481i \(-0.909174\pi\)
0.723553 + 0.690269i \(0.242508\pi\)
\(192\) 0 0
\(193\) −133.500 231.229i −0.0497904 0.0862394i 0.840056 0.542500i \(-0.182522\pi\)
−0.889846 + 0.456260i \(0.849189\pi\)
\(194\) 0 0
\(195\) −1105.00 1148.35i −0.405798 0.421718i
\(196\) 0 0
\(197\) −639.000 1106.78i −0.231101 0.400278i 0.727032 0.686604i \(-0.240899\pi\)
−0.958132 + 0.286326i \(0.907566\pi\)
\(198\) 0 0
\(199\) 2119.00 3670.22i 0.754834 1.30741i −0.190623 0.981663i \(-0.561051\pi\)
0.945457 0.325747i \(-0.105616\pi\)
\(200\) 0 0
\(201\) −862.000 + 1493.03i −0.302492 + 0.523931i
\(202\) 0 0
\(203\) −3940.00 −1.36224
\(204\) 0 0
\(205\) 1402.50 + 2429.20i 0.477829 + 0.827623i
\(206\) 0 0
\(207\) 1794.00 0.602375
\(208\) 0 0
\(209\) −960.000 −0.317725
\(210\) 0 0
\(211\) 1535.00 + 2658.70i 0.500823 + 0.867452i 1.00000 0.000951154i \(0.000302762\pi\)
−0.499176 + 0.866501i \(0.666364\pi\)
\(212\) 0 0
\(213\) 1308.00 0.420764
\(214\) 0 0
\(215\) −1326.00 + 2296.70i −0.420616 + 0.728528i
\(216\) 0 0
\(217\) 740.000 1281.72i 0.231495 0.400962i
\(218\) 0 0
\(219\) 215.000 + 372.391i 0.0663395 + 0.114903i
\(220\) 0 0
\(221\) −169.000 + 585.433i −0.0514397 + 0.178192i
\(222\) 0 0
\(223\) −2689.00 4657.48i −0.807483 1.39860i −0.914602 0.404356i \(-0.867496\pi\)
0.107119 0.994246i \(-0.465838\pi\)
\(224\) 0 0
\(225\) 1886.00 3266.65i 0.558815 0.967896i
\(226\) 0 0
\(227\) −1987.00 + 3441.58i −0.580977 + 1.00628i 0.414387 + 0.910101i \(0.363996\pi\)
−0.995364 + 0.0961811i \(0.969337\pi\)
\(228\) 0 0
\(229\) −6298.00 −1.81740 −0.908698 0.417455i \(-0.862922\pi\)
−0.908698 + 0.417455i \(0.862922\pi\)
\(230\) 0 0
\(231\) −640.000 1108.51i −0.182290 0.315735i
\(232\) 0 0
\(233\) 4030.00 1.13311 0.566554 0.824025i \(-0.308276\pi\)
0.566554 + 0.824025i \(0.308276\pi\)
\(234\) 0 0
\(235\) 2754.00 0.764473
\(236\) 0 0
\(237\) 76.0000 + 131.636i 0.0208301 + 0.0360788i
\(238\) 0 0
\(239\) 984.000 0.266317 0.133158 0.991095i \(-0.457488\pi\)
0.133158 + 0.991095i \(0.457488\pi\)
\(240\) 0 0
\(241\) −471.500 + 816.662i −0.126025 + 0.218281i −0.922133 0.386873i \(-0.873555\pi\)
0.796108 + 0.605154i \(0.206889\pi\)
\(242\) 0 0
\(243\) 1771.00 3067.46i 0.467530 0.809785i
\(244\) 0 0
\(245\) −484.500 839.179i −0.126341 0.218829i
\(246\) 0 0
\(247\) −390.000 + 1351.00i −0.100466 + 0.348024i
\(248\) 0 0
\(249\) −628.000 1087.73i −0.159831 0.276835i
\(250\) 0 0
\(251\) −1365.00 + 2364.25i −0.343259 + 0.594542i −0.985036 0.172349i \(-0.944864\pi\)
0.641777 + 0.766891i \(0.278198\pi\)
\(252\) 0 0
\(253\) 1248.00 2161.60i 0.310123 0.537149i
\(254\) 0 0
\(255\) 442.000 0.108546
\(256\) 0 0
\(257\) 942.500 + 1632.46i 0.228761 + 0.396225i 0.957441 0.288629i \(-0.0931993\pi\)
−0.728680 + 0.684854i \(0.759866\pi\)
\(258\) 0 0
\(259\) 4540.00 1.08920
\(260\) 0 0
\(261\) −4531.00 −1.07457
\(262\) 0 0
\(263\) 2016.00 + 3491.81i 0.472669 + 0.818686i 0.999511 0.0312769i \(-0.00995738\pi\)
−0.526842 + 0.849963i \(0.676624\pi\)
\(264\) 0 0
\(265\) 1581.00 0.366491
\(266\) 0 0
\(267\) −266.000 + 460.726i −0.0609698 + 0.105603i
\(268\) 0 0
\(269\) −2003.00 + 3469.30i −0.453997 + 0.786345i −0.998630 0.0523292i \(-0.983335\pi\)
0.544633 + 0.838674i \(0.316669\pi\)
\(270\) 0 0
\(271\) −2148.00 3720.45i −0.481482 0.833952i 0.518292 0.855204i \(-0.326568\pi\)
−0.999774 + 0.0212520i \(0.993235\pi\)
\(272\) 0 0
\(273\) −1820.00 + 450.333i −0.403485 + 0.0998367i
\(274\) 0 0
\(275\) −2624.00 4544.90i −0.575393 0.996610i
\(276\) 0 0
\(277\) 2775.50 4807.31i 0.602035 1.04275i −0.390478 0.920612i \(-0.627690\pi\)
0.992513 0.122142i \(-0.0389765\pi\)
\(278\) 0 0
\(279\) 851.000 1473.98i 0.182609 0.316289i
\(280\) 0 0
\(281\) −5557.00 −1.17973 −0.589863 0.807504i \(-0.700818\pi\)
−0.589863 + 0.807504i \(0.700818\pi\)
\(282\) 0 0
\(283\) 1560.00 + 2702.00i 0.327676 + 0.567552i 0.982050 0.188619i \(-0.0604012\pi\)
−0.654374 + 0.756171i \(0.727068\pi\)
\(284\) 0 0
\(285\) 1020.00 0.211999
\(286\) 0 0
\(287\) 3300.00 0.678721
\(288\) 0 0
\(289\) 2372.00 + 4108.42i 0.482801 + 0.836235i
\(290\) 0 0
\(291\) −476.000 −0.0958887
\(292\) 0 0
\(293\) −4150.50 + 7188.88i −0.827559 + 1.43337i 0.0723887 + 0.997376i \(0.476938\pi\)
−0.899948 + 0.435998i \(0.856396\pi\)
\(294\) 0 0
\(295\) −7344.00 + 12720.2i −1.44944 + 2.51050i
\(296\) 0 0
\(297\) −1600.00 2771.28i −0.312597 0.541435i
\(298\) 0 0
\(299\) −2535.00 2634.45i −0.490310 0.509546i
\(300\) 0 0
\(301\) 1560.00 + 2702.00i 0.298727 + 0.517411i
\(302\) 0 0
\(303\) −819.000 + 1418.55i −0.155282 + 0.268956i
\(304\) 0 0
\(305\) −1232.50 + 2134.75i −0.231386 + 0.400772i
\(306\) 0 0
\(307\) −8678.00 −1.61329 −0.806644 0.591037i \(-0.798719\pi\)
−0.806644 + 0.591037i \(0.798719\pi\)
\(308\) 0 0
\(309\) −1638.00 2837.10i −0.301562 0.522320i
\(310\) 0 0
\(311\) −8658.00 −1.57862 −0.789309 0.613996i \(-0.789561\pi\)
−0.789309 + 0.613996i \(0.789561\pi\)
\(312\) 0 0
\(313\) −5250.00 −0.948075 −0.474038 0.880505i \(-0.657204\pi\)
−0.474038 + 0.880505i \(0.657204\pi\)
\(314\) 0 0
\(315\) −3910.00 6772.32i −0.699376 1.21136i
\(316\) 0 0
\(317\) 6413.00 1.13625 0.568123 0.822944i \(-0.307670\pi\)
0.568123 + 0.822944i \(0.307670\pi\)
\(318\) 0 0
\(319\) −3152.00 + 5459.42i −0.553223 + 0.958210i
\(320\) 0 0
\(321\) −522.000 + 904.131i −0.0907639 + 0.157208i
\(322\) 0 0
\(323\) −195.000 337.750i −0.0335916 0.0581824i
\(324\) 0 0
\(325\) −7462.00 + 1846.37i −1.27359 + 0.315132i
\(326\) 0 0
\(327\) −1634.00 2830.17i −0.276332 0.478620i
\(328\) 0 0
\(329\) 1620.00 2805.92i 0.271470 0.470199i
\(330\) 0 0
\(331\) 1744.00 3020.70i 0.289604 0.501609i −0.684111 0.729378i \(-0.739810\pi\)
0.973715 + 0.227769i \(0.0731431\pi\)
\(332\) 0 0
\(333\) 5221.00 0.859186
\(334\) 0 0
\(335\) 7327.00 + 12690.7i 1.19498 + 2.06976i
\(336\) 0 0
\(337\) −1833.00 −0.296290 −0.148145 0.988966i \(-0.547330\pi\)
−0.148145 + 0.988966i \(0.547330\pi\)
\(338\) 0 0
\(339\) −654.000 −0.104780
\(340\) 0 0
\(341\) −1184.00 2050.75i −0.188027 0.325672i
\(342\) 0 0
\(343\) 5720.00 0.900440
\(344\) 0 0
\(345\) −1326.00 + 2296.70i −0.206926 + 0.358406i
\(346\) 0 0
\(347\) 3615.00 6261.36i 0.559260 0.968667i −0.438298 0.898830i \(-0.644419\pi\)
0.997558 0.0698377i \(-0.0222481\pi\)
\(348\) 0 0
\(349\) 2629.00 + 4553.56i 0.403230 + 0.698414i 0.994114 0.108342i \(-0.0345543\pi\)
−0.590884 + 0.806757i \(0.701221\pi\)
\(350\) 0 0
\(351\) −4550.00 + 1125.83i −0.691912 + 0.171204i
\(352\) 0 0
\(353\) −1581.50 2739.24i −0.238455 0.413017i 0.721816 0.692085i \(-0.243308\pi\)
−0.960271 + 0.279068i \(0.909974\pi\)
\(354\) 0 0
\(355\) 5559.00 9628.47i 0.831102 1.43951i
\(356\) 0 0
\(357\) 260.000 450.333i 0.0385453 0.0667624i
\(358\) 0 0
\(359\) 10068.0 1.48014 0.740068 0.672532i \(-0.234793\pi\)
0.740068 + 0.672532i \(0.234793\pi\)
\(360\) 0 0
\(361\) 2979.50 + 5160.65i 0.434393 + 0.752390i
\(362\) 0 0
\(363\) 614.000 0.0887786
\(364\) 0 0
\(365\) 3655.00 0.524141
\(366\) 0 0
\(367\) 3719.00 + 6441.50i 0.528965 + 0.916195i 0.999429 + 0.0337755i \(0.0107531\pi\)
−0.470464 + 0.882419i \(0.655914\pi\)
\(368\) 0 0
\(369\) 3795.00 0.535392
\(370\) 0 0
\(371\) 930.000 1610.81i 0.130143 0.225415i
\(372\) 0 0
\(373\) 4841.50 8385.72i 0.672073 1.16407i −0.305242 0.952275i \(-0.598737\pi\)
0.977315 0.211790i \(-0.0679294\pi\)
\(374\) 0 0
\(375\) 663.000 + 1148.35i 0.0912991 + 0.158135i
\(376\) 0 0
\(377\) 6402.50 + 6653.67i 0.874657 + 0.908970i
\(378\) 0 0
\(379\) −531.000 919.719i −0.0719674 0.124651i 0.827796 0.561029i \(-0.189594\pi\)
−0.899763 + 0.436378i \(0.856261\pi\)
\(380\) 0 0
\(381\) 2158.00 3737.77i 0.290178 0.502602i
\(382\) 0 0
\(383\) −1766.00 + 3058.80i −0.235609 + 0.408087i −0.959450 0.281880i \(-0.909042\pi\)
0.723840 + 0.689968i \(0.242375\pi\)
\(384\) 0 0
\(385\) −10880.0 −1.44025
\(386\) 0 0
\(387\) 1794.00 + 3107.30i 0.235644 + 0.408147i
\(388\) 0 0
\(389\) −11063.0 −1.44194 −0.720972 0.692964i \(-0.756304\pi\)
−0.720972 + 0.692964i \(0.756304\pi\)
\(390\) 0 0
\(391\) 1014.00 0.131151
\(392\) 0 0
\(393\) −730.000 1264.40i −0.0936988 0.162291i
\(394\) 0 0
\(395\) 1292.00 0.164576
\(396\) 0 0
\(397\) 2993.00 5184.03i 0.378374 0.655362i −0.612452 0.790508i \(-0.709817\pi\)
0.990826 + 0.135145i \(0.0431501\pi\)
\(398\) 0 0
\(399\) 600.000 1039.23i 0.0752821 0.130392i
\(400\) 0 0
\(401\) −2967.50 5139.86i −0.369551 0.640081i 0.619945 0.784646i \(-0.287155\pi\)
−0.989495 + 0.144565i \(0.953822\pi\)
\(402\) 0 0
\(403\) −3367.00 + 833.116i −0.416184 + 0.102979i
\(404\) 0 0
\(405\) −3578.50 6198.14i −0.439055 0.760465i
\(406\) 0 0
\(407\) 3632.00 6290.81i 0.442338 0.766152i
\(408\) 0 0
\(409\) 7544.50 13067.5i 0.912106 1.57981i 0.101023 0.994884i \(-0.467788\pi\)
0.811083 0.584931i \(-0.198878\pi\)
\(410\) 0 0
\(411\) −3342.00 −0.401092
\(412\) 0 0
\(413\) 8640.00 + 14964.9i 1.02941 + 1.78299i
\(414\) 0 0
\(415\) −10676.0 −1.26281
\(416\) 0 0
\(417\) 1824.00 0.214201
\(418\) 0 0
\(419\) −5407.00 9365.20i −0.630428 1.09193i −0.987464 0.157843i \(-0.949546\pi\)
0.357037 0.934090i \(-0.383787\pi\)
\(420\) 0 0
\(421\) −6535.00 −0.756524 −0.378262 0.925699i \(-0.623478\pi\)
−0.378262 + 0.925699i \(0.623478\pi\)
\(422\) 0 0
\(423\) 1863.00 3226.81i 0.214142 0.370905i
\(424\) 0 0
\(425\) 1066.00 1846.37i 0.121667 0.210734i
\(426\) 0 0
\(427\) 1450.00 + 2511.47i 0.164334 + 0.284634i
\(428\) 0 0
\(429\) −832.000 + 2882.13i −0.0936348 + 0.324361i
\(430\) 0 0
\(431\) 990.000 + 1714.73i 0.110642 + 0.191637i 0.916029 0.401112i \(-0.131376\pi\)
−0.805387 + 0.592749i \(0.798043\pi\)
\(432\) 0 0
\(433\) 3464.50 6000.69i 0.384511 0.665993i −0.607190 0.794556i \(-0.707703\pi\)
0.991701 + 0.128564i \(0.0410368\pi\)
\(434\) 0 0
\(435\) 3349.00 5800.64i 0.369132 0.639355i
\(436\) 0 0
\(437\) 2340.00 0.256150
\(438\) 0 0
\(439\) −2288.00 3962.93i −0.248748 0.430844i 0.714431 0.699706i \(-0.246686\pi\)
−0.963179 + 0.268862i \(0.913352\pi\)
\(440\) 0 0
\(441\) −1311.00 −0.141561
\(442\) 0 0
\(443\) 8812.00 0.945081 0.472540 0.881309i \(-0.343337\pi\)
0.472540 + 0.881309i \(0.343337\pi\)
\(444\) 0 0
\(445\) 2261.00 + 3916.17i 0.240858 + 0.417178i
\(446\) 0 0
\(447\) 4230.00 0.447589
\(448\) 0 0
\(449\) −959.000 + 1661.04i −0.100797 + 0.174586i −0.912013 0.410160i \(-0.865473\pi\)
0.811216 + 0.584747i \(0.198806\pi\)
\(450\) 0 0
\(451\) 2640.00 4572.61i 0.275638 0.477419i
\(452\) 0 0
\(453\) −514.000 890.274i −0.0533109 0.0923371i
\(454\) 0 0
\(455\) −4420.00 + 15311.3i −0.455413 + 1.57760i
\(456\) 0 0
\(457\) 5880.50 + 10185.3i 0.601922 + 1.04256i 0.992530 + 0.122002i \(0.0389314\pi\)
−0.390608 + 0.920557i \(0.627735\pi\)
\(458\) 0 0
\(459\) 650.000 1125.83i 0.0660989 0.114487i
\(460\) 0 0
\(461\) −450.500 + 780.289i −0.0455138 + 0.0788323i −0.887885 0.460066i \(-0.847826\pi\)
0.842371 + 0.538898i \(0.181159\pi\)
\(462\) 0 0
\(463\) −1372.00 −0.137715 −0.0688577 0.997626i \(-0.521935\pi\)
−0.0688577 + 0.997626i \(0.521935\pi\)
\(464\) 0 0
\(465\) 1258.00 + 2178.92i 0.125459 + 0.217301i
\(466\) 0 0
\(467\) 6396.00 0.633772 0.316886 0.948464i \(-0.397363\pi\)
0.316886 + 0.948464i \(0.397363\pi\)
\(468\) 0 0
\(469\) 17240.0 1.69738
\(470\) 0 0
\(471\) 2901.00 + 5024.68i 0.283803 + 0.491561i
\(472\) 0 0
\(473\) 4992.00 0.485269
\(474\) 0 0
\(475\) 2460.00 4260.84i 0.237626 0.411581i
\(476\) 0 0
\(477\) 1069.50 1852.43i 0.102660 0.177813i
\(478\) 0 0
\(479\) 1635.00 + 2831.90i 0.155960 + 0.270131i 0.933408 0.358816i \(-0.116819\pi\)
−0.777448 + 0.628947i \(0.783486\pi\)
\(480\) 0 0
\(481\) −7377.50 7666.92i −0.699345 0.726781i
\(482\) 0 0
\(483\) 1560.00 + 2702.00i 0.146962 + 0.254545i
\(484\) 0 0
\(485\) −2023.00 + 3503.94i −0.189401 + 0.328053i
\(486\) 0 0
\(487\) 9960.00 17251.2i 0.926757 1.60519i 0.138046 0.990426i \(-0.455918\pi\)
0.788711 0.614765i \(-0.210749\pi\)
\(488\) 0 0
\(489\) 4720.00 0.436494
\(490\) 0 0
\(491\) 3276.00 + 5674.20i 0.301108 + 0.521534i 0.976387 0.216028i \(-0.0693103\pi\)
−0.675280 + 0.737562i \(0.735977\pi\)
\(492\) 0 0
\(493\) −2561.00 −0.233959
\(494\) 0 0
\(495\) −12512.0 −1.13611
\(496\) 0 0
\(497\) −6540.00 11327.6i −0.590260 1.02236i
\(498\) 0 0
\(499\) −1746.00 −0.156637 −0.0783183 0.996928i \(-0.524955\pi\)
−0.0783183 + 0.996928i \(0.524955\pi\)
\(500\) 0 0
\(501\) −280.000 + 484.974i −0.0249690 + 0.0432476i
\(502\) 0 0
\(503\) 7346.00 12723.6i 0.651177 1.12787i −0.331661 0.943399i \(-0.607609\pi\)
0.982838 0.184473i \(-0.0590577\pi\)
\(504\) 0 0
\(505\) 6961.50 + 12057.7i 0.613431 + 1.06249i
\(506\) 0 0
\(507\) 3718.00 + 2341.73i 0.325685 + 0.205128i
\(508\) 0 0
\(509\) −4038.50 6994.89i −0.351677 0.609122i 0.634867 0.772622i \(-0.281055\pi\)
−0.986543 + 0.163500i \(0.947722\pi\)
\(510\) 0 0
\(511\) 2150.00 3723.91i 0.186126 0.322380i
\(512\) 0 0
\(513\) 1500.00 2598.08i 0.129097 0.223602i
\(514\) 0 0
\(515\) −27846.0 −2.38260
\(516\) 0 0
\(517\) −2592.00 4489.48i −0.220495 0.381909i
\(518\) 0 0
\(519\) −2652.00 −0.224296
\(520\) 0 0
\(521\) 11247.0 0.945758 0.472879 0.881127i \(-0.343215\pi\)
0.472879 + 0.881127i \(0.343215\pi\)
\(522\) 0 0
\(523\) 1366.00 + 2365.98i 0.114208 + 0.197815i 0.917463 0.397821i \(-0.130233\pi\)
−0.803255 + 0.595636i \(0.796900\pi\)
\(524\) 0 0
\(525\) 6560.00 0.545337
\(526\) 0 0
\(527\) 481.000 833.116i 0.0397584 0.0688636i
\(528\) 0 0
\(529\) 3041.50 5268.03i 0.249979 0.432977i
\(530\) 0 0
\(531\) 9936.00 + 17209.7i 0.812026 + 1.40647i
\(532\) 0 0
\(533\) −5362.50 5572.87i −0.435789 0.452885i
\(534\) 0 0
\(535\) 4437.00 + 7685.11i 0.358557 + 0.621040i
\(536\) 0 0
\(537\) −4264.00 + 7385.46i −0.342654 + 0.593494i
\(538\) 0 0
\(539\) −912.000 + 1579.63i −0.0728806 + 0.126233i
\(540\) 0 0
\(541\) −18375.0 −1.46026 −0.730132 0.683306i \(-0.760542\pi\)
−0.730132 + 0.683306i \(0.760542\pi\)
\(542\) 0 0
\(543\) −403.000 698.016i −0.0318497 0.0551653i
\(544\) 0 0
\(545\) −27778.0 −2.18326
\(546\) 0 0
\(547\) 10346.0 0.808708 0.404354 0.914603i \(-0.367496\pi\)
0.404354 + 0.914603i \(0.367496\pi\)
\(548\) 0 0
\(549\) 1667.50 + 2888.19i 0.129631 + 0.224527i
\(550\) 0 0
\(551\) −5910.00 −0.456941
\(552\) 0 0
\(553\) 760.000 1316.36i 0.0584421 0.101225i
\(554\) 0 0
\(555\) −3859.00 + 6683.98i −0.295145 + 0.511206i
\(556\) 0 0
\(557\) −172.500 298.779i −0.0131222 0.0227283i 0.859390 0.511321i \(-0.170844\pi\)
−0.872512 + 0.488593i \(0.837510\pi\)
\(558\) 0 0
\(559\) 2028.00 7025.20i 0.153444 0.531546i
\(560\) 0 0
\(561\) −416.000 720.533i −0.0313075 0.0542263i
\(562\) 0 0
\(563\) −4290.00 + 7430.50i −0.321140 + 0.556231i −0.980724 0.195400i \(-0.937399\pi\)
0.659583 + 0.751631i \(0.270733\pi\)
\(564\) 0 0
\(565\) −2779.50 + 4814.24i −0.206964 + 0.358472i
\(566\) 0 0
\(567\) −8420.00 −0.623645
\(568\) 0 0
\(569\) 9841.00 + 17045.1i 0.725055 + 1.25583i 0.958951 + 0.283570i \(0.0915189\pi\)
−0.233897 + 0.972261i \(0.575148\pi\)
\(570\) 0 0
\(571\) −26624.0 −1.95128 −0.975639 0.219382i \(-0.929596\pi\)
−0.975639 + 0.219382i \(0.929596\pi\)
\(572\) 0 0
\(573\) −2492.00 −0.181684
\(574\) 0 0
\(575\) 6396.00 + 11078.2i 0.463881 + 0.803466i
\(576\) 0 0
\(577\) −14101.0 −1.01739 −0.508694 0.860948i \(-0.669871\pi\)
−0.508694 + 0.860948i \(0.669871\pi\)
\(578\) 0 0
\(579\) 267.000 462.458i 0.0191643 0.0331936i
\(580\) 0 0
\(581\) −6280.00 + 10877.3i −0.448431 + 0.776705i
\(582\) 0 0
\(583\) −1488.00 2577.29i −0.105706 0.183088i
\(584\) 0 0
\(585\) −5083.00 + 17608.0i −0.359241 + 1.24445i
\(586\) 0 0
\(587\) 704.000 + 1219.36i 0.0495012 + 0.0857386i 0.889714 0.456518i \(-0.150904\pi\)
−0.840213 + 0.542256i \(0.817570\pi\)
\(588\) 0 0
\(589\) 1110.00 1922.58i 0.0776515 0.134496i
\(590\) 0 0
\(591\) 1278.00 2213.56i 0.0889508 0.154067i
\(592\) 0 0
\(593\) −1241.00 −0.0859389 −0.0429694 0.999076i \(-0.513682\pi\)
−0.0429694 + 0.999076i \(0.513682\pi\)
\(594\) 0 0
\(595\) −2210.00 3827.83i −0.152271 0.263741i
\(596\) 0 0
\(597\) 8476.00 0.581071
\(598\) 0 0
\(599\) −11078.0 −0.755651 −0.377825 0.925877i \(-0.623328\pi\)
−0.377825 + 0.925877i \(0.623328\pi\)
\(600\) 0 0
\(601\) 6908.50 + 11965.9i 0.468891 + 0.812143i 0.999368 0.0355563i \(-0.0113203\pi\)
−0.530477 + 0.847700i \(0.677987\pi\)
\(602\) 0 0
\(603\) 19826.0 1.33893
\(604\) 0 0
\(605\) 2609.50 4519.79i 0.175357 0.303728i
\(606\) 0 0
\(607\) 4135.00 7162.03i 0.276498 0.478909i −0.694014 0.719962i \(-0.744159\pi\)
0.970512 + 0.241053i \(0.0774926\pi\)
\(608\) 0 0
\(609\) −3940.00 6824.28i −0.262162 0.454078i
\(610\) 0 0
\(611\) −7371.00 + 1823.85i −0.488050 + 0.120761i
\(612\) 0 0
\(613\) −11136.5 19289.0i −0.733767 1.27092i −0.955262 0.295760i \(-0.904427\pi\)
0.221496 0.975161i \(-0.428906\pi\)
\(614\) 0 0
\(615\) −2805.00 + 4858.40i −0.183916 + 0.318552i
\(616\) 0 0
\(617\) 9494.50 16445.0i 0.619504 1.07301i −0.370072 0.929003i \(-0.620667\pi\)
0.989576 0.144010i \(-0.0459997\pi\)
\(618\) 0 0
\(619\) −72.0000 −0.00467516 −0.00233758 0.999997i \(-0.500744\pi\)
−0.00233758 + 0.999997i \(0.500744\pi\)
\(620\) 0 0
\(621\) 3900.00 + 6755.00i 0.252015 + 0.436504i
\(622\) 0 0
\(623\) 5320.00 0.342121
\(624\) 0 0
\(625\) −9229.00 −0.590656
\(626\) 0 0
\(627\) −960.000 1662.77i −0.0611463 0.105908i
\(628\) 0 0
\(629\) 2951.00 0.187065
\(630\) 0 0
\(631\) −11690.0 + 20247.7i −0.737514 + 1.27741i 0.216097 + 0.976372i \(0.430667\pi\)
−0.953611 + 0.301040i \(0.902666\pi\)
\(632\) 0 0
\(633\) −3070.00 + 5317.40i −0.192767 + 0.333882i
\(634\) 0 0
\(635\) −18343.0 31771.0i −1.14633 1.98550i
\(636\) 0 0
\(637\) 1852.50 + 1925.17i 0.115226 + 0.119746i
\(638\) 0 0
\(639\) −7521.00 13026.8i −0.465612 0.806464i
\(640\) 0 0
\(641\) −3191.50 + 5527.84i −0.196656 + 0.340619i −0.947442 0.319927i \(-0.896342\pi\)
0.750786 + 0.660546i \(0.229675\pi\)
\(642\) 0 0
\(643\) −8552.00 + 14812.5i −0.524507 + 0.908473i 0.475086 + 0.879939i \(0.342417\pi\)
−0.999593 + 0.0285332i \(0.990916\pi\)
\(644\) 0 0
\(645\) −5304.00 −0.323790
\(646\) 0 0
\(647\) 3497.00 + 6056.98i 0.212490 + 0.368044i 0.952493 0.304560i \(-0.0985093\pi\)
−0.740003 + 0.672604i \(0.765176\pi\)
\(648\) 0 0
\(649\) 27648.0 1.67223
\(650\) 0 0
\(651\) 2960.00 0.178205
\(652\) 0 0
\(653\) 2625.00 + 4546.63i 0.157311 + 0.272471i 0.933898 0.357539i \(-0.116384\pi\)
−0.776587 + 0.630010i \(0.783051\pi\)
\(654\) 0 0
\(655\) −12410.0 −0.740304
\(656\) 0 0
\(657\) 2472.50 4282.50i 0.146821 0.254301i
\(658\) 0 0
\(659\) −2170.00 + 3758.55i −0.128272 + 0.222173i −0.923007 0.384783i \(-0.874276\pi\)
0.794735 + 0.606956i \(0.207610\pi\)
\(660\) 0 0
\(661\) 2089.50 + 3619.12i 0.122953 + 0.212961i 0.920931 0.389726i \(-0.127430\pi\)
−0.797978 + 0.602687i \(0.794097\pi\)
\(662\) 0 0
\(663\) −1183.00 + 292.717i −0.0692970 + 0.0171466i
\(664\) 0 0
\(665\) −5100.00 8833.46i −0.297398 0.515108i
\(666\) 0 0
\(667\) 7683.00 13307.3i 0.446007 0.772508i
\(668\) 0 0
\(669\) 5378.00 9314.97i 0.310800 0.538322i
\(670\) 0 0
\(671\) 4640.00 0.266953
\(672\) 0 0
\(673\) −11433.5 19803.4i −0.654872 1.13427i −0.981926 0.189266i \(-0.939389\pi\)
0.327054 0.945006i \(-0.393944\pi\)
\(674\) 0 0
\(675\) 16400.0 0.935165
\(676\) 0 0
\(677\) 5410.00 0.307124 0.153562 0.988139i \(-0.450925\pi\)
0.153562 + 0.988139i \(0.450925\pi\)
\(678\) 0 0
\(679\) 2380.00 + 4122.28i 0.134515 + 0.232988i
\(680\) 0 0
\(681\) −7948.00 −0.447236
\(682\) 0 0
\(683\) −6789.00 + 11758.9i −0.380342 + 0.658772i −0.991111 0.133037i \(-0.957527\pi\)
0.610769 + 0.791809i \(0.290861\pi\)
\(684\) 0 0
\(685\) −14203.5 + 24601.2i −0.792245 + 1.37221i
\(686\) 0 0
\(687\) −6298.00 10908.5i −0.349758 0.605798i
\(688\) 0 0
\(689\) −4231.50 + 1047.02i −0.233973 + 0.0578933i
\(690\) 0 0
\(691\) 6372.00 + 11036.6i 0.350799 + 0.607602i 0.986390 0.164424i \(-0.0525766\pi\)
−0.635590 + 0.772026i \(0.719243\pi\)
\(692\) 0 0
\(693\) −7360.00 + 12747.9i −0.403439 + 0.698777i
\(694\) 0 0
\(695\) 7752.00 13426.9i 0.423094 0.732820i
\(696\) 0 0
\(697\) 2145.00 0.116568
\(698\) 0 0
\(699\) 4030.00 + 6980.16i 0.218067 + 0.377703i
\(700\) 0 0
\(701\) 16406.0 0.883946 0.441973 0.897028i \(-0.354279\pi\)
0.441973 + 0.897028i \(0.354279\pi\)
\(702\) 0 0
\(703\) 6810.00 0.365354
\(704\) 0 0
\(705\) 2754.00 + 4770.07i 0.147123 + 0.254824i
\(706\) 0 0
\(707\) 16380.0 0.871334
\(708\) 0 0
\(709\) −354.500 + 614.012i −0.0187779 + 0.0325243i −0.875262 0.483650i \(-0.839311\pi\)
0.856484 + 0.516174i \(0.172644\pi\)
\(710\) 0 0
\(711\) 874.000 1513.81i 0.0461006 0.0798487i
\(712\) 0 0
\(713\) 2886.00 + 4998.70i 0.151587 + 0.262556i
\(714\) 0 0
\(715\) 17680.0 + 18373.6i 0.924748 + 0.961026i
\(716\) 0 0
\(717\) 984.000 + 1704.34i 0.0512527 + 0.0887722i
\(718\) 0 0
\(719\) −3822.00 + 6619.90i −0.198243 + 0.343367i −0.947959 0.318393i \(-0.896857\pi\)
0.749716 + 0.661760i \(0.230190\pi\)
\(720\) 0 0
\(721\) −16380.0 + 28371.0i −0.846079 + 1.46545i
\(722\) 0 0
\(723\) −1886.00 −0.0970140
\(724\) 0 0
\(725\) −16154.0 27979.5i −0.827510 1.43329i
\(726\) 0 0
\(727\) 15808.0 0.806446 0.403223 0.915102i \(-0.367890\pi\)
0.403223 + 0.915102i \(0.367890\pi\)
\(728\) 0 0
\(729\) −4283.00 −0.217599
\(730\) 0 0
\(731\) 1014.00 + 1756.30i 0.0513053 + 0.0888633i
\(732\) 0 0
\(733\) −2583.00 −0.130157 −0.0650786 0.997880i \(-0.520730\pi\)
−0.0650786 + 0.997880i \(0.520730\pi\)
\(734\) 0 0
\(735\) 969.000 1678.36i 0.0486287 0.0842274i
\(736\) 0 0
\(737\) 13792.0 23888.4i 0.689328 1.19395i
\(738\) 0 0
\(739\) 2038.00 + 3529.92i 0.101447 + 0.175711i 0.912281 0.409565i \(-0.134320\pi\)
−0.810834 + 0.585276i \(0.800986\pi\)
\(740\) 0 0
\(741\) −2730.00 + 675.500i −0.135343 + 0.0334887i
\(742\) 0 0
\(743\) −17028.0 29493.4i −0.840776 1.45627i −0.889239 0.457442i \(-0.848766\pi\)
0.0484632 0.998825i \(-0.484568\pi\)
\(744\) 0 0
\(745\) 17977.5 31137.9i 0.884087 1.53128i
\(746\) 0 0
\(747\) −7222.00 + 12508.9i −0.353734 + 0.612685i
\(748\) 0 0
\(749\) 10440.0 0.509305
\(750\) 0 0
\(751\) −182.000 315.233i −0.00884324 0.0153169i 0.861570 0.507639i \(-0.169482\pi\)
−0.870413 + 0.492322i \(0.836148\pi\)
\(752\) 0 0
\(753\) −5460.00 −0.264241
\(754\) 0 0
\(755\) −8738.00 −0.421203
\(756\) 0 0
\(757\) 3457.00 + 5987.70i 0.165980 + 0.287486i 0.937003 0.349322i \(-0.113588\pi\)
−0.771023 + 0.636807i \(0.780255\pi\)
\(758\) 0 0
\(759\) 4992.00 0.238733
\(760\) 0 0
\(761\) −6991.00 + 12108.8i −0.333014 + 0.576797i −0.983101 0.183062i \(-0.941399\pi\)
0.650087 + 0.759859i \(0.274732\pi\)
\(762\) 0 0
\(763\) −16340.0 + 28301.7i −0.775292 + 1.34284i
\(764\) 0 0
\(765\) −2541.50 4402.01i −0.120115 0.208046i
\(766\) 0 0
\(767\) 11232.0 38908.8i 0.528767 1.83170i
\(768\) 0 0
\(769\) 9033.00 + 15645.6i 0.423587 + 0.733674i 0.996287 0.0860907i \(-0.0274375\pi\)
−0.572700 + 0.819765i \(0.694104\pi\)
\(770\) 0 0
\(771\) −1885.00 + 3264.92i −0.0880501 + 0.152507i
\(772\) 0 0
\(773\) −7217.00 + 12500.2i −0.335805 + 0.581632i −0.983639 0.180150i \(-0.942342\pi\)
0.647834 + 0.761782i \(0.275675\pi\)
\(774\) 0 0
\(775\) 12136.0 0.562501
\(776\) 0 0
\(777\) 4540.00 + 7863.51i 0.209616 + 0.363065i
\(778\) 0 0
\(779\) 4950.00 0.227666
\(780\) 0 0
\(781\) −20928.0 −0.958851
\(782\) 0 0
\(783\) −9850.00 17060.7i −0.449566 0.778671i
\(784\) 0 0
\(785\) 49317.0 2.24229
\(786\)