Properties

Label 208.3.bd.f.97.2
Level $208$
Weight $3$
Character 208.97
Analytic conductor $5.668$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,3,Mod(33,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.33"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 208.bd (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.66758949869\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.612074651904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 97.2
Root \(3.90972 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 208.97
Dual form 208.3.bd.f.193.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.52185 - 2.63592i) q^{3} +(4.79174 - 4.79174i) q^{5} +(-1.13983 + 4.25390i) q^{7} +(-0.132034 - 0.228689i) q^{9} +(13.8758 - 3.71800i) q^{11} +(1.84809 - 12.8680i) q^{13} +(-5.33833 - 19.9229i) q^{15} +(-20.9957 + 12.1219i) q^{17} +(-25.4592 - 6.82178i) q^{19} +(9.47827 + 9.47827i) q^{21} +(5.44507 + 3.14371i) q^{23} -20.9215i q^{25} +26.5895 q^{27} +(11.1112 - 19.2451i) q^{29} +(8.59518 - 8.59518i) q^{31} +(11.3164 - 42.2336i) q^{33} +(14.9218 + 25.8453i) q^{35} +(-6.13936 + 1.64504i) q^{37} +(-31.1064 - 24.4545i) q^{39} +(18.8845 + 70.4778i) q^{41} +(-26.9695 + 15.5708i) q^{43} +(-1.72849 - 0.463147i) q^{45} +(-7.65637 - 7.65637i) q^{47} +(25.6388 + 14.8026i) q^{49} +73.7905i q^{51} -33.7616 q^{53} +(48.6733 - 84.3047i) q^{55} +(-56.7267 + 56.7267i) q^{57} +(-9.77592 + 36.4842i) q^{59} +(11.5359 + 19.9807i) q^{61} +(1.12332 - 0.300991i) q^{63} +(-52.8043 - 70.5155i) q^{65} +(27.8544 + 103.954i) q^{67} +(16.5731 - 9.56849i) q^{69} +(-2.20861 - 0.591796i) q^{71} +(38.1773 + 38.1773i) q^{73} +(-55.1473 - 31.8393i) q^{75} +63.2639i q^{77} +19.1299 q^{79} +(41.6534 - 72.1459i) q^{81} +(-34.7720 + 34.7720i) q^{83} +(-42.5210 + 158.691i) q^{85} +(-33.8190 - 58.5762i) q^{87} +(3.47190 - 0.930292i) q^{89} +(52.6325 + 22.5289i) q^{91} +(-9.57562 - 35.7367i) q^{93} +(-154.682 + 89.3058i) q^{95} +(-24.3107 - 6.51404i) q^{97} +(-2.68233 - 2.68233i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{5} + 2 q^{7} - 42 q^{9} + 18 q^{11} + 36 q^{13} - 66 q^{15} - 42 q^{17} - 46 q^{19} - 102 q^{21} + 36 q^{23} - 72 q^{27} - 6 q^{29} - 32 q^{31} + 42 q^{33} + 78 q^{35} - 106 q^{37} - 12 q^{39}+ \cdots - 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.52185 2.63592i 0.507282 0.878639i −0.492682 0.870209i \(-0.663984\pi\)
0.999964 0.00842924i \(-0.00268314\pi\)
\(4\) 0 0
\(5\) 4.79174 4.79174i 0.958347 0.958347i −0.0408192 0.999167i \(-0.512997\pi\)
0.999167 + 0.0408192i \(0.0129968\pi\)
\(6\) 0 0
\(7\) −1.13983 + 4.25390i −0.162833 + 0.607700i 0.835474 + 0.549530i \(0.185193\pi\)
−0.998307 + 0.0581698i \(0.981474\pi\)
\(8\) 0 0
\(9\) −0.132034 0.228689i −0.0146704 0.0254099i
\(10\) 0 0
\(11\) 13.8758 3.71800i 1.26143 0.338000i 0.434690 0.900580i \(-0.356858\pi\)
0.826743 + 0.562580i \(0.190191\pi\)
\(12\) 0 0
\(13\) 1.84809 12.8680i 0.142161 0.989844i
\(14\) 0 0
\(15\) −5.33833 19.9229i −0.355888 1.32819i
\(16\) 0 0
\(17\) −20.9957 + 12.1219i −1.23504 + 0.713051i −0.968076 0.250656i \(-0.919354\pi\)
−0.266964 + 0.963707i \(0.586020\pi\)
\(18\) 0 0
\(19\) −25.4592 6.82178i −1.33996 0.359041i −0.483540 0.875322i \(-0.660649\pi\)
−0.856419 + 0.516281i \(0.827316\pi\)
\(20\) 0 0
\(21\) 9.47827 + 9.47827i 0.451346 + 0.451346i
\(22\) 0 0
\(23\) 5.44507 + 3.14371i 0.236742 + 0.136683i 0.613678 0.789556i \(-0.289689\pi\)
−0.376936 + 0.926239i \(0.623022\pi\)
\(24\) 0 0
\(25\) 20.9215i 0.836859i
\(26\) 0 0
\(27\) 26.5895 0.984796
\(28\) 0 0
\(29\) 11.1112 19.2451i 0.383144 0.663625i −0.608366 0.793657i \(-0.708175\pi\)
0.991510 + 0.130032i \(0.0415080\pi\)
\(30\) 0 0
\(31\) 8.59518 8.59518i 0.277264 0.277264i −0.554752 0.832016i \(-0.687187\pi\)
0.832016 + 0.554752i \(0.187187\pi\)
\(32\) 0 0
\(33\) 11.3164 42.2336i 0.342923 1.27980i
\(34\) 0 0
\(35\) 14.9218 + 25.8453i 0.426337 + 0.738438i
\(36\) 0 0
\(37\) −6.13936 + 1.64504i −0.165929 + 0.0444605i −0.340827 0.940126i \(-0.610707\pi\)
0.174898 + 0.984587i \(0.444040\pi\)
\(38\) 0 0
\(39\) −31.1064 24.4545i −0.797599 0.627038i
\(40\) 0 0
\(41\) 18.8845 + 70.4778i 0.460596 + 1.71897i 0.671091 + 0.741375i \(0.265826\pi\)
−0.210495 + 0.977595i \(0.567508\pi\)
\(42\) 0 0
\(43\) −26.9695 + 15.5708i −0.627197 + 0.362113i −0.779666 0.626196i \(-0.784611\pi\)
0.152468 + 0.988308i \(0.451278\pi\)
\(44\) 0 0
\(45\) −1.72849 0.463147i −0.0384109 0.0102922i
\(46\) 0 0
\(47\) −7.65637 7.65637i −0.162902 0.162902i 0.620949 0.783851i \(-0.286747\pi\)
−0.783851 + 0.620949i \(0.786747\pi\)
\(48\) 0 0
\(49\) 25.6388 + 14.8026i 0.523241 + 0.302093i
\(50\) 0 0
\(51\) 73.7905i 1.44687i
\(52\) 0 0
\(53\) −33.7616 −0.637010 −0.318505 0.947921i \(-0.603181\pi\)
−0.318505 + 0.947921i \(0.603181\pi\)
\(54\) 0 0
\(55\) 48.6733 84.3047i 0.884969 1.53281i
\(56\) 0 0
\(57\) −56.7267 + 56.7267i −0.995205 + 0.995205i
\(58\) 0 0
\(59\) −9.77592 + 36.4842i −0.165694 + 0.618377i 0.832257 + 0.554390i \(0.187048\pi\)
−0.997951 + 0.0639871i \(0.979618\pi\)
\(60\) 0 0
\(61\) 11.5359 + 19.9807i 0.189113 + 0.327553i 0.944955 0.327201i \(-0.106106\pi\)
−0.755842 + 0.654754i \(0.772772\pi\)
\(62\) 0 0
\(63\) 1.12332 0.300991i 0.0178304 0.00477764i
\(64\) 0 0
\(65\) −52.8043 70.5155i −0.812374 1.08485i
\(66\) 0 0
\(67\) 27.8544 + 103.954i 0.415737 + 1.55155i 0.783355 + 0.621575i \(0.213507\pi\)
−0.367618 + 0.929977i \(0.619827\pi\)
\(68\) 0 0
\(69\) 16.5731 9.56849i 0.240190 0.138674i
\(70\) 0 0
\(71\) −2.20861 0.591796i −0.0311072 0.00833516i 0.243232 0.969968i \(-0.421792\pi\)
−0.274339 + 0.961633i \(0.588459\pi\)
\(72\) 0 0
\(73\) 38.1773 + 38.1773i 0.522977 + 0.522977i 0.918469 0.395492i \(-0.129426\pi\)
−0.395492 + 0.918469i \(0.629426\pi\)
\(74\) 0 0
\(75\) −55.1473 31.8393i −0.735297 0.424524i
\(76\) 0 0
\(77\) 63.2639i 0.821610i
\(78\) 0 0
\(79\) 19.1299 0.242150 0.121075 0.992643i \(-0.461366\pi\)
0.121075 + 0.992643i \(0.461366\pi\)
\(80\) 0 0
\(81\) 41.6534 72.1459i 0.514240 0.890690i
\(82\) 0 0
\(83\) −34.7720 + 34.7720i −0.418940 + 0.418940i −0.884838 0.465898i \(-0.845731\pi\)
0.465898 + 0.884838i \(0.345731\pi\)
\(84\) 0 0
\(85\) −42.5210 + 158.691i −0.500247 + 1.86695i
\(86\) 0 0
\(87\) −33.8190 58.5762i −0.388724 0.673290i
\(88\) 0 0
\(89\) 3.47190 0.930292i 0.0390101 0.0104527i −0.239261 0.970955i \(-0.576905\pi\)
0.278271 + 0.960503i \(0.410239\pi\)
\(90\) 0 0
\(91\) 52.6325 + 22.5289i 0.578379 + 0.247570i
\(92\) 0 0
\(93\) −9.57562 35.7367i −0.102964 0.384266i
\(94\) 0 0
\(95\) −154.682 + 89.3058i −1.62823 + 0.940061i
\(96\) 0 0
\(97\) −24.3107 6.51404i −0.250626 0.0671551i 0.131319 0.991340i \(-0.458079\pi\)
−0.381945 + 0.924185i \(0.624746\pi\)
\(98\) 0 0
\(99\) −2.68233 2.68233i −0.0270943 0.0270943i
\(100\) 0 0
\(101\) −131.473 75.9060i −1.30171 0.751545i −0.321016 0.947074i \(-0.604024\pi\)
−0.980698 + 0.195529i \(0.937358\pi\)
\(102\) 0 0
\(103\) 17.3672i 0.168614i −0.996440 0.0843069i \(-0.973132\pi\)
0.996440 0.0843069i \(-0.0268676\pi\)
\(104\) 0 0
\(105\) 90.8347 0.865093
\(106\) 0 0
\(107\) 26.5964 46.0662i 0.248564 0.430526i −0.714564 0.699571i \(-0.753375\pi\)
0.963128 + 0.269045i \(0.0867080\pi\)
\(108\) 0 0
\(109\) 53.3779 53.3779i 0.489705 0.489705i −0.418508 0.908213i \(-0.637447\pi\)
0.908213 + 0.418508i \(0.137447\pi\)
\(110\) 0 0
\(111\) −5.00699 + 18.6863i −0.0451080 + 0.168345i
\(112\) 0 0
\(113\) −18.1133 31.3732i −0.160295 0.277639i 0.774680 0.632354i \(-0.217911\pi\)
−0.934974 + 0.354715i \(0.884578\pi\)
\(114\) 0 0
\(115\) 41.1552 11.0275i 0.357871 0.0958912i
\(116\) 0 0
\(117\) −3.18677 + 1.27637i −0.0272374 + 0.0109091i
\(118\) 0 0
\(119\) −27.6337 103.130i −0.232216 0.866641i
\(120\) 0 0
\(121\) 73.9242 42.6801i 0.610943 0.352728i
\(122\) 0 0
\(123\) 214.513 + 57.4785i 1.74401 + 0.467305i
\(124\) 0 0
\(125\) 19.5432 + 19.5432i 0.156346 + 0.156346i
\(126\) 0 0
\(127\) 115.255 + 66.5425i 0.907520 + 0.523957i 0.879632 0.475654i \(-0.157789\pi\)
0.0278874 + 0.999611i \(0.491122\pi\)
\(128\) 0 0
\(129\) 94.7857i 0.734773i
\(130\) 0 0
\(131\) −38.2739 −0.292167 −0.146083 0.989272i \(-0.546667\pi\)
−0.146083 + 0.989272i \(0.546667\pi\)
\(132\) 0 0
\(133\) 58.0383 100.525i 0.436378 0.755829i
\(134\) 0 0
\(135\) 127.410 127.410i 0.943777 0.943777i
\(136\) 0 0
\(137\) 2.07966 7.76140i 0.0151800 0.0566525i −0.957920 0.287034i \(-0.907331\pi\)
0.973100 + 0.230381i \(0.0739974\pi\)
\(138\) 0 0
\(139\) −121.981 211.277i −0.877558 1.51998i −0.854012 0.520253i \(-0.825838\pi\)
−0.0235463 0.999723i \(-0.507496\pi\)
\(140\) 0 0
\(141\) −31.8334 + 8.52973i −0.225769 + 0.0604945i
\(142\) 0 0
\(143\) −22.1994 185.424i −0.155241 1.29667i
\(144\) 0 0
\(145\) −38.9757 145.459i −0.268798 1.00317i
\(146\) 0 0
\(147\) 78.0367 45.0545i 0.530862 0.306493i
\(148\) 0 0
\(149\) 182.687 + 48.9509i 1.22609 + 0.328529i 0.813055 0.582187i \(-0.197803\pi\)
0.413033 + 0.910716i \(0.364469\pi\)
\(150\) 0 0
\(151\) 70.5995 + 70.5995i 0.467546 + 0.467546i 0.901119 0.433573i \(-0.142747\pi\)
−0.433573 + 0.901119i \(0.642747\pi\)
\(152\) 0 0
\(153\) 5.54428 + 3.20099i 0.0362371 + 0.0209215i
\(154\) 0 0
\(155\) 82.3717i 0.531430i
\(156\) 0 0
\(157\) 176.794 1.12608 0.563038 0.826431i \(-0.309632\pi\)
0.563038 + 0.826431i \(0.309632\pi\)
\(158\) 0 0
\(159\) −51.3799 + 88.9926i −0.323144 + 0.559702i
\(160\) 0 0
\(161\) −19.5795 + 19.5795i −0.121612 + 0.121612i
\(162\) 0 0
\(163\) −31.3812 + 117.116i −0.192523 + 0.718504i 0.800372 + 0.599504i \(0.204635\pi\)
−0.992894 + 0.119000i \(0.962031\pi\)
\(164\) 0 0
\(165\) −148.147 256.598i −0.897858 1.55514i
\(166\) 0 0
\(167\) −286.599 + 76.7939i −1.71616 + 0.459844i −0.976921 0.213601i \(-0.931481\pi\)
−0.739238 + 0.673444i \(0.764814\pi\)
\(168\) 0 0
\(169\) −162.169 47.5624i −0.959581 0.281434i
\(170\) 0 0
\(171\) 1.80141 + 6.72295i 0.0105346 + 0.0393155i
\(172\) 0 0
\(173\) −241.179 + 139.245i −1.39410 + 0.804884i −0.993766 0.111485i \(-0.964439\pi\)
−0.400334 + 0.916369i \(0.631106\pi\)
\(174\) 0 0
\(175\) 88.9978 + 23.8469i 0.508559 + 0.136268i
\(176\) 0 0
\(177\) 81.2919 + 81.2919i 0.459276 + 0.459276i
\(178\) 0 0
\(179\) −68.2036 39.3774i −0.381026 0.219985i 0.297239 0.954803i \(-0.403934\pi\)
−0.678264 + 0.734818i \(0.737268\pi\)
\(180\) 0 0
\(181\) 200.758i 1.10916i −0.832130 0.554581i \(-0.812879\pi\)
0.832130 0.554581i \(-0.187121\pi\)
\(182\) 0 0
\(183\) 70.2233 0.383734
\(184\) 0 0
\(185\) −21.5356 + 37.3008i −0.116409 + 0.201626i
\(186\) 0 0
\(187\) −246.262 + 246.262i −1.31691 + 1.31691i
\(188\) 0 0
\(189\) −30.3075 + 113.109i −0.160357 + 0.598460i
\(190\) 0 0
\(191\) 20.2650 + 35.1001i 0.106100 + 0.183770i 0.914187 0.405293i \(-0.132830\pi\)
−0.808087 + 0.589063i \(0.799497\pi\)
\(192\) 0 0
\(193\) −140.149 + 37.5529i −0.726163 + 0.194575i −0.602920 0.797802i \(-0.705996\pi\)
−0.123243 + 0.992377i \(0.539329\pi\)
\(194\) 0 0
\(195\) −266.233 + 31.8740i −1.36530 + 0.163457i
\(196\) 0 0
\(197\) −40.0731 149.555i −0.203417 0.759161i −0.989926 0.141583i \(-0.954781\pi\)
0.786510 0.617578i \(-0.211886\pi\)
\(198\) 0 0
\(199\) 225.470 130.175i 1.13302 0.654147i 0.188324 0.982107i \(-0.439695\pi\)
0.944691 + 0.327960i \(0.106361\pi\)
\(200\) 0 0
\(201\) 316.404 + 84.7802i 1.57415 + 0.421792i
\(202\) 0 0
\(203\) 69.2019 + 69.2019i 0.340896 + 0.340896i
\(204\) 0 0
\(205\) 428.200 + 247.221i 2.08878 + 1.20596i
\(206\) 0 0
\(207\) 1.66030i 0.00802079i
\(208\) 0 0
\(209\) −378.630 −1.81162
\(210\) 0 0
\(211\) 208.203 360.618i 0.986744 1.70909i 0.352831 0.935687i \(-0.385219\pi\)
0.633913 0.773404i \(-0.281448\pi\)
\(212\) 0 0
\(213\) −4.92110 + 4.92110i −0.0231037 + 0.0231037i
\(214\) 0 0
\(215\) −54.6193 + 203.842i −0.254043 + 0.948103i
\(216\) 0 0
\(217\) 26.7660 + 46.3600i 0.123346 + 0.213641i
\(218\) 0 0
\(219\) 158.732 42.5322i 0.724805 0.194211i
\(220\) 0 0
\(221\) 117.182 + 292.574i 0.530234 + 1.32386i
\(222\) 0 0
\(223\) −52.8772 197.340i −0.237118 0.884935i −0.977183 0.212400i \(-0.931872\pi\)
0.740065 0.672535i \(-0.234795\pi\)
\(224\) 0 0
\(225\) −4.78451 + 2.76234i −0.0212645 + 0.0122771i
\(226\) 0 0
\(227\) 107.452 + 28.7917i 0.473358 + 0.126836i 0.487608 0.873063i \(-0.337870\pi\)
−0.0142503 + 0.999898i \(0.504536\pi\)
\(228\) 0 0
\(229\) −212.309 212.309i −0.927114 0.927114i 0.0704045 0.997519i \(-0.477571\pi\)
−0.997519 + 0.0704045i \(0.977571\pi\)
\(230\) 0 0
\(231\) 166.758 + 96.2780i 0.721898 + 0.416788i
\(232\) 0 0
\(233\) 46.5826i 0.199925i −0.994991 0.0999627i \(-0.968128\pi\)
0.994991 0.0999627i \(-0.0318723\pi\)
\(234\) 0 0
\(235\) −73.3746 −0.312233
\(236\) 0 0
\(237\) 29.1127 50.4247i 0.122839 0.212763i
\(238\) 0 0
\(239\) −138.309 + 138.309i −0.578698 + 0.578698i −0.934544 0.355847i \(-0.884192\pi\)
0.355847 + 0.934544i \(0.384192\pi\)
\(240\) 0 0
\(241\) −58.1972 + 217.195i −0.241482 + 0.901223i 0.733637 + 0.679541i \(0.237821\pi\)
−0.975119 + 0.221682i \(0.928845\pi\)
\(242\) 0 0
\(243\) −7.12754 12.3453i −0.0293314 0.0508035i
\(244\) 0 0
\(245\) 193.784 51.9244i 0.790957 0.211936i
\(246\) 0 0
\(247\) −134.833 + 315.001i −0.545884 + 1.27531i
\(248\) 0 0
\(249\) 38.7384 + 144.574i 0.155576 + 0.580618i
\(250\) 0 0
\(251\) −3.02255 + 1.74507i −0.0120420 + 0.00695247i −0.506009 0.862528i \(-0.668880\pi\)
0.493967 + 0.869481i \(0.335546\pi\)
\(252\) 0 0
\(253\) 87.2427 + 23.3766i 0.344833 + 0.0923977i
\(254\) 0 0
\(255\) 353.584 + 353.584i 1.38661 + 1.38661i
\(256\) 0 0
\(257\) −160.572 92.7065i −0.624795 0.360726i 0.153938 0.988080i \(-0.450804\pi\)
−0.778734 + 0.627355i \(0.784138\pi\)
\(258\) 0 0
\(259\) 27.9913i 0.108074i
\(260\) 0 0
\(261\) −5.86820 −0.0224835
\(262\) 0 0
\(263\) −93.6758 + 162.251i −0.356182 + 0.616925i −0.987319 0.158746i \(-0.949255\pi\)
0.631138 + 0.775671i \(0.282588\pi\)
\(264\) 0 0
\(265\) −161.776 + 161.776i −0.610477 + 0.610477i
\(266\) 0 0
\(267\) 2.83152 10.5674i 0.0106050 0.0395782i
\(268\) 0 0
\(269\) −172.006 297.923i −0.639427 1.10752i −0.985559 0.169334i \(-0.945838\pi\)
0.346132 0.938186i \(-0.387495\pi\)
\(270\) 0 0
\(271\) −23.4296 + 6.27795i −0.0864562 + 0.0231659i −0.301788 0.953375i \(-0.597583\pi\)
0.215332 + 0.976541i \(0.430917\pi\)
\(272\) 0 0
\(273\) 139.483 104.449i 0.510926 0.382598i
\(274\) 0 0
\(275\) −77.7860 290.301i −0.282858 1.05564i
\(276\) 0 0
\(277\) −428.588 + 247.446i −1.54725 + 0.893306i −0.548901 + 0.835888i \(0.684953\pi\)
−0.998350 + 0.0574180i \(0.981713\pi\)
\(278\) 0 0
\(279\) −3.10048 0.830770i −0.0111128 0.00297767i
\(280\) 0 0
\(281\) 145.653 + 145.653i 0.518337 + 0.518337i 0.917068 0.398731i \(-0.130549\pi\)
−0.398731 + 0.917068i \(0.630549\pi\)
\(282\) 0 0
\(283\) −372.577 215.107i −1.31653 0.760096i −0.333357 0.942801i \(-0.608182\pi\)
−0.983168 + 0.182704i \(0.941515\pi\)
\(284\) 0 0
\(285\) 543.639i 1.90750i
\(286\) 0 0
\(287\) −321.330 −1.11962
\(288\) 0 0
\(289\) 149.379 258.732i 0.516883 0.895267i
\(290\) 0 0
\(291\) −54.1677 + 54.1677i −0.186143 + 0.186143i
\(292\) 0 0
\(293\) 24.5565 91.6460i 0.0838105 0.312785i −0.911276 0.411797i \(-0.864901\pi\)
0.995086 + 0.0990115i \(0.0315681\pi\)
\(294\) 0 0
\(295\) 127.979 + 221.667i 0.433828 + 0.751412i
\(296\) 0 0
\(297\) 368.950 98.8597i 1.24225 0.332861i
\(298\) 0 0
\(299\) 50.5161 64.2571i 0.168950 0.214907i
\(300\) 0 0
\(301\) −35.4962 132.474i −0.117927 0.440111i
\(302\) 0 0
\(303\) −400.164 + 231.035i −1.32067 + 0.762490i
\(304\) 0 0
\(305\) 151.019 + 40.4655i 0.495145 + 0.132674i
\(306\) 0 0
\(307\) −210.306 210.306i −0.685035 0.685035i 0.276095 0.961130i \(-0.410959\pi\)
−0.961130 + 0.276095i \(0.910959\pi\)
\(308\) 0 0
\(309\) −45.7785 26.4302i −0.148151 0.0855347i
\(310\) 0 0
\(311\) 246.623i 0.793001i 0.918035 + 0.396500i \(0.129775\pi\)
−0.918035 + 0.396500i \(0.870225\pi\)
\(312\) 0 0
\(313\) −118.526 −0.378679 −0.189339 0.981912i \(-0.560635\pi\)
−0.189339 + 0.981912i \(0.560635\pi\)
\(314\) 0 0
\(315\) 3.94036 6.82490i 0.0125091 0.0216664i
\(316\) 0 0
\(317\) −284.814 + 284.814i −0.898466 + 0.898466i −0.995300 0.0968348i \(-0.969128\pi\)
0.0968348 + 0.995300i \(0.469128\pi\)
\(318\) 0 0
\(319\) 82.6227 308.352i 0.259005 0.966621i
\(320\) 0 0
\(321\) −80.9512 140.212i −0.252184 0.436796i
\(322\) 0 0
\(323\) 617.227 165.385i 1.91092 0.512029i
\(324\) 0 0
\(325\) −269.217 38.6648i −0.828360 0.118969i
\(326\) 0 0
\(327\) −59.4666 221.933i −0.181855 0.678693i
\(328\) 0 0
\(329\) 41.2964 23.8425i 0.125521 0.0724695i
\(330\) 0 0
\(331\) 433.118 + 116.054i 1.30851 + 0.350615i 0.844663 0.535299i \(-0.179801\pi\)
0.463850 + 0.885914i \(0.346468\pi\)
\(332\) 0 0
\(333\) 1.18680 + 1.18680i 0.00356398 + 0.00356398i
\(334\) 0 0
\(335\) 631.591 + 364.649i 1.88535 + 1.08850i
\(336\) 0 0
\(337\) 474.455i 1.40788i −0.710260 0.703939i \(-0.751423\pi\)
0.710260 0.703939i \(-0.248577\pi\)
\(338\) 0 0
\(339\) −110.263 −0.325259
\(340\) 0 0
\(341\) 87.3078 151.222i 0.256035 0.443465i
\(342\) 0 0
\(343\) −244.782 + 244.782i −0.713650 + 0.713650i
\(344\) 0 0
\(345\) 33.5643 125.264i 0.0972878 0.363083i
\(346\) 0 0
\(347\) −266.818 462.142i −0.768927 1.33182i −0.938145 0.346242i \(-0.887457\pi\)
0.169218 0.985579i \(-0.445876\pi\)
\(348\) 0 0
\(349\) 260.973 69.9275i 0.747774 0.200365i 0.135244 0.990812i \(-0.456818\pi\)
0.612531 + 0.790447i \(0.290152\pi\)
\(350\) 0 0
\(351\) 49.1398 342.153i 0.140000 0.974794i
\(352\) 0 0
\(353\) −91.3587 340.955i −0.258806 0.965879i −0.965933 0.258792i \(-0.916676\pi\)
0.707127 0.707087i \(-0.249991\pi\)
\(354\) 0 0
\(355\) −13.4188 + 7.74736i −0.0377995 + 0.0218236i
\(356\) 0 0
\(357\) −313.897 84.1085i −0.879263 0.235598i
\(358\) 0 0
\(359\) −116.092 116.092i −0.323375 0.323375i 0.526685 0.850060i \(-0.323435\pi\)
−0.850060 + 0.526685i \(0.823435\pi\)
\(360\) 0 0
\(361\) 289.001 + 166.855i 0.800556 + 0.462201i
\(362\) 0 0
\(363\) 259.810i 0.715731i
\(364\) 0 0
\(365\) 365.871 1.00239
\(366\) 0 0
\(367\) 343.162 594.375i 0.935047 1.61955i 0.160497 0.987036i \(-0.448690\pi\)
0.774550 0.632513i \(-0.217976\pi\)
\(368\) 0 0
\(369\) 13.6241 13.6241i 0.0369217 0.0369217i
\(370\) 0 0
\(371\) 38.4824 143.618i 0.103726 0.387111i
\(372\) 0 0
\(373\) 308.636 + 534.572i 0.827441 + 1.43317i 0.900039 + 0.435809i \(0.143538\pi\)
−0.0725981 + 0.997361i \(0.523129\pi\)
\(374\) 0 0
\(375\) 81.2560 21.7725i 0.216683 0.0580599i
\(376\) 0 0
\(377\) −227.111 178.545i −0.602417 0.473594i
\(378\) 0 0
\(379\) 138.900 + 518.382i 0.366491 + 1.36776i 0.865389 + 0.501101i \(0.167072\pi\)
−0.498898 + 0.866661i \(0.666262\pi\)
\(380\) 0 0
\(381\) 350.801 202.535i 0.920737 0.531588i
\(382\) 0 0
\(383\) 253.061 + 67.8074i 0.660732 + 0.177043i 0.573577 0.819152i \(-0.305556\pi\)
0.0871559 + 0.996195i \(0.472222\pi\)
\(384\) 0 0
\(385\) 303.144 + 303.144i 0.787387 + 0.787387i
\(386\) 0 0
\(387\) 7.12176 + 4.11175i 0.0184025 + 0.0106247i
\(388\) 0 0
\(389\) 184.591i 0.474527i 0.971445 + 0.237264i \(0.0762505\pi\)
−0.971445 + 0.237264i \(0.923749\pi\)
\(390\) 0 0
\(391\) −152.431 −0.389848
\(392\) 0 0
\(393\) −58.2469 + 100.887i −0.148211 + 0.256709i
\(394\) 0 0
\(395\) 91.6653 91.6653i 0.232064 0.232064i
\(396\) 0 0
\(397\) 65.7046 245.213i 0.165503 0.617664i −0.832473 0.554066i \(-0.813076\pi\)
0.997976 0.0635986i \(-0.0202578\pi\)
\(398\) 0 0
\(399\) −176.651 305.968i −0.442734 0.766838i
\(400\) 0 0
\(401\) −261.805 + 70.1504i −0.652880 + 0.174939i −0.570031 0.821623i \(-0.693069\pi\)
−0.0828492 + 0.996562i \(0.526402\pi\)
\(402\) 0 0
\(403\) −94.7178 126.487i −0.235032 0.313864i
\(404\) 0 0
\(405\) −146.112 545.296i −0.360770 1.34641i
\(406\) 0 0
\(407\) −79.0721 + 45.6523i −0.194280 + 0.112168i
\(408\) 0 0
\(409\) 152.496 + 40.8612i 0.372851 + 0.0999051i 0.440378 0.897812i \(-0.354844\pi\)
−0.0675274 + 0.997717i \(0.521511\pi\)
\(410\) 0 0
\(411\) −17.2935 17.2935i −0.0420766 0.0420766i
\(412\) 0 0
\(413\) −144.057 83.1715i −0.348807 0.201384i
\(414\) 0 0
\(415\) 333.237i 0.802980i
\(416\) 0 0
\(417\) −742.543 −1.78068
\(418\) 0 0
\(419\) −326.238 + 565.061i −0.778611 + 1.34859i 0.154132 + 0.988050i \(0.450742\pi\)
−0.932743 + 0.360543i \(0.882591\pi\)
\(420\) 0 0
\(421\) 294.576 294.576i 0.699704 0.699704i −0.264642 0.964347i \(-0.585254\pi\)
0.964347 + 0.264642i \(0.0852538\pi\)
\(422\) 0 0
\(423\) −0.740029 + 2.76183i −0.00174948 + 0.00652914i
\(424\) 0 0
\(425\) 253.607 + 439.261i 0.596723 + 1.03355i
\(426\) 0 0
\(427\) −98.1448 + 26.2978i −0.229847 + 0.0615874i
\(428\) 0 0
\(429\) −522.546 223.671i −1.21806 0.521378i
\(430\) 0 0
\(431\) −18.2792 68.2190i −0.0424112 0.158281i 0.941473 0.337089i \(-0.109442\pi\)
−0.983884 + 0.178808i \(0.942776\pi\)
\(432\) 0 0
\(433\) 404.363 233.459i 0.933864 0.539167i 0.0458326 0.998949i \(-0.485406\pi\)
0.888032 + 0.459782i \(0.152073\pi\)
\(434\) 0 0
\(435\) −442.734 118.630i −1.01778 0.272713i
\(436\) 0 0
\(437\) −117.182 117.182i −0.268150 0.268150i
\(438\) 0 0
\(439\) −103.577 59.8002i −0.235938 0.136219i 0.377370 0.926063i \(-0.376828\pi\)
−0.613309 + 0.789843i \(0.710162\pi\)
\(440\) 0 0
\(441\) 7.81775i 0.0177273i
\(442\) 0 0
\(443\) 56.7213 0.128039 0.0640195 0.997949i \(-0.479608\pi\)
0.0640195 + 0.997949i \(0.479608\pi\)
\(444\) 0 0
\(445\) 12.1787 21.0941i 0.0273679 0.0474025i
\(446\) 0 0
\(447\) 407.052 407.052i 0.910631 0.910631i
\(448\) 0 0
\(449\) 47.8299 178.504i 0.106525 0.397558i −0.891988 0.452058i \(-0.850690\pi\)
0.998514 + 0.0545000i \(0.0173565\pi\)
\(450\) 0 0
\(451\) 524.072 + 907.720i 1.16202 + 2.01268i
\(452\) 0 0
\(453\) 293.536 78.6527i 0.647982 0.173626i
\(454\) 0 0
\(455\) 360.153 144.249i 0.791546 0.317030i
\(456\) 0 0
\(457\) 76.6418 + 286.031i 0.167706 + 0.625889i 0.997680 + 0.0680852i \(0.0216890\pi\)
−0.829973 + 0.557803i \(0.811644\pi\)
\(458\) 0 0
\(459\) −558.265 + 322.314i −1.21626 + 0.702210i
\(460\) 0 0
\(461\) 596.206 + 159.753i 1.29329 + 0.346535i 0.838908 0.544273i \(-0.183194\pi\)
0.454379 + 0.890808i \(0.349861\pi\)
\(462\) 0 0
\(463\) −198.699 198.699i −0.429156 0.429156i 0.459185 0.888341i \(-0.348142\pi\)
−0.888341 + 0.459185i \(0.848142\pi\)
\(464\) 0 0
\(465\) −217.125 125.357i −0.466935 0.269585i
\(466\) 0 0
\(467\) 522.015i 1.11781i −0.829233 0.558903i \(-0.811223\pi\)
0.829233 0.558903i \(-0.188777\pi\)
\(468\) 0 0
\(469\) −473.959 −1.01057
\(470\) 0 0
\(471\) 269.053 466.014i 0.571239 0.989414i
\(472\) 0 0
\(473\) −316.330 + 316.330i −0.668773 + 0.668773i
\(474\) 0 0
\(475\) −142.722 + 532.645i −0.300467 + 1.12136i
\(476\) 0 0
\(477\) 4.45766 + 7.72090i 0.00934520 + 0.0161864i
\(478\) 0 0
\(479\) −327.970 + 87.8794i −0.684698 + 0.183464i −0.584367 0.811490i \(-0.698657\pi\)
−0.100331 + 0.994954i \(0.531990\pi\)
\(480\) 0 0
\(481\) 9.82218 + 82.0413i 0.0204203 + 0.170564i
\(482\) 0 0
\(483\) 21.8129 + 81.4067i 0.0451612 + 0.168544i
\(484\) 0 0
\(485\) −147.704 + 85.2771i −0.304545 + 0.175829i
\(486\) 0 0
\(487\) −208.431 55.8489i −0.427990 0.114679i 0.0383927 0.999263i \(-0.487776\pi\)
−0.466382 + 0.884583i \(0.654443\pi\)
\(488\) 0 0
\(489\) 260.951 + 260.951i 0.533642 + 0.533642i
\(490\) 0 0
\(491\) 480.847 + 277.617i 0.979322 + 0.565412i 0.902065 0.431600i \(-0.142051\pi\)
0.0772564 + 0.997011i \(0.475384\pi\)
\(492\) 0 0
\(493\) 538.753i 1.09280i
\(494\) 0 0
\(495\) −25.7061 −0.0519315
\(496\) 0 0
\(497\) 5.03488 8.72067i 0.0101305 0.0175466i
\(498\) 0 0
\(499\) 401.619 401.619i 0.804847 0.804847i −0.179002 0.983849i \(-0.557287\pi\)
0.983849 + 0.179002i \(0.0572868\pi\)
\(500\) 0 0
\(501\) −233.737 + 872.318i −0.466541 + 1.74115i
\(502\) 0 0
\(503\) −196.833 340.925i −0.391319 0.677784i 0.601305 0.799020i \(-0.294648\pi\)
−0.992624 + 0.121236i \(0.961314\pi\)
\(504\) 0 0
\(505\) −993.706 + 266.263i −1.96773 + 0.527253i
\(506\) 0 0
\(507\) −372.167 + 355.081i −0.734057 + 0.700358i
\(508\) 0 0
\(509\) 113.097 + 422.083i 0.222194 + 0.829239i 0.983509 + 0.180858i \(0.0578873\pi\)
−0.761315 + 0.648382i \(0.775446\pi\)
\(510\) 0 0
\(511\) −205.918 + 118.887i −0.402971 + 0.232655i
\(512\) 0 0
\(513\) −676.948 181.388i −1.31959 0.353582i
\(514\) 0 0
\(515\) −83.2191 83.2191i −0.161591 0.161591i
\(516\) 0 0
\(517\) −134.704 77.7716i −0.260550 0.150429i
\(518\) 0 0
\(519\) 847.638i 1.63321i
\(520\) 0 0
\(521\) 947.876 1.81934 0.909669 0.415333i \(-0.136335\pi\)
0.909669 + 0.415333i \(0.136335\pi\)
\(522\) 0 0
\(523\) −68.3466 + 118.380i −0.130682 + 0.226348i −0.923940 0.382538i \(-0.875050\pi\)
0.793258 + 0.608886i \(0.208383\pi\)
\(524\) 0 0
\(525\) 198.299 198.299i 0.377713 0.377713i
\(526\) 0 0
\(527\) −76.2721 + 284.651i −0.144729 + 0.540135i
\(528\) 0 0
\(529\) −244.734 423.892i −0.462635 0.801308i
\(530\) 0 0
\(531\) 9.63430 2.58150i 0.0181437 0.00486159i
\(532\) 0 0
\(533\) 941.806 112.755i 1.76699 0.211548i
\(534\) 0 0
\(535\) −93.2946 348.180i −0.174382 0.650804i
\(536\) 0 0
\(537\) −207.591 + 119.853i −0.386575 + 0.223189i
\(538\) 0 0
\(539\) 410.794 + 110.072i 0.762141 + 0.204215i
\(540\) 0 0
\(541\) −394.763 394.763i −0.729691 0.729691i 0.240867 0.970558i \(-0.422568\pi\)
−0.970558 + 0.240867i \(0.922568\pi\)
\(542\) 0 0
\(543\) −529.182 305.523i −0.974552 0.562658i
\(544\) 0 0
\(545\) 511.545i 0.938616i
\(546\) 0 0
\(547\) 716.303 1.30951 0.654756 0.755840i \(-0.272771\pi\)
0.654756 + 0.755840i \(0.272771\pi\)
\(548\) 0 0
\(549\) 3.04625 5.27625i 0.00554872 0.00961066i
\(550\) 0 0
\(551\) −414.168 + 414.168i −0.751666 + 0.751666i
\(552\) 0 0
\(553\) −21.8048 + 81.3765i −0.0394300 + 0.147155i
\(554\) 0 0
\(555\) 65.5478 + 113.532i 0.118104 + 0.204562i
\(556\) 0 0
\(557\) −58.2268 + 15.6018i −0.104536 + 0.0280104i −0.310708 0.950505i \(-0.600566\pi\)
0.206172 + 0.978516i \(0.433899\pi\)
\(558\) 0 0
\(559\) 150.523 + 375.819i 0.269272 + 0.672306i
\(560\) 0 0
\(561\) 274.353 + 1023.90i 0.489043 + 1.82513i
\(562\) 0 0
\(563\) 233.194 134.635i 0.414199 0.239138i −0.278393 0.960467i \(-0.589802\pi\)
0.692592 + 0.721329i \(0.256469\pi\)
\(564\) 0 0
\(565\) −237.126 63.5378i −0.419693 0.112456i
\(566\) 0 0
\(567\) 259.423 + 259.423i 0.457537 + 0.457537i
\(568\) 0 0
\(569\) 232.943 + 134.490i 0.409390 + 0.236361i 0.690528 0.723306i \(-0.257378\pi\)
−0.281138 + 0.959667i \(0.590712\pi\)
\(570\) 0 0
\(571\) 328.719i 0.575689i 0.957677 + 0.287845i \(0.0929387\pi\)
−0.957677 + 0.287845i \(0.907061\pi\)
\(572\) 0 0
\(573\) 123.361 0.215290
\(574\) 0 0
\(575\) 65.7711 113.919i 0.114384 0.198120i
\(576\) 0 0
\(577\) −18.1490 + 18.1490i −0.0314540 + 0.0314540i −0.722659 0.691205i \(-0.757080\pi\)
0.691205 + 0.722659i \(0.257080\pi\)
\(578\) 0 0
\(579\) −114.300 + 426.572i −0.197409 + 0.736739i
\(580\) 0 0
\(581\) −108.283 187.551i −0.186373 0.322807i
\(582\) 0 0
\(583\) −468.467 + 125.525i −0.803546 + 0.215309i
\(584\) 0 0
\(585\) −9.15417 + 21.3862i −0.0156481 + 0.0365576i
\(586\) 0 0
\(587\) 30.1430 + 112.495i 0.0513509 + 0.191644i 0.986837 0.161720i \(-0.0517042\pi\)
−0.935486 + 0.353364i \(0.885038\pi\)
\(588\) 0 0
\(589\) −277.461 + 160.192i −0.471072 + 0.271973i
\(590\) 0 0
\(591\) −455.199 121.970i −0.770218 0.206379i
\(592\) 0 0
\(593\) 215.404 + 215.404i 0.363244 + 0.363244i 0.865006 0.501762i \(-0.167315\pi\)
−0.501762 + 0.865006i \(0.667315\pi\)
\(594\) 0 0
\(595\) −626.587 361.760i −1.05309 0.608000i
\(596\) 0 0
\(597\) 792.427i 1.32735i
\(598\) 0 0
\(599\) 657.704 1.09800 0.549002 0.835821i \(-0.315008\pi\)
0.549002 + 0.835821i \(0.315008\pi\)
\(600\) 0 0
\(601\) −149.567 + 259.057i −0.248863 + 0.431044i −0.963211 0.268747i \(-0.913390\pi\)
0.714347 + 0.699791i \(0.246724\pi\)
\(602\) 0 0
\(603\) 20.0954 20.0954i 0.0333257 0.0333257i
\(604\) 0 0
\(605\) 149.713 558.737i 0.247460 0.923532i
\(606\) 0 0
\(607\) −355.980 616.576i −0.586459 1.01578i −0.994692 0.102898i \(-0.967188\pi\)
0.408233 0.912878i \(-0.366145\pi\)
\(608\) 0 0
\(609\) 287.725 77.0957i 0.472455 0.126594i
\(610\) 0 0
\(611\) −112.672 + 84.3723i −0.184405 + 0.138089i
\(612\) 0 0
\(613\) 189.142 + 705.887i 0.308551 + 1.15153i 0.929845 + 0.367951i \(0.119941\pi\)
−0.621294 + 0.783578i \(0.713393\pi\)
\(614\) 0 0
\(615\) 1303.31 752.466i 2.11920 1.22352i
\(616\) 0 0
\(617\) 338.746 + 90.7668i 0.549021 + 0.147110i 0.522658 0.852543i \(-0.324941\pi\)
0.0263636 + 0.999652i \(0.491607\pi\)
\(618\) 0 0
\(619\) −283.795 283.795i −0.458474 0.458474i 0.439680 0.898154i \(-0.355092\pi\)
−0.898154 + 0.439680i \(0.855092\pi\)
\(620\) 0 0
\(621\) 144.782 + 83.5897i 0.233143 + 0.134605i
\(622\) 0 0
\(623\) 15.8295i 0.0254084i
\(624\) 0 0
\(625\) 710.329 1.13653
\(626\) 0 0
\(627\) −576.216 + 998.036i −0.919005 + 1.59176i
\(628\) 0 0
\(629\) 108.959 108.959i 0.173226 0.173226i
\(630\) 0 0
\(631\) 298.859 1115.36i 0.473627 1.76760i −0.152944 0.988235i \(-0.548875\pi\)
0.626570 0.779365i \(-0.284458\pi\)
\(632\) 0 0
\(633\) −633.706 1097.61i −1.00112 1.73398i
\(634\) 0 0
\(635\) 871.126 233.417i 1.37185 0.367587i
\(636\) 0 0
\(637\) 237.862 302.563i 0.373410 0.474981i
\(638\) 0 0
\(639\) 0.156274 + 0.583223i 0.000244560 + 0.000912712i
\(640\) 0 0
\(641\) 225.174 130.005i 0.351286 0.202815i −0.313965 0.949434i \(-0.601658\pi\)
0.665252 + 0.746619i \(0.268324\pi\)
\(642\) 0 0
\(643\) −11.9154 3.19272i −0.0185309 0.00496535i 0.249542 0.968364i \(-0.419720\pi\)
−0.268073 + 0.963399i \(0.586387\pi\)
\(644\) 0 0
\(645\) 454.188 + 454.188i 0.704168 + 0.704168i
\(646\) 0 0
\(647\) −822.864 475.081i −1.27182 0.734283i −0.296486 0.955037i \(-0.595815\pi\)
−0.975329 + 0.220755i \(0.929148\pi\)
\(648\) 0 0
\(649\) 542.593i 0.836045i
\(650\) 0 0
\(651\) 162.935 0.250284
\(652\) 0 0
\(653\) −282.884 + 489.970i −0.433207 + 0.750336i −0.997147 0.0754792i \(-0.975951\pi\)
0.563941 + 0.825815i \(0.309285\pi\)
\(654\) 0 0
\(655\) −183.398 + 183.398i −0.279997 + 0.279997i
\(656\) 0 0
\(657\) 3.69004 13.7714i 0.00561650 0.0209611i
\(658\) 0 0
\(659\) 190.174 + 329.390i 0.288579 + 0.499833i 0.973471 0.228811i \(-0.0734839\pi\)
−0.684892 + 0.728645i \(0.740151\pi\)
\(660\) 0 0
\(661\) −960.224 + 257.291i −1.45268 + 0.389245i −0.896956 0.442119i \(-0.854227\pi\)
−0.555728 + 0.831364i \(0.687560\pi\)
\(662\) 0 0
\(663\) 949.533 + 136.372i 1.43218 + 0.205689i
\(664\) 0 0
\(665\) −203.586 759.795i −0.306145 1.14255i
\(666\) 0 0
\(667\) 121.002 69.8606i 0.181413 0.104739i
\(668\) 0 0
\(669\) −600.644 160.942i −0.897823 0.240571i
\(670\) 0 0
\(671\) 234.357 + 234.357i 0.349266 + 0.349266i
\(672\) 0 0
\(673\) −548.632 316.753i −0.815204 0.470658i 0.0335560 0.999437i \(-0.489317\pi\)
−0.848760 + 0.528779i \(0.822650\pi\)
\(674\) 0 0
\(675\) 556.292i 0.824136i
\(676\) 0 0
\(677\) −221.745 −0.327540 −0.163770 0.986499i \(-0.552366\pi\)
−0.163770 + 0.986499i \(0.552366\pi\)
\(678\) 0 0
\(679\) 55.4201 95.9905i 0.0816202 0.141370i
\(680\) 0 0
\(681\) 239.418 239.418i 0.351569 0.351569i
\(682\) 0 0
\(683\) −173.007 + 645.671i −0.253304 + 0.945345i 0.715722 + 0.698386i \(0.246098\pi\)
−0.969026 + 0.246959i \(0.920569\pi\)
\(684\) 0 0
\(685\) −27.2254 47.1558i −0.0397451 0.0688405i
\(686\) 0 0
\(687\) −882.731 + 236.527i −1.28491 + 0.344290i
\(688\) 0 0
\(689\) −62.3944 + 434.443i −0.0905580 + 0.630541i
\(690\) 0 0
\(691\) 146.869 + 548.121i 0.212545 + 0.793229i 0.987016 + 0.160620i \(0.0513494\pi\)
−0.774471 + 0.632609i \(0.781984\pi\)
\(692\) 0 0
\(693\) 14.4678 8.35297i 0.0208770 0.0120534i
\(694\) 0 0
\(695\) −1596.88 427.883i −2.29767 0.615659i
\(696\) 0 0
\(697\) −1250.81 1250.81i −1.79457 1.79457i
\(698\) 0 0
\(699\) −122.788 70.8916i −0.175662 0.101419i
\(700\) 0 0
\(701\) 597.453i 0.852287i −0.904656 0.426143i \(-0.859872\pi\)
0.904656 0.426143i \(-0.140128\pi\)
\(702\) 0 0
\(703\) 167.526 0.238301
\(704\) 0 0
\(705\) −111.665 + 193.409i −0.158390 + 0.274339i
\(706\) 0 0
\(707\) 472.753 472.753i 0.668675 0.668675i
\(708\) 0 0
\(709\) −10.2632 + 38.3029i −0.0144757 + 0.0540239i −0.972786 0.231706i \(-0.925569\pi\)
0.958310 + 0.285730i \(0.0922360\pi\)
\(710\) 0 0
\(711\) −2.52579 4.37479i −0.00355244 0.00615301i
\(712\) 0 0
\(713\) 73.8221 19.7806i 0.103537 0.0277427i
\(714\) 0 0
\(715\) −994.877 782.129i −1.39144 1.09389i
\(716\) 0 0
\(717\) 154.085 + 575.055i 0.214903 + 0.802029i
\(718\) 0 0
\(719\) 864.778 499.280i 1.20275 0.694409i 0.241585 0.970380i \(-0.422333\pi\)
0.961166 + 0.275971i \(0.0889993\pi\)
\(720\) 0 0
\(721\) 73.8783 + 19.7956i 0.102466 + 0.0274558i
\(722\) 0 0
\(723\) 483.940 + 483.940i 0.669350 + 0.669350i
\(724\) 0 0
\(725\) −402.636 232.462i −0.555360 0.320638i
\(726\) 0 0
\(727\) 685.178i 0.942473i −0.882007 0.471237i \(-0.843808\pi\)
0.882007 0.471237i \(-0.156192\pi\)
\(728\) 0 0
\(729\) 706.374 0.968963
\(730\) 0 0
\(731\) 377.495 653.841i 0.516409 0.894447i
\(732\) 0 0
\(733\) 176.253 176.253i 0.240454 0.240454i −0.576584 0.817038i \(-0.695615\pi\)
0.817038 + 0.576584i \(0.195615\pi\)
\(734\) 0 0
\(735\) 158.042 589.820i 0.215023 0.802477i
\(736\) 0 0
\(737\) 773.001 + 1338.88i 1.04885 + 1.81666i
\(738\) 0 0
\(739\) −1337.69 + 358.434i −1.81014 + 0.485026i −0.995485 0.0949200i \(-0.969740\pi\)
−0.814655 + 0.579946i \(0.803074\pi\)
\(740\) 0 0
\(741\) 625.121 + 834.793i 0.843618 + 1.12658i
\(742\) 0 0
\(743\) 150.945 + 563.335i 0.203156 + 0.758190i 0.990004 + 0.141042i \(0.0450452\pi\)
−0.786847 + 0.617148i \(0.788288\pi\)
\(744\) 0 0
\(745\) 1109.95 640.829i 1.48986 0.860173i
\(746\) 0 0
\(747\) 12.5431 + 3.36090i 0.0167912 + 0.00449920i
\(748\) 0 0
\(749\) 165.646 + 165.646i 0.221156 + 0.221156i
\(750\) 0 0
\(751\) 1012.32 + 584.461i 1.34796 + 0.778244i 0.987960 0.154709i \(-0.0494441\pi\)
0.359998 + 0.932953i \(0.382777\pi\)
\(752\) 0 0
\(753\) 10.6229i 0.0141075i
\(754\) 0 0
\(755\) 676.588 0.896143
\(756\) 0 0
\(757\) 561.343 972.275i 0.741537 1.28438i −0.210259 0.977646i \(-0.567431\pi\)
0.951796 0.306733i \(-0.0992360\pi\)
\(758\) 0 0
\(759\) 194.389 194.389i 0.256112 0.256112i
\(760\) 0 0
\(761\) 246.221 918.907i 0.323549 1.20750i −0.592214 0.805781i \(-0.701746\pi\)
0.915763 0.401719i \(-0.131587\pi\)
\(762\) 0 0
\(763\) 166.222 + 287.906i 0.217854 + 0.377334i
\(764\) 0 0
\(765\) 41.9050 11.2284i 0.0547778 0.0146777i
\(766\) 0 0
\(767\) 451.411 + 193.222i 0.588541 + 0.251920i
\(768\) 0 0
\(769\) −53.4110 199.332i −0.0694551 0.259210i 0.922464 0.386084i \(-0.126172\pi\)
−0.991919 + 0.126874i \(0.959506\pi\)
\(770\) 0 0
\(771\) −488.733 + 282.170i −0.633895 + 0.365979i
\(772\) 0 0
\(773\) −431.675 115.667i −0.558441 0.149634i −0.0314512 0.999505i \(-0.510013\pi\)
−0.526990 + 0.849871i \(0.676680\pi\)
\(774\) 0 0
\(775\) −179.824 179.824i −0.232031 0.232031i
\(776\) 0 0
\(777\) −73.7826 42.5984i −0.0949583 0.0548242i
\(778\) 0 0
\(779\) 1923.14i 2.46872i
\(780\) 0 0
\(781\) −32.8465 −0.0420570
\(782\) 0 0
\(783\) 295.441 511.718i 0.377319 0.653535i
\(784\) 0 0
\(785\) 847.151 847.151i 1.07917 1.07917i
\(786\) 0 0
\(787\) −173.642 + 648.040i −0.220638 + 0.823431i 0.763468 + 0.645846i \(0.223495\pi\)
−0.984105 + 0.177585i \(0.943172\pi\)
\(788\) 0 0
\(789\) 285.120 + 493.843i 0.361369 + 0.625910i
\(790\) 0 0
\(791\) 154.104 41.2921i 0.194822 0.0522025i
\(792\) 0 0
\(793\) 278.430 111.517i 0.351110 0.140627i
\(794\) 0 0
\(795\) 180.230 + 672.628i 0.226705 + 0.846073i
\(796\) 0 0
\(797\) −207.230 + 119.644i −0.260013 + 0.150118i −0.624340 0.781152i \(-0.714632\pi\)
0.364328 + 0.931271i \(0.381299\pi\)
\(798\) 0 0
\(799\) 253.560 + 67.9413i 0.317347 + 0.0850329i
\(800\) 0 0
\(801\) −0.671155 0.671155i −0.000837896 0.000837896i
\(802\) 0 0
\(803\) 671.683 + 387.796i 0.836466 + 0.482934i
\(804\) 0 0
\(805\) 187.639i 0.233092i
\(806\) 0 0
\(807\) −1047.07 −1.29748
\(808\) 0 0
\(809\) −234.046 + 405.380i −0.289303 + 0.501088i −0.973644 0.228075i \(-0.926757\pi\)
0.684340 + 0.729163i \(0.260090\pi\)
\(810\) 0 0
\(811\) 680.928 680.928i 0.839615 0.839615i −0.149193 0.988808i \(-0.547668\pi\)
0.988808 + 0.149193i \(0.0476675\pi\)
\(812\) 0 0
\(813\) −19.1082 + 71.3126i −0.0235033 + 0.0877154i
\(814\) 0 0
\(815\) 410.819 + 711.560i 0.504073 + 0.873080i
\(816\) 0 0
\(817\) 792.843 212.442i 0.970433 0.260027i
\(818\) 0 0
\(819\) −1.79716 15.0110i −0.00219433 0.0183285i
\(820\) 0 0
\(821\) −326.171 1217.29i −0.397285 1.48269i −0.817854 0.575426i \(-0.804836\pi\)
0.420569 0.907260i \(-0.361830\pi\)
\(822\) 0 0
\(823\) −499.204 + 288.216i −0.606566 + 0.350201i −0.771620 0.636083i \(-0.780553\pi\)
0.165054 + 0.986285i \(0.447220\pi\)
\(824\) 0 0
\(825\) −883.589 236.757i −1.07102 0.286978i
\(826\) 0 0
\(827\) −434.651 434.651i −0.525575 0.525575i 0.393675 0.919250i \(-0.371204\pi\)
−0.919250 + 0.393675i \(0.871204\pi\)
\(828\) 0 0
\(829\) −109.340 63.1272i −0.131893 0.0761486i 0.432602 0.901585i \(-0.357596\pi\)
−0.564495 + 0.825437i \(0.690929\pi\)
\(830\) 0 0
\(831\) 1506.30i 1.81263i
\(832\) 0 0
\(833\) −717.739 −0.861632
\(834\) 0 0
\(835\) −1005.33 + 1741.28i −1.20399 + 2.08537i
\(836\) 0 0
\(837\) 228.542 228.542i 0.273048 0.273048i
\(838\) 0 0
\(839\) 329.574 1229.99i 0.392817 1.46601i −0.432649 0.901562i \(-0.642421\pi\)
0.825466 0.564451i \(-0.190912\pi\)
\(840\) 0 0
\(841\) 173.584 + 300.656i 0.206401 + 0.357498i
\(842\) 0 0
\(843\) 605.589 162.267i 0.718374 0.192488i
\(844\) 0 0
\(845\) −1004.98 + 549.165i −1.18932 + 0.649900i
\(846\) 0 0
\(847\) 97.2960 + 363.114i 0.114871 + 0.428706i
\(848\) 0 0
\(849\) −1134.01 + 654.720i −1.33570 + 0.771166i
\(850\) 0 0
\(851\) −38.6007 10.3430i −0.0453593 0.0121540i
\(852\) 0 0
\(853\) 162.871 + 162.871i 0.190939 + 0.190939i 0.796102 0.605163i \(-0.206892\pi\)
−0.605163 + 0.796102i \(0.706892\pi\)
\(854\) 0 0
\(855\) 40.8465 + 23.5827i 0.0477737 + 0.0275822i
\(856\) 0 0
\(857\) 1077.67i 1.25750i 0.777609 + 0.628748i \(0.216432\pi\)
−0.777609 + 0.628748i \(0.783568\pi\)
\(858\) 0 0
\(859\) −654.044 −0.761402 −0.380701 0.924698i \(-0.624317\pi\)
−0.380701 + 0.924698i \(0.624317\pi\)
\(860\) 0 0
\(861\) −489.015 + 846.999i −0.567962 + 0.983739i
\(862\) 0 0
\(863\) −916.358 + 916.358i −1.06183 + 1.06183i −0.0638705 + 0.997958i \(0.520344\pi\)
−0.997958 + 0.0638705i \(0.979656\pi\)
\(864\) 0 0
\(865\) −488.443 + 1822.89i −0.564674 + 2.10739i
\(866\) 0 0
\(867\) −454.664 787.502i −0.524411 0.908306i
\(868\) 0 0
\(869\) 265.441 71.1248i 0.305456 0.0818468i
\(870\) 0 0
\(871\) 1389.15 166.313i 1.59490 0.190945i
\(872\) 0 0
\(873\) 1.72015 + 6.41967i 0.00197039 + 0.00735358i
\(874\) 0 0
\(875\) −105.411 + 60.8589i −0.120469 + 0.0695530i
\(876\) 0 0
\(877\) −886.252 237.471i −1.01055 0.270776i −0.284691 0.958619i \(-0.591891\pi\)
−0.725859 + 0.687843i \(0.758558\pi\)
\(878\) 0 0
\(879\) −204.200 204.200i −0.232309 0.232309i
\(880\) 0 0
\(881\) 837.311 + 483.422i 0.950410 + 0.548719i 0.893208 0.449643i \(-0.148449\pi\)
0.0572017 + 0.998363i \(0.481782\pi\)
\(882\) 0 0
\(883\) 1129.48i 1.27914i −0.768731 0.639572i \(-0.779112\pi\)
0.768731 0.639572i \(-0.220888\pi\)
\(884\) 0 0
\(885\) 779.059 0.880293
\(886\) 0 0
\(887\) −827.477 + 1433.23i −0.932894 + 1.61582i −0.154547 + 0.987985i \(0.549392\pi\)
−0.778347 + 0.627834i \(0.783942\pi\)
\(888\) 0 0
\(889\) −414.436 + 414.436i −0.466182 + 0.466182i
\(890\) 0 0
\(891\) 309.735 1155.95i 0.347626 1.29736i
\(892\) 0 0
\(893\) 142.695 + 247.155i 0.159793 + 0.276770i
\(894\) 0 0
\(895\) −515.500 + 138.128i −0.575977 + 0.154333i
\(896\) 0 0
\(897\) −92.4984 230.946i −0.103120 0.257464i
\(898\) 0 0
\(899\) −69.9127 260.918i −0.0777672 0.290231i
\(900\) 0 0
\(901\) 708.847 409.253i 0.786733 0.454221i
\(902\) 0 0
\(903\) −403.209 108.039i −0.446521 0.119645i
\(904\) 0 0
\(905\) −961.981 961.981i −1.06296 1.06296i
\(906\) 0 0
\(907\) −386.408 223.093i −0.426029 0.245968i 0.271625 0.962403i \(-0.412439\pi\)
−0.697653 + 0.716435i \(0.745772\pi\)
\(908\) 0 0
\(909\) 40.0886i 0.0441019i
\(910\) 0 0
\(911\) −1639.85 −1.80005 −0.900025 0.435838i \(-0.856452\pi\)
−0.900025 + 0.435838i \(0.856452\pi\)
\(912\) 0 0
\(913\) −353.206 + 611.771i −0.386863 + 0.670067i
\(914\) 0 0
\(915\) 336.491 336.491i 0.367750 0.367750i
\(916\) 0 0
\(917\) 43.6256 162.813i 0.0475743 0.177550i
\(918\) 0 0
\(919\) 595.311 + 1031.11i 0.647782 + 1.12199i 0.983652 + 0.180082i \(0.0576364\pi\)
−0.335870 + 0.941908i \(0.609030\pi\)
\(920\) 0 0
\(921\) −874.401 + 234.295i −0.949404 + 0.254392i
\(922\) 0 0
\(923\) −11.6969 + 27.3267i −0.0126727 + 0.0296064i
\(924\) 0 0
\(925\) 34.4166 + 128.445i 0.0372071 + 0.138859i
\(926\) 0 0
\(927\) −3.97169 + 2.29306i −0.00428446 + 0.00247363i
\(928\) 0 0
\(929\) −770.131 206.356i −0.828990 0.222127i −0.180717 0.983535i \(-0.557842\pi\)
−0.648273 + 0.761408i \(0.724508\pi\)
\(930\) 0 0
\(931\) −551.765 551.765i −0.592658 0.592658i
\(932\) 0 0
\(933\) 650.078 + 375.323i 0.696761 + 0.402275i
\(934\) 0 0
\(935\) 2360.05i 2.52411i
\(936\) 0 0
\(937\) 406.611 0.433950 0.216975 0.976177i \(-0.430381\pi\)
0.216975 + 0.976177i \(0.430381\pi\)
\(938\) 0 0
\(939\) −180.379 + 312.426i −0.192097 + 0.332722i
\(940\) 0 0
\(941\) −67.4219 + 67.4219i −0.0716492 + 0.0716492i −0.742023 0.670374i \(-0.766134\pi\)
0.670374 + 0.742023i \(0.266134\pi\)
\(942\) 0 0
\(943\) −118.735 + 443.123i −0.125911 + 0.469908i
\(944\) 0 0
\(945\) 396.763 + 687.214i 0.419855 + 0.727210i
\(946\) 0 0
\(947\) 1589.57 425.925i 1.67853 0.449762i 0.711143 0.703047i \(-0.248178\pi\)
0.967392 + 0.253285i \(0.0815112\pi\)
\(948\) 0 0
\(949\) 561.820 420.709i 0.592012 0.443318i
\(950\) 0 0
\(951\) 317.302 + 1184.19i 0.333651 + 1.24520i
\(952\) 0 0
\(953\) −807.423 + 466.166i −0.847243 + 0.489156i −0.859720 0.510766i \(-0.829362\pi\)
0.0124765 + 0.999922i \(0.496029\pi\)
\(954\) 0 0
\(955\) 265.295 + 71.0856i 0.277796 + 0.0744351i
\(956\) 0 0
\(957\) −687.051 687.051i −0.717921 0.717921i
\(958\) 0 0
\(959\) 30.6457 + 17.6933i 0.0319559 + 0.0184498i
\(960\) 0 0
\(961\) 813.246i 0.846249i
\(962\) 0 0
\(963\) −14.0465 −0.0145862
\(964\) 0 0
\(965\) −491.615 + 851.503i −0.509446 + 0.882386i
\(966\) 0 0
\(967\) 540.669 540.669i 0.559120 0.559120i −0.369937 0.929057i \(-0.620621\pi\)
0.929057 + 0.369937i \(0.120621\pi\)
\(968\) 0 0
\(969\) 503.382 1878.65i 0.519486 1.93875i
\(970\) 0 0
\(971\) 848.378 + 1469.43i 0.873716 + 1.51332i 0.858124 + 0.513442i \(0.171630\pi\)
0.0155919 + 0.999878i \(0.495037\pi\)
\(972\) 0 0
\(973\) 1037.79 278.074i 1.06658 0.285790i
\(974\) 0 0
\(975\) −511.624 + 650.791i −0.524743 + 0.667478i
\(976\) 0 0
\(977\) 73.8571 + 275.638i 0.0755958 + 0.282127i 0.993368 0.114981i \(-0.0366806\pi\)
−0.917772 + 0.397108i \(0.870014\pi\)
\(978\) 0 0
\(979\) 44.7164 25.8170i 0.0456756 0.0263708i
\(980\) 0 0
\(981\) −19.2546 5.15926i −0.0196275 0.00525918i
\(982\) 0 0
\(983\) 41.0192 + 41.0192i 0.0417286 + 0.0417286i 0.727663 0.685935i \(-0.240606\pi\)
−0.685935 + 0.727663i \(0.740606\pi\)
\(984\) 0 0
\(985\) −908.647 524.607i −0.922484 0.532596i
\(986\) 0 0
\(987\) 145.138i 0.147050i
\(988\) 0 0
\(989\) −195.801 −0.197979
\(990\) 0 0
\(991\) 188.074 325.754i 0.189782 0.328712i −0.755395 0.655269i \(-0.772555\pi\)
0.945178 + 0.326557i \(0.105889\pi\)
\(992\) 0 0
\(993\) 965.046 965.046i 0.971849 0.971849i
\(994\) 0 0
\(995\) 456.628 1704.16i 0.458922 1.71272i
\(996\) 0 0
\(997\) 722.549 + 1251.49i 0.724724 + 1.25526i 0.959088 + 0.283109i \(0.0913659\pi\)
−0.234364 + 0.972149i \(0.575301\pi\)
\(998\) 0 0
\(999\) −163.243 + 43.7407i −0.163406 + 0.0437845i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.3.bd.f.97.2 8
4.3 odd 2 26.3.f.b.19.1 yes 8
12.11 even 2 234.3.bb.f.19.1 8
13.11 odd 12 inner 208.3.bd.f.193.2 8
52.3 odd 6 338.3.f.h.249.1 8
52.7 even 12 338.3.d.g.99.3 8
52.11 even 12 26.3.f.b.11.1 8
52.15 even 12 338.3.f.i.89.1 8
52.19 even 12 338.3.d.f.99.3 8
52.23 odd 6 338.3.f.j.249.1 8
52.31 even 4 338.3.f.j.319.1 8
52.35 odd 6 338.3.d.g.239.3 8
52.43 odd 6 338.3.d.f.239.3 8
52.47 even 4 338.3.f.h.319.1 8
52.51 odd 2 338.3.f.i.19.1 8
156.11 odd 12 234.3.bb.f.37.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.b.11.1 8 52.11 even 12
26.3.f.b.19.1 yes 8 4.3 odd 2
208.3.bd.f.97.2 8 1.1 even 1 trivial
208.3.bd.f.193.2 8 13.11 odd 12 inner
234.3.bb.f.19.1 8 12.11 even 2
234.3.bb.f.37.1 8 156.11 odd 12
338.3.d.f.99.3 8 52.19 even 12
338.3.d.f.239.3 8 52.43 odd 6
338.3.d.g.99.3 8 52.7 even 12
338.3.d.g.239.3 8 52.35 odd 6
338.3.f.h.249.1 8 52.3 odd 6
338.3.f.h.319.1 8 52.47 even 4
338.3.f.i.19.1 8 52.51 odd 2
338.3.f.i.89.1 8 52.15 even 12
338.3.f.j.249.1 8 52.23 odd 6
338.3.f.j.319.1 8 52.31 even 4