Properties

Label 208.3.bd.d.145.1
Level $208$
Weight $3$
Character 208.145
Analytic conductor $5.668$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,3,Mod(33,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.33"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 208.bd (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,-14,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.66758949869\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 145.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 208.145
Dual form 208.3.bd.d.33.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 0.633975i) q^{3} +(-2.63397 + 2.63397i) q^{5} +(-5.73205 + 1.53590i) q^{7} +(4.23205 - 7.33013i) q^{9} +(4.19615 - 15.6603i) q^{11} +(-6.50000 - 11.2583i) q^{13} +(2.63397 + 0.705771i) q^{15} +(-15.9904 - 9.23205i) q^{17} +(-1.63397 - 6.09808i) q^{19} +(3.07180 + 3.07180i) q^{21} +(-17.4904 + 10.0981i) q^{23} +11.1244i q^{25} -12.7846 q^{27} +(-4.69615 - 8.13397i) q^{29} +(11.9282 - 11.9282i) q^{31} +(-11.4641 + 3.07180i) q^{33} +(11.0526 - 19.1436i) q^{35} +(8.11474 - 30.2846i) q^{37} +(-4.75833 + 8.24167i) q^{39} +(44.9186 + 12.0359i) q^{41} +(-45.0000 - 25.9808i) q^{43} +(8.16025 + 30.4545i) q^{45} +(34.3205 + 34.3205i) q^{47} +(-11.9378 + 6.89230i) q^{49} +13.5167i q^{51} -14.7654 q^{53} +(30.1962 + 52.3013i) q^{55} +(-3.26795 + 3.26795i) q^{57} +(92.9615 - 24.9090i) q^{59} +(-12.8135 + 22.1936i) q^{61} +(-13.0000 + 48.5167i) q^{63} +(46.7750 + 12.5333i) q^{65} +(-39.0263 - 10.4571i) q^{67} +(12.8038 + 7.39230i) q^{69} +(11.9737 + 44.6865i) q^{71} +(-19.2750 - 19.2750i) q^{73} +(7.05256 - 4.07180i) q^{75} +96.2102i q^{77} -62.7461 q^{79} +(-33.4090 - 57.8660i) q^{81} +(24.4833 - 24.4833i) q^{83} +(66.4352 - 17.8013i) q^{85} +(-3.43782 + 5.95448i) q^{87} +(-23.1699 + 86.4711i) q^{89} +(54.5500 + 54.5500i) q^{91} +(-11.9282 - 3.19615i) q^{93} +(20.3660 + 11.7583i) q^{95} +(14.1891 + 52.9545i) q^{97} +(-97.0333 - 97.0333i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 14 q^{5} - 16 q^{7} + 10 q^{9} - 4 q^{11} - 26 q^{13} + 14 q^{15} - 12 q^{17} - 10 q^{19} + 40 q^{21} - 18 q^{23} + 32 q^{27} + 2 q^{29} + 20 q^{31} - 32 q^{33} - 32 q^{35} - 68 q^{37} + 26 q^{39}+ \cdots - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.366025 0.633975i −0.122008 0.211325i 0.798551 0.601927i \(-0.205600\pi\)
−0.920560 + 0.390602i \(0.872267\pi\)
\(4\) 0 0
\(5\) −2.63397 + 2.63397i −0.526795 + 0.526795i −0.919615 0.392820i \(-0.871499\pi\)
0.392820 + 0.919615i \(0.371499\pi\)
\(6\) 0 0
\(7\) −5.73205 + 1.53590i −0.818864 + 0.219414i −0.643850 0.765152i \(-0.722664\pi\)
−0.175014 + 0.984566i \(0.555997\pi\)
\(8\) 0 0
\(9\) 4.23205 7.33013i 0.470228 0.814459i
\(10\) 0 0
\(11\) 4.19615 15.6603i 0.381468 1.42366i −0.462191 0.886780i \(-0.652937\pi\)
0.843659 0.536879i \(-0.180397\pi\)
\(12\) 0 0
\(13\) −6.50000 11.2583i −0.500000 0.866025i
\(14\) 0 0
\(15\) 2.63397 + 0.705771i 0.175598 + 0.0470514i
\(16\) 0 0
\(17\) −15.9904 9.23205i −0.940611 0.543062i −0.0504590 0.998726i \(-0.516068\pi\)
−0.890152 + 0.455664i \(0.849402\pi\)
\(18\) 0 0
\(19\) −1.63397 6.09808i −0.0859987 0.320951i 0.909503 0.415698i \(-0.136463\pi\)
−0.995501 + 0.0947465i \(0.969796\pi\)
\(20\) 0 0
\(21\) 3.07180 + 3.07180i 0.146276 + 0.146276i
\(22\) 0 0
\(23\) −17.4904 + 10.0981i −0.760451 + 0.439047i −0.829458 0.558569i \(-0.811350\pi\)
0.0690064 + 0.997616i \(0.478017\pi\)
\(24\) 0 0
\(25\) 11.1244i 0.444974i
\(26\) 0 0
\(27\) −12.7846 −0.473504
\(28\) 0 0
\(29\) −4.69615 8.13397i −0.161936 0.280482i 0.773627 0.633642i \(-0.218441\pi\)
−0.935563 + 0.353160i \(0.885107\pi\)
\(30\) 0 0
\(31\) 11.9282 11.9282i 0.384781 0.384781i −0.488040 0.872821i \(-0.662288\pi\)
0.872821 + 0.488040i \(0.162288\pi\)
\(32\) 0 0
\(33\) −11.4641 + 3.07180i −0.347397 + 0.0930848i
\(34\) 0 0
\(35\) 11.0526 19.1436i 0.315787 0.546960i
\(36\) 0 0
\(37\) 8.11474 30.2846i 0.219317 0.818503i −0.765285 0.643692i \(-0.777402\pi\)
0.984602 0.174811i \(-0.0559315\pi\)
\(38\) 0 0
\(39\) −4.75833 + 8.24167i −0.122008 + 0.211325i
\(40\) 0 0
\(41\) 44.9186 + 12.0359i 1.09558 + 0.293558i 0.760962 0.648797i \(-0.224728\pi\)
0.334614 + 0.942355i \(0.391394\pi\)
\(42\) 0 0
\(43\) −45.0000 25.9808i −1.04651 0.604204i −0.124841 0.992177i \(-0.539842\pi\)
−0.921671 + 0.387973i \(0.873175\pi\)
\(44\) 0 0
\(45\) 8.16025 + 30.4545i 0.181339 + 0.676766i
\(46\) 0 0
\(47\) 34.3205 + 34.3205i 0.730224 + 0.730224i 0.970664 0.240440i \(-0.0772918\pi\)
−0.240440 + 0.970664i \(0.577292\pi\)
\(48\) 0 0
\(49\) −11.9378 + 6.89230i −0.243629 + 0.140659i
\(50\) 0 0
\(51\) 13.5167i 0.265033i
\(52\) 0 0
\(53\) −14.7654 −0.278592 −0.139296 0.990251i \(-0.544484\pi\)
−0.139296 + 0.990251i \(0.544484\pi\)
\(54\) 0 0
\(55\) 30.1962 + 52.3013i 0.549021 + 0.950932i
\(56\) 0 0
\(57\) −3.26795 + 3.26795i −0.0573324 + 0.0573324i
\(58\) 0 0
\(59\) 92.9615 24.9090i 1.57562 0.422186i 0.638053 0.769993i \(-0.279740\pi\)
0.937566 + 0.347807i \(0.113073\pi\)
\(60\) 0 0
\(61\) −12.8135 + 22.1936i −0.210057 + 0.363829i −0.951732 0.306930i \(-0.900698\pi\)
0.741675 + 0.670759i \(0.234032\pi\)
\(62\) 0 0
\(63\) −13.0000 + 48.5167i −0.206349 + 0.770106i
\(64\) 0 0
\(65\) 46.7750 + 12.5333i 0.719615 + 0.192820i
\(66\) 0 0
\(67\) −39.0263 10.4571i −0.582482 0.156076i −0.0444669 0.999011i \(-0.514159\pi\)
−0.538015 + 0.842935i \(0.680826\pi\)
\(68\) 0 0
\(69\) 12.8038 + 7.39230i 0.185563 + 0.107135i
\(70\) 0 0
\(71\) 11.9737 + 44.6865i 0.168644 + 0.629388i 0.997547 + 0.0699959i \(0.0222986\pi\)
−0.828903 + 0.559392i \(0.811035\pi\)
\(72\) 0 0
\(73\) −19.2750 19.2750i −0.264041 0.264041i 0.562653 0.826693i \(-0.309781\pi\)
−0.826693 + 0.562653i \(0.809781\pi\)
\(74\) 0 0
\(75\) 7.05256 4.07180i 0.0940341 0.0542906i
\(76\) 0 0
\(77\) 96.2102i 1.24948i
\(78\) 0 0
\(79\) −62.7461 −0.794255 −0.397127 0.917763i \(-0.629993\pi\)
−0.397127 + 0.917763i \(0.629993\pi\)
\(80\) 0 0
\(81\) −33.4090 57.8660i −0.412456 0.714395i
\(82\) 0 0
\(83\) 24.4833 24.4833i 0.294980 0.294980i −0.544064 0.839044i \(-0.683115\pi\)
0.839044 + 0.544064i \(0.183115\pi\)
\(84\) 0 0
\(85\) 66.4352 17.8013i 0.781591 0.209427i
\(86\) 0 0
\(87\) −3.43782 + 5.95448i −0.0395152 + 0.0684423i
\(88\) 0 0
\(89\) −23.1699 + 86.4711i −0.260336 + 0.971586i 0.704708 + 0.709497i \(0.251078\pi\)
−0.965044 + 0.262089i \(0.915589\pi\)
\(90\) 0 0
\(91\) 54.5500 + 54.5500i 0.599450 + 0.599450i
\(92\) 0 0
\(93\) −11.9282 3.19615i −0.128260 0.0343672i
\(94\) 0 0
\(95\) 20.3660 + 11.7583i 0.214379 + 0.123772i
\(96\) 0 0
\(97\) 14.1891 + 52.9545i 0.146279 + 0.545923i 0.999695 + 0.0246915i \(0.00786034\pi\)
−0.853416 + 0.521231i \(0.825473\pi\)
\(98\) 0 0
\(99\) −97.0333 97.0333i −0.980135 0.980135i
\(100\) 0 0
\(101\) 138.560 79.9974i 1.37188 0.792054i 0.380713 0.924693i \(-0.375679\pi\)
0.991164 + 0.132640i \(0.0423453\pi\)
\(102\) 0 0
\(103\) 78.7705i 0.764762i 0.924005 + 0.382381i \(0.124896\pi\)
−0.924005 + 0.382381i \(0.875104\pi\)
\(104\) 0 0
\(105\) −16.1821 −0.154115
\(106\) 0 0
\(107\) −47.6673 82.5622i −0.445489 0.771609i 0.552597 0.833448i \(-0.313637\pi\)
−0.998086 + 0.0618392i \(0.980303\pi\)
\(108\) 0 0
\(109\) −51.9808 + 51.9808i −0.476888 + 0.476888i −0.904135 0.427247i \(-0.859483\pi\)
0.427247 + 0.904135i \(0.359483\pi\)
\(110\) 0 0
\(111\) −22.1699 + 5.94040i −0.199729 + 0.0535171i
\(112\) 0 0
\(113\) 71.9904 124.691i 0.637083 1.10346i −0.348987 0.937128i \(-0.613474\pi\)
0.986070 0.166332i \(-0.0531925\pi\)
\(114\) 0 0
\(115\) 19.4711 72.6673i 0.169314 0.631890i
\(116\) 0 0
\(117\) −110.033 −0.940456
\(118\) 0 0
\(119\) 105.837 + 28.3590i 0.889388 + 0.238311i
\(120\) 0 0
\(121\) −122.847 70.9256i −1.01526 0.586162i
\(122\) 0 0
\(123\) −8.81089 32.8827i −0.0716332 0.267339i
\(124\) 0 0
\(125\) −95.1506 95.1506i −0.761205 0.761205i
\(126\) 0 0
\(127\) 24.6673 14.2417i 0.194231 0.112139i −0.399731 0.916633i \(-0.630896\pi\)
0.593962 + 0.804493i \(0.297563\pi\)
\(128\) 0 0
\(129\) 38.0385i 0.294872i
\(130\) 0 0
\(131\) 2.98076 0.0227539 0.0113770 0.999935i \(-0.496379\pi\)
0.0113770 + 0.999935i \(0.496379\pi\)
\(132\) 0 0
\(133\) 18.7321 + 32.4449i 0.140842 + 0.243946i
\(134\) 0 0
\(135\) 33.6743 33.6743i 0.249440 0.249440i
\(136\) 0 0
\(137\) 94.6051 25.3494i 0.690548 0.185032i 0.103555 0.994624i \(-0.466978\pi\)
0.586993 + 0.809592i \(0.300312\pi\)
\(138\) 0 0
\(139\) 16.2154 28.0859i 0.116657 0.202057i −0.801784 0.597614i \(-0.796115\pi\)
0.918441 + 0.395558i \(0.129449\pi\)
\(140\) 0 0
\(141\) 9.19615 34.3205i 0.0652209 0.243408i
\(142\) 0 0
\(143\) −203.583 + 54.5500i −1.42366 + 0.381468i
\(144\) 0 0
\(145\) 33.7942 + 9.05514i 0.233064 + 0.0624492i
\(146\) 0 0
\(147\) 8.73909 + 5.04552i 0.0594496 + 0.0343232i
\(148\) 0 0
\(149\) −33.0903 123.495i −0.222083 0.828824i −0.983552 0.180624i \(-0.942188\pi\)
0.761469 0.648201i \(-0.224478\pi\)
\(150\) 0 0
\(151\) −127.995 127.995i −0.847648 0.847648i 0.142191 0.989839i \(-0.454585\pi\)
−0.989839 + 0.142191i \(0.954585\pi\)
\(152\) 0 0
\(153\) −135.344 + 78.1410i −0.884603 + 0.510726i
\(154\) 0 0
\(155\) 62.8372i 0.405401i
\(156\) 0 0
\(157\) −97.7461 −0.622587 −0.311293 0.950314i \(-0.600762\pi\)
−0.311293 + 0.950314i \(0.600762\pi\)
\(158\) 0 0
\(159\) 5.40450 + 9.36087i 0.0339906 + 0.0588734i
\(160\) 0 0
\(161\) 84.7461 84.7461i 0.526374 0.526374i
\(162\) 0 0
\(163\) 122.282 32.7654i 0.750197 0.201015i 0.136591 0.990627i \(-0.456385\pi\)
0.613605 + 0.789613i \(0.289719\pi\)
\(164\) 0 0
\(165\) 22.1051 38.2872i 0.133970 0.232044i
\(166\) 0 0
\(167\) 13.5936 50.7321i 0.0813989 0.303785i −0.913209 0.407491i \(-0.866404\pi\)
0.994608 + 0.103707i \(0.0330703\pi\)
\(168\) 0 0
\(169\) −84.5000 + 146.358i −0.500000 + 0.866025i
\(170\) 0 0
\(171\) −51.6147 13.8301i −0.301841 0.0808779i
\(172\) 0 0
\(173\) 118.865 + 68.6269i 0.687083 + 0.396687i 0.802518 0.596628i \(-0.203493\pi\)
−0.115435 + 0.993315i \(0.536826\pi\)
\(174\) 0 0
\(175\) −17.0859 63.7654i −0.0976336 0.364374i
\(176\) 0 0
\(177\) −49.8179 49.8179i −0.281457 0.281457i
\(178\) 0 0
\(179\) −0.903811 + 0.521815i −0.00504922 + 0.00291517i −0.502522 0.864564i \(-0.667595\pi\)
0.497473 + 0.867479i \(0.334261\pi\)
\(180\) 0 0
\(181\) 23.0807i 0.127518i −0.997965 0.0637589i \(-0.979691\pi\)
0.997965 0.0637589i \(-0.0203089\pi\)
\(182\) 0 0
\(183\) 18.7602 0.102515
\(184\) 0 0
\(185\) 58.3949 + 101.143i 0.315648 + 0.546718i
\(186\) 0 0
\(187\) −211.674 + 211.674i −1.13195 + 1.13195i
\(188\) 0 0
\(189\) 73.2820 19.6359i 0.387736 0.103893i
\(190\) 0 0
\(191\) 147.002 254.615i 0.769643 1.33306i −0.168113 0.985768i \(-0.553767\pi\)
0.937756 0.347294i \(-0.112899\pi\)
\(192\) 0 0
\(193\) 85.5507 319.279i 0.443268 1.65430i −0.277202 0.960812i \(-0.589407\pi\)
0.720470 0.693486i \(-0.243926\pi\)
\(194\) 0 0
\(195\) −9.17503 34.2417i −0.0470514 0.175598i
\(196\) 0 0
\(197\) 85.1122 + 22.8057i 0.432041 + 0.115765i 0.468284 0.883578i \(-0.344872\pi\)
−0.0362429 + 0.999343i \(0.511539\pi\)
\(198\) 0 0
\(199\) −174.452 100.720i −0.876643 0.506130i −0.00709275 0.999975i \(-0.502258\pi\)
−0.869550 + 0.493845i \(0.835591\pi\)
\(200\) 0 0
\(201\) 7.65510 + 28.5692i 0.0380851 + 0.142135i
\(202\) 0 0
\(203\) 39.4115 + 39.4115i 0.194146 + 0.194146i
\(204\) 0 0
\(205\) −150.017 + 86.6122i −0.731789 + 0.422498i
\(206\) 0 0
\(207\) 170.942i 0.825808i
\(208\) 0 0
\(209\) −102.354 −0.489731
\(210\) 0 0
\(211\) 36.6481 + 63.4763i 0.173687 + 0.300836i 0.939706 0.341983i \(-0.111098\pi\)
−0.766019 + 0.642818i \(0.777765\pi\)
\(212\) 0 0
\(213\) 23.9474 23.9474i 0.112429 0.112429i
\(214\) 0 0
\(215\) 186.962 50.0962i 0.869588 0.233006i
\(216\) 0 0
\(217\) −50.0526 + 86.6936i −0.230657 + 0.399510i
\(218\) 0 0
\(219\) −5.16472 + 19.2750i −0.0235832 + 0.0880137i
\(220\) 0 0
\(221\) 240.033i 1.08612i
\(222\) 0 0
\(223\) 367.533 + 98.4801i 1.64813 + 0.441615i 0.959088 0.283108i \(-0.0913656\pi\)
0.689040 + 0.724723i \(0.258032\pi\)
\(224\) 0 0
\(225\) 81.5429 + 47.0788i 0.362413 + 0.209239i
\(226\) 0 0
\(227\) 108.280 + 404.107i 0.477005 + 1.78021i 0.613640 + 0.789586i \(0.289704\pi\)
−0.136635 + 0.990621i \(0.543629\pi\)
\(228\) 0 0
\(229\) −72.2679 72.2679i −0.315581 0.315581i 0.531486 0.847067i \(-0.321634\pi\)
−0.847067 + 0.531486i \(0.821634\pi\)
\(230\) 0 0
\(231\) 60.9948 35.2154i 0.264047 0.152448i
\(232\) 0 0
\(233\) 256.592i 1.10125i 0.834751 + 0.550627i \(0.185611\pi\)
−0.834751 + 0.550627i \(0.814389\pi\)
\(234\) 0 0
\(235\) −180.799 −0.769356
\(236\) 0 0
\(237\) 22.9667 + 39.7795i 0.0969058 + 0.167846i
\(238\) 0 0
\(239\) −39.3449 + 39.3449i −0.164623 + 0.164623i −0.784611 0.619988i \(-0.787137\pi\)
0.619988 + 0.784611i \(0.287137\pi\)
\(240\) 0 0
\(241\) 233.351 62.5263i 0.968262 0.259445i 0.260168 0.965563i \(-0.416222\pi\)
0.708094 + 0.706118i \(0.249555\pi\)
\(242\) 0 0
\(243\) −81.9878 + 142.007i −0.337398 + 0.584391i
\(244\) 0 0
\(245\) 13.2898 49.5981i 0.0542439 0.202441i
\(246\) 0 0
\(247\) −58.0333 + 58.0333i −0.234953 + 0.234953i
\(248\) 0 0
\(249\) −24.4833 6.56029i −0.0983267 0.0263466i
\(250\) 0 0
\(251\) 221.375 + 127.811i 0.881972 + 0.509207i 0.871308 0.490736i \(-0.163272\pi\)
0.0106638 + 0.999943i \(0.496606\pi\)
\(252\) 0 0
\(253\) 84.7461 + 316.277i 0.334965 + 1.25011i
\(254\) 0 0
\(255\) −35.6025 35.6025i −0.139618 0.139618i
\(256\) 0 0
\(257\) 85.7731 49.5211i 0.333747 0.192689i −0.323756 0.946141i \(-0.604946\pi\)
0.657504 + 0.753451i \(0.271612\pi\)
\(258\) 0 0
\(259\) 186.056i 0.718364i
\(260\) 0 0
\(261\) −79.4974 −0.304588
\(262\) 0 0
\(263\) −127.669 221.130i −0.485434 0.840797i 0.514426 0.857535i \(-0.328005\pi\)
−0.999860 + 0.0167383i \(0.994672\pi\)
\(264\) 0 0
\(265\) 38.8916 38.8916i 0.146761 0.146761i
\(266\) 0 0
\(267\) 63.3013 16.9615i 0.237083 0.0635263i
\(268\) 0 0
\(269\) 46.3538 80.2872i 0.172319 0.298465i −0.766911 0.641753i \(-0.778207\pi\)
0.939230 + 0.343288i \(0.111541\pi\)
\(270\) 0 0
\(271\) 113.133 422.219i 0.417466 1.55800i −0.362379 0.932031i \(-0.618035\pi\)
0.779845 0.625973i \(-0.215298\pi\)
\(272\) 0 0
\(273\) 14.6166 54.5500i 0.0535407 0.199817i
\(274\) 0 0
\(275\) 174.210 + 46.6795i 0.633492 + 0.169744i
\(276\) 0 0
\(277\) −302.110 174.423i −1.09065 0.629686i −0.156899 0.987615i \(-0.550150\pi\)
−0.933749 + 0.357929i \(0.883483\pi\)
\(278\) 0 0
\(279\) −36.9545 137.916i −0.132453 0.494323i
\(280\) 0 0
\(281\) 91.9737 + 91.9737i 0.327309 + 0.327309i 0.851562 0.524254i \(-0.175656\pi\)
−0.524254 + 0.851562i \(0.675656\pi\)
\(282\) 0 0
\(283\) 30.8038 17.7846i 0.108848 0.0628431i −0.444588 0.895735i \(-0.646650\pi\)
0.553435 + 0.832892i \(0.313317\pi\)
\(284\) 0 0
\(285\) 17.2154i 0.0604049i
\(286\) 0 0
\(287\) −275.962 −0.961538
\(288\) 0 0
\(289\) 25.9615 + 44.9667i 0.0898323 + 0.155594i
\(290\) 0 0
\(291\) 28.3782 28.3782i 0.0975197 0.0975197i
\(292\) 0 0
\(293\) 386.758 103.631i 1.31999 0.353691i 0.471017 0.882124i \(-0.343887\pi\)
0.848975 + 0.528433i \(0.177220\pi\)
\(294\) 0 0
\(295\) −179.249 + 310.468i −0.607623 + 1.05243i
\(296\) 0 0
\(297\) −53.6462 + 200.210i −0.180627 + 0.674109i
\(298\) 0 0
\(299\) 227.375 + 131.275i 0.760451 + 0.439047i
\(300\) 0 0
\(301\) 297.846 + 79.8076i 0.989522 + 0.265142i
\(302\) 0 0
\(303\) −101.433 58.5622i −0.334761 0.193275i
\(304\) 0 0
\(305\) −24.7070 92.2077i −0.0810065 0.302320i
\(306\) 0 0
\(307\) −260.219 260.219i −0.847619 0.847619i 0.142216 0.989836i \(-0.454577\pi\)
−0.989836 + 0.142216i \(0.954577\pi\)
\(308\) 0 0
\(309\) 49.9385 28.8320i 0.161613 0.0933075i
\(310\) 0 0
\(311\) 71.4782i 0.229833i 0.993375 + 0.114917i \(0.0366601\pi\)
−0.993375 + 0.114917i \(0.963340\pi\)
\(312\) 0 0
\(313\) −394.315 −1.25979 −0.629897 0.776679i \(-0.716903\pi\)
−0.629897 + 0.776679i \(0.716903\pi\)
\(314\) 0 0
\(315\) −93.5500 162.033i −0.296984 0.514391i
\(316\) 0 0
\(317\) −206.054 + 206.054i −0.650014 + 0.650014i −0.952996 0.302982i \(-0.902018\pi\)
0.302982 + 0.952996i \(0.402018\pi\)
\(318\) 0 0
\(319\) −147.086 + 39.4115i −0.461084 + 0.123547i
\(320\) 0 0
\(321\) −34.8949 + 60.4397i −0.108707 + 0.188286i
\(322\) 0 0
\(323\) −30.1699 + 112.595i −0.0934052 + 0.348593i
\(324\) 0 0
\(325\) 125.242 72.3083i 0.385359 0.222487i
\(326\) 0 0
\(327\) 51.9808 + 13.9282i 0.158963 + 0.0425939i
\(328\) 0 0
\(329\) −249.440 144.014i −0.758175 0.437733i
\(330\) 0 0
\(331\) 119.397 + 445.597i 0.360717 + 1.34622i 0.873135 + 0.487479i \(0.162083\pi\)
−0.512417 + 0.858737i \(0.671250\pi\)
\(332\) 0 0
\(333\) −187.648 187.648i −0.563508 0.563508i
\(334\) 0 0
\(335\) 130.338 75.2506i 0.389068 0.224629i
\(336\) 0 0
\(337\) 144.779i 0.429613i 0.976657 + 0.214806i \(0.0689120\pi\)
−0.976657 + 0.214806i \(0.931088\pi\)
\(338\) 0 0
\(339\) −105.401 −0.310918
\(340\) 0 0
\(341\) −136.746 236.851i −0.401015 0.694578i
\(342\) 0 0
\(343\) 263.454 263.454i 0.768087 0.768087i
\(344\) 0 0
\(345\) −53.1962 + 14.2539i −0.154192 + 0.0413156i
\(346\) 0 0
\(347\) 243.590 421.911i 0.701989 1.21588i −0.265778 0.964034i \(-0.585629\pi\)
0.967767 0.251847i \(-0.0810380\pi\)
\(348\) 0 0
\(349\) −3.04036 + 11.3468i −0.00871164 + 0.0325123i −0.970145 0.242526i \(-0.922024\pi\)
0.961433 + 0.275039i \(0.0886906\pi\)
\(350\) 0 0
\(351\) 83.1000 + 143.933i 0.236752 + 0.410067i
\(352\) 0 0
\(353\) −276.169 73.9993i −0.782349 0.209630i −0.154529 0.987988i \(-0.549386\pi\)
−0.627820 + 0.778358i \(0.716053\pi\)
\(354\) 0 0
\(355\) −149.242 86.1647i −0.420399 0.242718i
\(356\) 0 0
\(357\) −20.7602 77.4782i −0.0581519 0.217026i
\(358\) 0 0
\(359\) −92.0770 92.0770i −0.256482 0.256482i 0.567140 0.823622i \(-0.308050\pi\)
−0.823622 + 0.567140i \(0.808050\pi\)
\(360\) 0 0
\(361\) 278.119 160.572i 0.770411 0.444797i
\(362\) 0 0
\(363\) 103.842i 0.286067i
\(364\) 0 0
\(365\) 101.540 0.278191
\(366\) 0 0
\(367\) 6.27499 + 10.8686i 0.0170981 + 0.0296147i 0.874448 0.485120i \(-0.161224\pi\)
−0.857350 + 0.514734i \(0.827891\pi\)
\(368\) 0 0
\(369\) 278.322 278.322i 0.754261 0.754261i
\(370\) 0 0
\(371\) 84.6359 22.6781i 0.228129 0.0611270i
\(372\) 0 0
\(373\) 155.638 269.574i 0.417261 0.722718i −0.578402 0.815752i \(-0.696323\pi\)
0.995663 + 0.0930345i \(0.0296567\pi\)
\(374\) 0 0
\(375\) −25.4955 + 95.1506i −0.0679881 + 0.253735i
\(376\) 0 0
\(377\) −61.0500 + 105.742i −0.161936 + 0.280482i
\(378\) 0 0
\(379\) −379.858 101.783i −1.00226 0.268556i −0.279871 0.960038i \(-0.590292\pi\)
−0.722394 + 0.691482i \(0.756958\pi\)
\(380\) 0 0
\(381\) −18.0577 10.4256i −0.0473956 0.0273638i
\(382\) 0 0
\(383\) −191.061 713.051i −0.498855 1.86175i −0.507269 0.861788i \(-0.669345\pi\)
0.00841386 0.999965i \(-0.497322\pi\)
\(384\) 0 0
\(385\) −253.415 253.415i −0.658222 0.658222i
\(386\) 0 0
\(387\) −380.885 + 219.904i −0.984198 + 0.568227i
\(388\) 0 0
\(389\) 344.478i 0.885548i 0.896633 + 0.442774i \(0.146006\pi\)
−0.896633 + 0.442774i \(0.853994\pi\)
\(390\) 0 0
\(391\) 372.904 0.953718
\(392\) 0 0
\(393\) −1.09103 1.88973i −0.00277617 0.00480847i
\(394\) 0 0
\(395\) 165.272 165.272i 0.418409 0.418409i
\(396\) 0 0
\(397\) −678.422 + 181.783i −1.70887 + 0.457891i −0.975148 0.221556i \(-0.928886\pi\)
−0.733725 + 0.679447i \(0.762220\pi\)
\(398\) 0 0
\(399\) 13.7128 23.7513i 0.0343680 0.0595270i
\(400\) 0 0
\(401\) 146.833 547.989i 0.366168 1.36656i −0.499663 0.866220i \(-0.666543\pi\)
0.865831 0.500336i \(-0.166790\pi\)
\(402\) 0 0
\(403\) −211.825 56.7583i −0.525620 0.140840i
\(404\) 0 0
\(405\) 240.416 + 64.4193i 0.593620 + 0.159060i
\(406\) 0 0
\(407\) −440.214 254.158i −1.08161 0.624466i
\(408\) 0 0
\(409\) 26.3212 + 98.2321i 0.0643550 + 0.240176i 0.990609 0.136723i \(-0.0436570\pi\)
−0.926254 + 0.376899i \(0.876990\pi\)
\(410\) 0 0
\(411\) −50.6987 50.6987i −0.123355 0.123355i
\(412\) 0 0
\(413\) −494.603 + 285.559i −1.19758 + 0.691426i
\(414\) 0 0
\(415\) 128.977i 0.310788i
\(416\) 0 0
\(417\) −23.7410 −0.0569328
\(418\) 0 0
\(419\) 322.279 + 558.203i 0.769162 + 1.33223i 0.938018 + 0.346587i \(0.112659\pi\)
−0.168856 + 0.985641i \(0.554007\pi\)
\(420\) 0 0
\(421\) 346.619 346.619i 0.823322 0.823322i −0.163261 0.986583i \(-0.552201\pi\)
0.986583 + 0.163261i \(0.0522013\pi\)
\(422\) 0 0
\(423\) 396.820 106.328i 0.938108 0.251365i
\(424\) 0 0
\(425\) 102.701 177.883i 0.241649 0.418547i
\(426\) 0 0
\(427\) 39.3604 146.895i 0.0921788 0.344016i
\(428\) 0 0
\(429\) 109.100 + 109.100i 0.254312 + 0.254312i
\(430\) 0 0
\(431\) −101.699 27.2501i −0.235960 0.0632253i 0.138901 0.990306i \(-0.455643\pi\)
−0.374861 + 0.927081i \(0.622310\pi\)
\(432\) 0 0
\(433\) 596.892 + 344.616i 1.37850 + 0.795880i 0.991979 0.126399i \(-0.0403421\pi\)
0.386525 + 0.922279i \(0.373675\pi\)
\(434\) 0 0
\(435\) −6.62882 24.7391i −0.0152387 0.0568715i
\(436\) 0 0
\(437\) 90.1577 + 90.1577i 0.206310 + 0.206310i
\(438\) 0 0
\(439\) −78.0577 + 45.0666i −0.177808 + 0.102657i −0.586262 0.810121i \(-0.699401\pi\)
0.408454 + 0.912779i \(0.366068\pi\)
\(440\) 0 0
\(441\) 116.674i 0.264568i
\(442\) 0 0
\(443\) −642.277 −1.44983 −0.724917 0.688836i \(-0.758122\pi\)
−0.724917 + 0.688836i \(0.758122\pi\)
\(444\) 0 0
\(445\) −166.734 288.792i −0.374683 0.648970i
\(446\) 0 0
\(447\) −66.1807 + 66.1807i −0.148055 + 0.148055i
\(448\) 0 0
\(449\) 22.6007 6.05583i 0.0503355 0.0134874i −0.233563 0.972342i \(-0.575039\pi\)
0.283899 + 0.958854i \(0.408372\pi\)
\(450\) 0 0
\(451\) 376.970 652.932i 0.835855 1.44774i
\(452\) 0 0
\(453\) −34.2961 + 127.995i −0.0757089 + 0.282549i
\(454\) 0 0
\(455\) −287.367 −0.631575
\(456\) 0 0
\(457\) 228.698 + 61.2795i 0.500433 + 0.134091i 0.500201 0.865909i \(-0.333259\pi\)
0.000232237 1.00000i \(0.499926\pi\)
\(458\) 0 0
\(459\) 204.431 + 118.028i 0.445383 + 0.257142i
\(460\) 0 0
\(461\) −12.6032 47.0359i −0.0273389 0.102030i 0.950908 0.309473i \(-0.100153\pi\)
−0.978247 + 0.207443i \(0.933486\pi\)
\(462\) 0 0
\(463\) 521.191 + 521.191i 1.12568 + 1.12568i 0.990871 + 0.134811i \(0.0430428\pi\)
0.134811 + 0.990871i \(0.456957\pi\)
\(464\) 0 0
\(465\) 39.8372 23.0000i 0.0856713 0.0494624i
\(466\) 0 0
\(467\) 141.415i 0.302817i 0.988471 + 0.151408i \(0.0483808\pi\)
−0.988471 + 0.151408i \(0.951619\pi\)
\(468\) 0 0
\(469\) 239.762 0.511219
\(470\) 0 0
\(471\) 35.7776 + 61.9686i 0.0759609 + 0.131568i
\(472\) 0 0
\(473\) −595.692 + 595.692i −1.25939 + 1.25939i
\(474\) 0 0
\(475\) 67.8372 18.1769i 0.142815 0.0382672i
\(476\) 0 0
\(477\) −62.4878 + 108.232i −0.131002 + 0.226902i
\(478\) 0 0
\(479\) −193.783 + 723.207i −0.404557 + 1.50983i 0.400315 + 0.916378i \(0.368901\pi\)
−0.804872 + 0.593449i \(0.797766\pi\)
\(480\) 0 0
\(481\) −393.700 + 105.492i −0.818503 + 0.219317i
\(482\) 0 0
\(483\) −84.7461 22.7077i −0.175458 0.0470138i
\(484\) 0 0
\(485\) −176.855 102.107i −0.364648 0.210530i
\(486\) 0 0
\(487\) 62.9371 + 234.885i 0.129234 + 0.482309i 0.999955 0.00946847i \(-0.00301395\pi\)
−0.870721 + 0.491778i \(0.836347\pi\)
\(488\) 0 0
\(489\) −65.5307 65.5307i −0.134010 0.134010i
\(490\) 0 0
\(491\) 73.3191 42.3308i 0.149326 0.0862135i −0.423475 0.905908i \(-0.639190\pi\)
0.572801 + 0.819694i \(0.305857\pi\)
\(492\) 0 0
\(493\) 173.420i 0.351766i
\(494\) 0 0
\(495\) 511.167 1.03266
\(496\) 0 0
\(497\) −137.268 237.755i −0.276193 0.478380i
\(498\) 0 0
\(499\) 134.397 134.397i 0.269334 0.269334i −0.559498 0.828832i \(-0.689006\pi\)
0.828832 + 0.559498i \(0.189006\pi\)
\(500\) 0 0
\(501\) −37.1384 + 9.95121i −0.0741286 + 0.0198627i
\(502\) 0 0
\(503\) −398.200 + 689.703i −0.791650 + 1.37118i 0.133295 + 0.991076i \(0.457444\pi\)
−0.924945 + 0.380102i \(0.875889\pi\)
\(504\) 0 0
\(505\) −154.251 + 575.674i −0.305448 + 1.13995i
\(506\) 0 0
\(507\) 123.717 0.244017
\(508\) 0 0
\(509\) 79.6051 + 21.3301i 0.156395 + 0.0419059i 0.336167 0.941802i \(-0.390869\pi\)
−0.179772 + 0.983708i \(0.557536\pi\)
\(510\) 0 0
\(511\) 140.090 + 80.8808i 0.274148 + 0.158279i
\(512\) 0 0
\(513\) 20.8897 + 77.9615i 0.0407207 + 0.151972i
\(514\) 0 0
\(515\) −207.480 207.480i −0.402873 0.402873i
\(516\) 0 0
\(517\) 681.482 393.454i 1.31815 0.761032i
\(518\) 0 0
\(519\) 100.477i 0.193597i
\(520\) 0 0
\(521\) 677.011 1.29945 0.649723 0.760171i \(-0.274885\pi\)
0.649723 + 0.760171i \(0.274885\pi\)
\(522\) 0 0
\(523\) −91.8269 159.049i −0.175577 0.304109i 0.764784 0.644287i \(-0.222846\pi\)
−0.940361 + 0.340179i \(0.889512\pi\)
\(524\) 0 0
\(525\) −34.1718 + 34.1718i −0.0650891 + 0.0650891i
\(526\) 0 0
\(527\) −300.858 + 80.6147i −0.570889 + 0.152969i
\(528\) 0 0
\(529\) −60.5577 + 104.889i −0.114476 + 0.198278i
\(530\) 0 0
\(531\) 210.832 786.836i 0.397047 1.48180i
\(532\) 0 0
\(533\) −156.467 583.942i −0.293558 1.09558i
\(534\) 0 0
\(535\) 343.021 + 91.9122i 0.641161 + 0.171799i
\(536\) 0 0
\(537\) 0.661635 + 0.381995i 0.00123210 + 0.000711351i
\(538\) 0 0
\(539\) 57.8423 + 215.870i 0.107314 + 0.400502i
\(540\) 0 0
\(541\) 317.629 + 317.629i 0.587114 + 0.587114i 0.936849 0.349735i \(-0.113728\pi\)
−0.349735 + 0.936849i \(0.613728\pi\)
\(542\) 0 0
\(543\) −14.6326 + 8.44813i −0.0269477 + 0.0155583i
\(544\) 0 0
\(545\) 273.832i 0.502444i
\(546\) 0 0
\(547\) 724.904 1.32524 0.662618 0.748958i \(-0.269445\pi\)
0.662618 + 0.748958i \(0.269445\pi\)
\(548\) 0 0
\(549\) 108.454 + 187.849i 0.197549 + 0.342165i
\(550\) 0 0
\(551\) −41.9282 + 41.9282i −0.0760947 + 0.0760947i
\(552\) 0 0
\(553\) 359.664 96.3717i 0.650387 0.174271i
\(554\) 0 0
\(555\) 42.7480 74.0417i 0.0770235 0.133409i
\(556\) 0 0
\(557\) −31.0641 + 115.933i −0.0557703 + 0.208138i −0.988188 0.153244i \(-0.951028\pi\)
0.932418 + 0.361381i \(0.117695\pi\)
\(558\) 0 0
\(559\) 675.500i 1.20841i
\(560\) 0 0
\(561\) 211.674 + 56.7180i 0.377316 + 0.101102i
\(562\) 0 0
\(563\) 534.888 + 308.818i 0.950068 + 0.548522i 0.893102 0.449854i \(-0.148524\pi\)
0.0569660 + 0.998376i \(0.481857\pi\)
\(564\) 0 0
\(565\) 138.812 + 518.054i 0.245685 + 0.916909i
\(566\) 0 0
\(567\) 280.378 + 280.378i 0.494494 + 0.494494i
\(568\) 0 0
\(569\) −381.315 + 220.153i −0.670150 + 0.386911i −0.796133 0.605121i \(-0.793125\pi\)
0.125983 + 0.992032i \(0.459791\pi\)
\(570\) 0 0
\(571\) 618.249i 1.08275i −0.840782 0.541374i \(-0.817904\pi\)
0.840782 0.541374i \(-0.182096\pi\)
\(572\) 0 0
\(573\) −215.226 −0.375612
\(574\) 0 0
\(575\) −112.335 194.569i −0.195365 0.338381i
\(576\) 0 0
\(577\) −266.237 + 266.237i −0.461415 + 0.461415i −0.899119 0.437704i \(-0.855792\pi\)
0.437704 + 0.899119i \(0.355792\pi\)
\(578\) 0 0
\(579\) −233.729 + 62.6274i −0.403677 + 0.108165i
\(580\) 0 0
\(581\) −102.736 + 177.944i −0.176826 + 0.306271i
\(582\) 0 0
\(583\) −61.9578 + 231.229i −0.106274 + 0.396620i
\(584\) 0 0
\(585\) 289.825 289.825i 0.495427 0.495427i
\(586\) 0 0
\(587\) −465.123 124.629i −0.792373 0.212316i −0.160140 0.987094i \(-0.551195\pi\)
−0.632233 + 0.774779i \(0.717861\pi\)
\(588\) 0 0
\(589\) −92.2295 53.2487i −0.156587 0.0904053i
\(590\) 0 0
\(591\) −16.6950 62.3064i −0.0282487 0.105425i
\(592\) 0 0
\(593\) 389.671 + 389.671i 0.657118 + 0.657118i 0.954697 0.297579i \(-0.0961792\pi\)
−0.297579 + 0.954697i \(0.596179\pi\)
\(594\) 0 0
\(595\) −353.469 + 204.076i −0.594066 + 0.342984i
\(596\) 0 0
\(597\) 147.464i 0.247009i
\(598\) 0 0
\(599\) −808.596 −1.34991 −0.674955 0.737859i \(-0.735837\pi\)
−0.674955 + 0.737859i \(0.735837\pi\)
\(600\) 0 0
\(601\) 221.344 + 383.379i 0.368293 + 0.637903i 0.989299 0.145904i \(-0.0466089\pi\)
−0.621006 + 0.783806i \(0.713276\pi\)
\(602\) 0 0
\(603\) −241.813 + 241.813i −0.401016 + 0.401016i
\(604\) 0 0
\(605\) 510.392 136.759i 0.843623 0.226048i
\(606\) 0 0
\(607\) −471.398 + 816.485i −0.776603 + 1.34512i 0.157286 + 0.987553i \(0.449725\pi\)
−0.933889 + 0.357563i \(0.883608\pi\)
\(608\) 0 0
\(609\) 10.5603 39.4115i 0.0173404 0.0647152i
\(610\) 0 0
\(611\) 163.308 609.475i 0.267280 0.997504i
\(612\) 0 0
\(613\) −973.161 260.758i −1.58754 0.425380i −0.646289 0.763093i \(-0.723680\pi\)
−0.941249 + 0.337713i \(0.890347\pi\)
\(614\) 0 0
\(615\) 109.820 + 63.4045i 0.178569 + 0.103097i
\(616\) 0 0
\(617\) −71.9115 268.378i −0.116550 0.434972i 0.882848 0.469659i \(-0.155623\pi\)
−0.999398 + 0.0346873i \(0.988956\pi\)
\(618\) 0 0
\(619\) −206.483 206.483i −0.333576 0.333576i 0.520367 0.853943i \(-0.325795\pi\)
−0.853943 + 0.520367i \(0.825795\pi\)
\(620\) 0 0
\(621\) 223.608 129.100i 0.360077 0.207890i
\(622\) 0 0
\(623\) 531.244i 0.852718i
\(624\) 0 0
\(625\) 223.140 0.357024
\(626\) 0 0
\(627\) 37.4641 + 64.8897i 0.0597514 + 0.103492i
\(628\) 0 0
\(629\) −409.347 + 409.347i −0.650790 + 0.650790i
\(630\) 0 0
\(631\) 428.813 114.900i 0.679577 0.182092i 0.0975117 0.995234i \(-0.468912\pi\)
0.582065 + 0.813142i \(0.302245\pi\)
\(632\) 0 0
\(633\) 26.8282 46.4679i 0.0423827 0.0734090i
\(634\) 0 0
\(635\) −27.4608 + 102.485i −0.0432454 + 0.161394i
\(636\) 0 0
\(637\) 155.192 + 89.6000i 0.243629 + 0.140659i
\(638\) 0 0
\(639\) 378.231 + 101.347i 0.591911 + 0.158602i
\(640\) 0 0
\(641\) −471.717 272.346i −0.735908 0.424877i 0.0846714 0.996409i \(-0.473016\pi\)
−0.820580 + 0.571532i \(0.806349\pi\)
\(642\) 0 0
\(643\) −100.073 373.478i −0.155635 0.580837i −0.999050 0.0435749i \(-0.986125\pi\)
0.843415 0.537262i \(-0.180541\pi\)
\(644\) 0 0
\(645\) −100.192 100.192i −0.155337 0.155337i
\(646\) 0 0
\(647\) 436.056 251.757i 0.673966 0.389114i −0.123612 0.992331i \(-0.539448\pi\)
0.797578 + 0.603216i \(0.206114\pi\)
\(648\) 0 0
\(649\) 1560.32i 2.40420i
\(650\) 0 0
\(651\) 73.2820 0.112568
\(652\) 0 0
\(653\) −15.5692 26.9667i −0.0238426 0.0412966i 0.853858 0.520506i \(-0.174257\pi\)
−0.877701 + 0.479210i \(0.840923\pi\)
\(654\) 0 0
\(655\) −7.85125 + 7.85125i −0.0119866 + 0.0119866i
\(656\) 0 0
\(657\) −222.861 + 59.7154i −0.339210 + 0.0908910i
\(658\) 0 0
\(659\) 379.488 657.293i 0.575855 0.997410i −0.420093 0.907481i \(-0.638003\pi\)
0.995948 0.0899292i \(-0.0286641\pi\)
\(660\) 0 0
\(661\) 67.8083 253.064i 0.102584 0.382850i −0.895475 0.445111i \(-0.853164\pi\)
0.998060 + 0.0622605i \(0.0198310\pi\)
\(662\) 0 0
\(663\) 152.175 87.8583i 0.229525 0.132516i
\(664\) 0 0
\(665\) −134.799 36.1192i −0.202705 0.0543146i
\(666\) 0 0
\(667\) 164.275 + 94.8442i 0.246289 + 0.142195i
\(668\) 0 0
\(669\) −72.0924 269.053i −0.107761 0.402171i
\(670\) 0 0
\(671\) 293.790 + 293.790i 0.437839 + 0.437839i
\(672\) 0 0
\(673\) −272.210 + 157.160i −0.404472 + 0.233522i −0.688412 0.725320i \(-0.741692\pi\)
0.283940 + 0.958842i \(0.408358\pi\)
\(674\) 0 0
\(675\) 142.221i 0.210697i
\(676\) 0 0
\(677\) −547.384 −0.808544 −0.404272 0.914639i \(-0.632475\pi\)
−0.404272 + 0.914639i \(0.632475\pi\)
\(678\) 0 0
\(679\) −162.665 281.745i −0.239566 0.414941i
\(680\) 0 0
\(681\) 216.560 216.560i 0.318003 0.318003i
\(682\) 0 0
\(683\) −252.954 + 67.7789i −0.370358 + 0.0992371i −0.439197 0.898391i \(-0.644737\pi\)
0.0688393 + 0.997628i \(0.478070\pi\)
\(684\) 0 0
\(685\) −182.418 + 315.957i −0.266303 + 0.461251i
\(686\) 0 0
\(687\) −19.3641 + 72.2679i −0.0281865 + 0.105194i
\(688\) 0 0
\(689\) 95.9749 + 166.233i 0.139296 + 0.241268i
\(690\) 0 0
\(691\) −1062.75 284.764i −1.53799 0.412104i −0.612377 0.790566i \(-0.709786\pi\)
−0.925617 + 0.378462i \(0.876453\pi\)
\(692\) 0 0
\(693\) 705.233 + 407.167i 1.01765 + 0.587542i
\(694\) 0 0
\(695\) 31.2666 + 116.688i 0.0449879 + 0.167897i
\(696\) 0 0
\(697\) −607.149 607.149i −0.871089 0.871089i
\(698\) 0 0
\(699\) 162.673 93.9193i 0.232722 0.134362i
\(700\) 0 0
\(701\) 638.323i 0.910589i −0.890341 0.455295i \(-0.849534\pi\)
0.890341 0.455295i \(-0.150466\pi\)
\(702\) 0 0
\(703\) −197.937 −0.281561
\(704\) 0 0
\(705\) 66.1769 + 114.622i 0.0938680 + 0.162584i
\(706\) 0 0
\(707\) −671.363 + 671.363i −0.949594 + 0.949594i
\(708\) 0 0
\(709\) −625.185 + 167.518i −0.881784 + 0.236273i −0.671177 0.741297i \(-0.734211\pi\)
−0.210608 + 0.977571i \(0.567544\pi\)
\(710\) 0 0
\(711\) −265.545 + 459.937i −0.373481 + 0.646888i
\(712\) 0 0
\(713\) −88.1769 + 329.081i −0.123670 + 0.461544i
\(714\) 0 0
\(715\) 392.550 679.917i 0.549021 0.950932i
\(716\) 0 0
\(717\) 39.3449 + 10.5424i 0.0548743 + 0.0147035i
\(718\) 0 0
\(719\) −1058.38 611.056i −1.47202 0.849870i −0.472512 0.881324i \(-0.656653\pi\)
−0.999505 + 0.0314543i \(0.989986\pi\)
\(720\) 0 0
\(721\) −120.984 451.517i −0.167800 0.626237i
\(722\) 0 0
\(723\) −125.053 125.053i −0.172963 0.172963i
\(724\) 0 0
\(725\) 90.4852 52.2417i 0.124807 0.0720575i
\(726\) 0 0
\(727\) 508.974i 0.700102i −0.936731 0.350051i \(-0.886164\pi\)
0.936731 0.350051i \(-0.113836\pi\)
\(728\) 0 0
\(729\) −481.323 −0.660251
\(730\) 0 0
\(731\) 479.711 + 830.885i 0.656240 + 1.13664i
\(732\) 0 0
\(733\) 861.681 861.681i 1.17555 1.17555i 0.194689 0.980865i \(-0.437630\pi\)
0.980865 0.194689i \(-0.0623699\pi\)
\(734\) 0 0
\(735\) −36.3083 + 9.72878i −0.0493991 + 0.0132364i
\(736\) 0 0
\(737\) −327.520 + 567.282i −0.444397 + 0.769718i
\(738\) 0 0
\(739\) −40.4242 + 150.865i −0.0547013 + 0.204148i −0.987868 0.155296i \(-0.950367\pi\)
0.933167 + 0.359444i \(0.117034\pi\)
\(740\) 0 0
\(741\) 58.0333 + 15.5500i 0.0783176 + 0.0209851i
\(742\) 0 0
\(743\) 369.252 + 98.9409i 0.496975 + 0.133164i 0.498596 0.866835i \(-0.333849\pi\)
−0.00162070 + 0.999999i \(0.500516\pi\)
\(744\) 0 0
\(745\) 412.441 + 238.123i 0.553613 + 0.319628i
\(746\) 0 0
\(747\) −75.8513 283.081i −0.101541 0.378957i
\(748\) 0 0
\(749\) 400.038 + 400.038i 0.534097 + 0.534097i
\(750\) 0 0
\(751\) 906.415 523.319i 1.20694 0.696830i 0.244854 0.969560i \(-0.421260\pi\)
0.962091 + 0.272730i \(0.0879267\pi\)
\(752\) 0 0
\(753\) 187.128i 0.248510i
\(754\) 0 0
\(755\) 674.270 0.893073
\(756\) 0 0
\(757\) 188.415 + 326.345i 0.248897 + 0.431103i 0.963220 0.268713i \(-0.0865985\pi\)
−0.714323 + 0.699816i \(0.753265\pi\)
\(758\) 0 0
\(759\) 169.492 169.492i 0.223310 0.223310i
\(760\) 0 0
\(761\) −742.044 + 198.830i −0.975091 + 0.261275i −0.710976 0.703216i \(-0.751747\pi\)
−0.264115 + 0.964491i \(0.585080\pi\)
\(762\) 0 0
\(763\) 218.119 377.794i 0.285871 0.495142i
\(764\) 0 0
\(765\) 150.672 562.315i 0.196957 0.735052i
\(766\) 0 0
\(767\) −884.683 884.683i −1.15343 1.15343i
\(768\) 0 0
\(769\) −65.7006 17.6044i −0.0854364 0.0228926i 0.215848 0.976427i \(-0.430749\pi\)
−0.301284 + 0.953534i \(0.597415\pi\)
\(770\) 0 0
\(771\) −62.7903 36.2520i −0.0814400 0.0470194i
\(772\) 0 0
\(773\) −238.681 890.771i −0.308773 1.15236i −0.929649 0.368447i \(-0.879890\pi\)
0.620876 0.783909i \(-0.286777\pi\)
\(774\) 0 0
\(775\) 132.694 + 132.694i 0.171218 + 0.171218i
\(776\) 0 0
\(777\) 117.955 68.1013i 0.151808 0.0876465i
\(778\) 0 0
\(779\) 293.583i 0.376872i
\(780\) 0 0
\(781\) 750.046 0.960366
\(782\) 0 0
\(783\) 60.0385 + 103.990i 0.0766775 + 0.132809i
\(784\) 0 0
\(785\) 257.461 257.461i 0.327976 0.327976i
\(786\) 0 0
\(787\) −1188.62 + 318.489i −1.51031 + 0.404687i −0.916540 0.399944i \(-0.869030\pi\)
−0.593774 + 0.804632i \(0.702363\pi\)
\(788\) 0 0
\(789\) −93.4603 + 161.878i −0.118454 + 0.205169i
\(790\) 0 0
\(791\) −221.140 + 825.305i −0.279570 + 1.04337i
\(792\) 0 0
\(793\) 333.150 0.420114
\(794\) 0 0
\(795\) −38.8916 10.4210i −0.0489203 0.0131081i
\(796\) 0 0
\(797\) −22.0615 12.7372i −0.0276807 0.0159814i 0.486096 0.873906i \(-0.338421\pi\)
−0.513776 + 0.857924i \(0.671754\pi\)
\(798\) 0 0
\(799\) −231.949 865.647i −0.290300 1.08341i
\(800\) 0 0
\(801\) 535.788 + 535.788i 0.668899 + 0.668899i
\(802\) 0 0
\(803\) −382.732 + 220.970i −0.476628 + 0.275181i
\(804\) 0 0
\(805\) 446.438i 0.554582i
\(806\) 0 0
\(807\) −67.8667 −0.0840975
\(808\) 0 0
\(809\) 351.463 + 608.752i 0.434442 + 0.752475i 0.997250 0.0741123i \(-0.0236123\pi\)
−0.562808 + 0.826588i \(0.690279\pi\)
\(810\) 0 0
\(811\) −506.292 + 506.292i −0.624282 + 0.624282i −0.946623 0.322342i \(-0.895530\pi\)
0.322342 + 0.946623i \(0.395530\pi\)
\(812\) 0 0
\(813\) −309.086 + 82.8193i −0.380179 + 0.101869i
\(814\) 0 0
\(815\) −235.785 + 408.391i −0.289306 + 0.501093i
\(816\) 0 0
\(817\) −84.9038 + 316.865i −0.103921 + 0.387840i
\(818\) 0 0
\(819\) 630.717 169.000i 0.770106 0.206349i
\(820\) 0 0
\(821\) −1090.79 292.276i −1.32861 0.356000i −0.476414 0.879221i \(-0.658064\pi\)
−0.852197 + 0.523220i \(0.824730\pi\)
\(822\) 0 0
\(823\) 449.858 + 259.726i 0.546607 + 0.315584i 0.747752 0.663978i \(-0.231133\pi\)
−0.201145 + 0.979561i \(0.564466\pi\)
\(824\) 0 0
\(825\) −34.1718 127.531i −0.0414203 0.154583i
\(826\) 0 0
\(827\) 571.769 + 571.769i 0.691377 + 0.691377i 0.962535 0.271158i \(-0.0874064\pi\)
−0.271158 + 0.962535i \(0.587406\pi\)
\(828\) 0 0
\(829\) −848.094 + 489.647i −1.02303 + 0.590648i −0.914981 0.403497i \(-0.867795\pi\)
−0.108052 + 0.994145i \(0.534461\pi\)
\(830\) 0 0
\(831\) 255.373i 0.307308i
\(832\) 0 0
\(833\) 254.520 0.305547
\(834\) 0 0
\(835\) 97.8217 + 169.432i 0.117152 + 0.202913i
\(836\) 0 0
\(837\) −152.497 + 152.497i −0.182195 + 0.182195i
\(838\) 0 0
\(839\) −513.757 + 137.661i −0.612344 + 0.164077i −0.551645 0.834079i \(-0.686000\pi\)
−0.0606993 + 0.998156i \(0.519333\pi\)
\(840\) 0 0
\(841\) 376.392 651.931i 0.447553 0.775185i
\(842\) 0 0
\(843\) 24.6443 91.9737i 0.0292340 0.109103i
\(844\) 0 0
\(845\) −162.933 608.075i −0.192820 0.719615i
\(846\) 0 0
\(847\) 813.099 + 217.869i 0.959975 + 0.257224i
\(848\) 0 0
\(849\) −22.5500 13.0192i −0.0265606 0.0153348i
\(850\) 0 0
\(851\) 163.886 + 611.633i 0.192581 + 0.718722i
\(852\) 0 0
\(853\) 713.043 + 713.043i 0.835924 + 0.835924i 0.988320 0.152396i \(-0.0486989\pi\)
−0.152396 + 0.988320i \(0.548699\pi\)
\(854\) 0 0
\(855\) 172.380 99.5237i 0.201614 0.116402i
\(856\) 0 0
\(857\) 311.663i 0.363667i 0.983329 + 0.181834i \(0.0582032\pi\)
−0.983329 + 0.181834i \(0.941797\pi\)
\(858\) 0 0
\(859\) 1475.02 1.71714 0.858568 0.512700i \(-0.171355\pi\)
0.858568 + 0.512700i \(0.171355\pi\)
\(860\) 0 0
\(861\) 101.009 + 174.953i 0.117316 + 0.203197i
\(862\) 0 0
\(863\) 700.396 700.396i 0.811583 0.811583i −0.173288 0.984871i \(-0.555439\pi\)
0.984871 + 0.173288i \(0.0554392\pi\)
\(864\) 0 0
\(865\) −493.850 + 132.327i −0.570925 + 0.152979i
\(866\) 0 0
\(867\) 19.0052 32.9179i 0.0219206 0.0379676i
\(868\) 0 0
\(869\) −263.292 + 982.620i −0.302983 + 1.13075i
\(870\) 0 0
\(871\) 135.942 + 507.342i 0.156076 + 0.582482i
\(872\) 0 0
\(873\) 448.212 + 120.098i 0.513416 + 0.137569i
\(874\) 0 0
\(875\) 691.550 + 399.267i 0.790343 + 0.456305i
\(876\) 0 0
\(877\) −35.4498 132.301i −0.0404217 0.150856i 0.942765 0.333457i \(-0.108215\pi\)
−0.983187 + 0.182601i \(0.941548\pi\)
\(878\) 0 0
\(879\) −207.263 207.263i −0.235794 0.235794i
\(880\) 0 0
\(881\) 383.677 221.516i 0.435502 0.251437i −0.266186 0.963922i \(-0.585764\pi\)
0.701688 + 0.712485i \(0.252430\pi\)
\(882\) 0 0
\(883\) 1305.20i 1.47814i 0.673630 + 0.739069i \(0.264734\pi\)
−0.673630 + 0.739069i \(0.735266\pi\)
\(884\) 0 0
\(885\) 262.438 0.296540
\(886\) 0 0
\(887\) −861.377 1491.95i −0.971113 1.68202i −0.692209 0.721697i \(-0.743362\pi\)
−0.278904 0.960319i \(-0.589971\pi\)
\(888\) 0 0
\(889\) −119.520 + 119.520i −0.134444 + 0.134444i
\(890\) 0 0
\(891\) −1046.39 + 280.378i −1.17439 + 0.314678i
\(892\) 0 0
\(893\) 153.210 265.368i 0.171568 0.297165i
\(894\) 0 0
\(895\) 1.00617 3.75506i 0.00112421 0.00419560i
\(896\) 0 0
\(897\) 192.200i 0.214270i
\(898\) 0 0
\(899\) −153.040 41.0070i −0.170234 0.0456141i
\(900\) 0 0
\(901\) 236.104 + 136.315i 0.262047 + 0.151293i
\(902\) 0 0
\(903\) −58.4232 218.038i −0.0646990 0.241460i
\(904\) 0 0
\(905\) 60.7940 + 60.7940i 0.0671757 + 0.0671757i
\(906\) 0 0
\(907\) −758.800 + 438.093i −0.836604 + 0.483014i −0.856109 0.516796i \(-0.827125\pi\)
0.0195043 + 0.999810i \(0.493791\pi\)
\(908\) 0 0
\(909\) 1354.21i 1.48978i
\(910\) 0 0
\(911\) 1103.35 1.21114 0.605569 0.795793i \(-0.292946\pi\)
0.605569 + 0.795793i \(0.292946\pi\)
\(912\) 0 0
\(913\) −280.679 486.151i −0.307426 0.532477i
\(914\) 0 0
\(915\) −49.4139 + 49.4139i −0.0540043 + 0.0540043i
\(916\) 0 0
\(917\) −17.0859 + 4.57815i −0.0186324 + 0.00499253i
\(918\) 0 0
\(919\) −328.160 + 568.389i −0.357083 + 0.618486i −0.987472 0.157793i \(-0.949562\pi\)
0.630389 + 0.776279i \(0.282895\pi\)
\(920\) 0 0
\(921\) −69.7255 + 260.219i −0.0757063 + 0.282540i
\(922\) 0 0
\(923\) 425.267 425.267i 0.460744 0.460744i
\(924\) 0 0
\(925\) 336.897 + 90.2712i 0.364213 + 0.0975905i
\(926\) 0 0
\(927\) 577.398 + 333.361i 0.622867 + 0.359613i
\(928\) 0 0
\(929\) 219.574 + 819.460i 0.236355 + 0.882088i 0.977533 + 0.210780i \(0.0676005\pi\)
−0.741179 + 0.671308i \(0.765733\pi\)
\(930\) 0 0
\(931\) 61.5359 + 61.5359i 0.0660966 + 0.0660966i
\(932\) 0 0
\(933\) 45.3154 26.1628i 0.0485695 0.0280416i
\(934\) 0 0
\(935\) 1115.09i 1.19261i
\(936\) 0 0
\(937\) 842.615 0.899269 0.449635 0.893213i \(-0.351554\pi\)
0.449635 + 0.893213i \(0.351554\pi\)
\(938\) 0 0
\(939\) 144.329 + 249.986i 0.153705 + 0.266226i
\(940\) 0 0
\(941\) −471.659 + 471.659i −0.501232 + 0.501232i −0.911821 0.410589i \(-0.865323\pi\)
0.410589 + 0.911821i \(0.365323\pi\)
\(942\) 0 0
\(943\) −907.183 + 243.079i −0.962018 + 0.257772i
\(944\) 0 0
\(945\) −141.303 + 244.743i −0.149527 + 0.258988i
\(946\) 0 0
\(947\) 131.110 489.308i 0.138447 0.516693i −0.861512 0.507737i \(-0.830482\pi\)
0.999960 0.00895652i \(-0.00285099\pi\)
\(948\) 0 0
\(949\) −91.7168 + 342.292i −0.0966457 + 0.360687i
\(950\) 0 0
\(951\) 206.054 + 55.2121i 0.216671 + 0.0580569i
\(952\) 0 0
\(953\) −770.092 444.613i −0.808071 0.466540i 0.0382143 0.999270i \(-0.487833\pi\)
−0.846286 + 0.532729i \(0.821166\pi\)
\(954\) 0 0
\(955\) 283.450 + 1057.85i 0.296806 + 1.10769i
\(956\) 0 0
\(957\) 78.8231 + 78.8231i 0.0823648 + 0.0823648i
\(958\) 0 0
\(959\) −503.347 + 290.608i −0.524867 + 0.303032i
\(960\) 0 0
\(961\) 676.436i 0.703888i
\(962\) 0 0
\(963\) −806.922 −0.837925
\(964\) 0 0
\(965\) 615.636 + 1066.31i 0.637964 + 1.10499i
\(966\) 0 0
\(967\) 384.317 384.317i 0.397432 0.397432i −0.479894 0.877326i \(-0.659325\pi\)
0.877326 + 0.479894i \(0.159325\pi\)
\(968\) 0 0
\(969\) 82.4256 22.0859i 0.0850626 0.0227924i
\(970\) 0 0
\(971\) −121.863 + 211.074i −0.125503 + 0.217378i −0.921929 0.387358i \(-0.873388\pi\)
0.796426 + 0.604735i \(0.206721\pi\)
\(972\) 0 0
\(973\) −49.8104 + 185.895i −0.0511926 + 0.191053i
\(974\) 0 0
\(975\) −91.6833 52.9334i −0.0940341 0.0542906i
\(976\) 0 0
\(977\) −1110.01 297.426i −1.13614 0.304428i −0.358742 0.933437i \(-0.616794\pi\)
−0.777398 + 0.629009i \(0.783461\pi\)
\(978\) 0 0
\(979\) 1256.94 + 725.692i 1.28390 + 0.741259i
\(980\) 0 0
\(981\) 161.040 + 601.011i 0.164159 + 0.612651i
\(982\) 0 0
\(983\) 774.213 + 774.213i 0.787602 + 0.787602i 0.981101 0.193499i \(-0.0619835\pi\)
−0.193499 + 0.981101i \(0.561984\pi\)
\(984\) 0 0
\(985\) −284.253 + 164.114i −0.288582 + 0.166613i
\(986\) 0 0
\(987\) 210.851i 0.213628i
\(988\) 0 0
\(989\) 1049.42 1.06109
\(990\) 0 0
\(991\) −391.733 678.501i −0.395290 0.684663i 0.597848 0.801609i \(-0.296023\pi\)
−0.993138 + 0.116947i \(0.962689\pi\)
\(992\) 0 0
\(993\) 238.795 238.795i 0.240478 0.240478i
\(994\) 0 0
\(995\) 724.795 194.208i 0.728438 0.195184i
\(996\) 0 0
\(997\) −250.817 + 434.428i −0.251572 + 0.435735i −0.963959 0.266052i \(-0.914281\pi\)
0.712387 + 0.701787i \(0.247614\pi\)
\(998\) 0 0
\(999\) −103.744 + 387.177i −0.103848 + 0.387564i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.3.bd.d.145.1 4
4.3 odd 2 13.3.f.a.2.1 4
12.11 even 2 117.3.bd.b.28.1 4
13.7 odd 12 inner 208.3.bd.d.33.1 4
20.3 even 4 325.3.w.a.249.1 4
20.7 even 4 325.3.w.b.249.1 4
20.19 odd 2 325.3.t.a.301.1 4
52.3 odd 6 169.3.d.a.70.2 4
52.7 even 12 13.3.f.a.7.1 yes 4
52.11 even 12 169.3.d.a.99.2 4
52.15 even 12 169.3.d.c.99.1 4
52.19 even 12 169.3.f.b.150.1 4
52.23 odd 6 169.3.d.c.70.1 4
52.31 even 4 169.3.f.a.89.1 4
52.35 odd 6 169.3.f.c.19.1 4
52.43 odd 6 169.3.f.a.19.1 4
52.47 even 4 169.3.f.c.89.1 4
52.51 odd 2 169.3.f.b.80.1 4
156.59 odd 12 117.3.bd.b.46.1 4
260.7 odd 12 325.3.w.a.124.1 4
260.59 even 12 325.3.t.a.176.1 4
260.163 odd 12 325.3.w.b.124.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.3.f.a.2.1 4 4.3 odd 2
13.3.f.a.7.1 yes 4 52.7 even 12
117.3.bd.b.28.1 4 12.11 even 2
117.3.bd.b.46.1 4 156.59 odd 12
169.3.d.a.70.2 4 52.3 odd 6
169.3.d.a.99.2 4 52.11 even 12
169.3.d.c.70.1 4 52.23 odd 6
169.3.d.c.99.1 4 52.15 even 12
169.3.f.a.19.1 4 52.43 odd 6
169.3.f.a.89.1 4 52.31 even 4
169.3.f.b.80.1 4 52.51 odd 2
169.3.f.b.150.1 4 52.19 even 12
169.3.f.c.19.1 4 52.35 odd 6
169.3.f.c.89.1 4 52.47 even 4
208.3.bd.d.33.1 4 13.7 odd 12 inner
208.3.bd.d.145.1 4 1.1 even 1 trivial
325.3.t.a.176.1 4 260.59 even 12
325.3.t.a.301.1 4 20.19 odd 2
325.3.w.a.124.1 4 260.7 odd 12
325.3.w.a.249.1 4 20.3 even 4
325.3.w.b.124.1 4 260.163 odd 12
325.3.w.b.249.1 4 20.7 even 4