Properties

Label 208.2.n
Level $208$
Weight $2$
Character orbit 208.n
Rep. character $\chi_{208}(53,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $48$
Newform subspaces $1$
Sturm bound $56$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 208.n (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(56\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(208, [\chi])\).

Total New Old
Modular forms 60 48 12
Cusp forms 52 48 4
Eisenstein series 8 0 8

Trace form

\( 48 q - 4 q^{4} - 12 q^{8} - 4 q^{10} - 8 q^{11} + 8 q^{12} - 4 q^{14} - 16 q^{15} + 12 q^{16} - 16 q^{19} - 28 q^{20} + 12 q^{22} + 28 q^{24} - 16 q^{29} + 4 q^{30} + 24 q^{31} - 20 q^{32} - 40 q^{34} + 24 q^{35}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(208, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
208.2.n.a 208.n 16.e $48$ $1.661$ None 208.2.n.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(208, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(208, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)