Properties

Label 208.2.a.a
Level $208$
Weight $2$
Character orbit 208.a
Self dual yes
Analytic conductor $1.661$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(1.66088836204\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} - 3 q^{5} + q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} - 3 q^{5} + q^{7} - 2 q^{9} - 6 q^{11} + q^{13} + 3 q^{15} - 3 q^{17} - 2 q^{19} - q^{21} + 4 q^{25} + 5 q^{27} + 6 q^{29} + 4 q^{31} + 6 q^{33} - 3 q^{35} - 7 q^{37} - q^{39} + q^{43} + 6 q^{45} - 3 q^{47} - 6 q^{49} + 3 q^{51} + 18 q^{55} + 2 q^{57} + 6 q^{59} + 8 q^{61} - 2 q^{63} - 3 q^{65} - 14 q^{67} + 3 q^{71} + 2 q^{73} - 4 q^{75} - 6 q^{77} - 8 q^{79} + q^{81} - 12 q^{83} + 9 q^{85} - 6 q^{87} - 6 q^{89} + q^{91} - 4 q^{93} + 6 q^{95} - 10 q^{97} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 −3.00000 0 1.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.2.a.a 1
3.b odd 2 1 1872.2.a.q 1
4.b odd 2 1 26.2.a.a 1
5.b even 2 1 5200.2.a.x 1
8.b even 2 1 832.2.a.i 1
8.d odd 2 1 832.2.a.d 1
12.b even 2 1 234.2.a.e 1
13.b even 2 1 2704.2.a.f 1
13.d odd 4 2 2704.2.f.d 2
16.e even 4 2 3328.2.b.j 2
16.f odd 4 2 3328.2.b.m 2
20.d odd 2 1 650.2.a.j 1
20.e even 4 2 650.2.b.d 2
24.f even 2 1 7488.2.a.g 1
24.h odd 2 1 7488.2.a.h 1
28.d even 2 1 1274.2.a.d 1
28.f even 6 2 1274.2.f.r 2
28.g odd 6 2 1274.2.f.p 2
36.f odd 6 2 2106.2.e.ba 2
36.h even 6 2 2106.2.e.b 2
44.c even 2 1 3146.2.a.n 1
52.b odd 2 1 338.2.a.f 1
52.f even 4 2 338.2.b.c 2
52.i odd 6 2 338.2.c.a 2
52.j odd 6 2 338.2.c.d 2
52.l even 12 4 338.2.e.a 4
60.h even 2 1 5850.2.a.p 1
60.l odd 4 2 5850.2.e.a 2
68.d odd 2 1 7514.2.a.c 1
76.d even 2 1 9386.2.a.j 1
156.h even 2 1 3042.2.a.a 1
156.l odd 4 2 3042.2.b.a 2
260.g odd 2 1 8450.2.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.a.a 1 4.b odd 2 1
208.2.a.a 1 1.a even 1 1 trivial
234.2.a.e 1 12.b even 2 1
338.2.a.f 1 52.b odd 2 1
338.2.b.c 2 52.f even 4 2
338.2.c.a 2 52.i odd 6 2
338.2.c.d 2 52.j odd 6 2
338.2.e.a 4 52.l even 12 4
650.2.a.j 1 20.d odd 2 1
650.2.b.d 2 20.e even 4 2
832.2.a.d 1 8.d odd 2 1
832.2.a.i 1 8.b even 2 1
1274.2.a.d 1 28.d even 2 1
1274.2.f.p 2 28.g odd 6 2
1274.2.f.r 2 28.f even 6 2
1872.2.a.q 1 3.b odd 2 1
2106.2.e.b 2 36.h even 6 2
2106.2.e.ba 2 36.f odd 6 2
2704.2.a.f 1 13.b even 2 1
2704.2.f.d 2 13.d odd 4 2
3042.2.a.a 1 156.h even 2 1
3042.2.b.a 2 156.l odd 4 2
3146.2.a.n 1 44.c even 2 1
3328.2.b.j 2 16.e even 4 2
3328.2.b.m 2 16.f odd 4 2
5200.2.a.x 1 5.b even 2 1
5850.2.a.p 1 60.h even 2 1
5850.2.e.a 2 60.l odd 4 2
7488.2.a.g 1 24.f even 2 1
7488.2.a.h 1 24.h odd 2 1
7514.2.a.c 1 68.d odd 2 1
8450.2.a.c 1 260.g odd 2 1
9386.2.a.j 1 76.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(208))\):

\( T_{3} + 1 \) Copy content Toggle raw display
\( T_{5} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T + 3 \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T + 6 \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T + 3 \) Copy content Toggle raw display
$19$ \( T + 2 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T + 7 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 1 \) Copy content Toggle raw display
$47$ \( T + 3 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T - 6 \) Copy content Toggle raw display
$61$ \( T - 8 \) Copy content Toggle raw display
$67$ \( T + 14 \) Copy content Toggle raw display
$71$ \( T - 3 \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T + 12 \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T + 10 \) Copy content Toggle raw display
show more
show less