Defining parameters
Level: | \( N \) | \(=\) | \( 208 = 2^{4} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 208.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(208))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 34 | 6 | 28 |
Cusp forms | 23 | 6 | 17 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(208))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 13 | |||||||
208.2.a.a | $1$ | $1.661$ | \(\Q\) | None | \(0\) | \(-1\) | \(-3\) | \(1\) | $-$ | $-$ | \(q-q^{3}-3q^{5}+q^{7}-2q^{9}-6q^{11}+\cdots\) | |
208.2.a.b | $1$ | $1.661$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-5\) | $+$ | $+$ | \(q-q^{3}-q^{5}-5q^{7}-2q^{9}+2q^{11}+\cdots\) | |
208.2.a.c | $1$ | $1.661$ | \(\Q\) | None | \(0\) | \(0\) | \(2\) | \(2\) | $-$ | $+$ | \(q+2q^{5}+2q^{7}-3q^{9}+2q^{11}-q^{13}+\cdots\) | |
208.2.a.d | $1$ | $1.661$ | \(\Q\) | None | \(0\) | \(3\) | \(-1\) | \(-1\) | $-$ | $+$ | \(q+3q^{3}-q^{5}-q^{7}+6q^{9}+2q^{11}+\cdots\) | |
208.2.a.e | $2$ | $1.661$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-1\) | \(3\) | \(1\) | $+$ | $-$ | \(q-\beta q^{3}+(2-\beta )q^{5}+\beta q^{7}+(1+\beta )q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(208))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(208)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 2}\)