Properties

Label 208.10.a.h.1.5
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-24.3176\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+195.094 q^{3} -1277.14 q^{5} +2277.98 q^{7} +18378.5 q^{9} +O(q^{10})\) \(q+195.094 q^{3} -1277.14 q^{5} +2277.98 q^{7} +18378.5 q^{9} +7177.94 q^{11} +28561.0 q^{13} -249162. q^{15} -447890. q^{17} +528333. q^{19} +444419. q^{21} -2.24354e6 q^{23} -322041. q^{25} -254496. q^{27} +5.98542e6 q^{29} -169630. q^{31} +1.40037e6 q^{33} -2.90930e6 q^{35} +1.26336e7 q^{37} +5.57207e6 q^{39} -2.76549e7 q^{41} +2.27606e7 q^{43} -2.34719e7 q^{45} -5.32103e7 q^{47} -3.51644e7 q^{49} -8.73804e7 q^{51} +3.18756e7 q^{53} -9.16722e6 q^{55} +1.03074e8 q^{57} -1.14800e8 q^{59} -7.80352e7 q^{61} +4.18659e7 q^{63} -3.64764e7 q^{65} -8.40538e7 q^{67} -4.37700e8 q^{69} -1.25752e8 q^{71} -1.88250e8 q^{73} -6.28282e7 q^{75} +1.63512e7 q^{77} +4.28673e8 q^{79} -4.11395e8 q^{81} -2.43067e8 q^{83} +5.72018e8 q^{85} +1.16772e9 q^{87} +2.92716e8 q^{89} +6.50614e7 q^{91} -3.30937e7 q^{93} -6.74754e8 q^{95} +1.14275e9 q^{97} +1.31920e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 161 q^{3} + 1803 q^{5} - 10099 q^{7} + 61060 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 161 q^{3} + 1803 q^{5} - 10099 q^{7} + 61060 q^{9} - 121746 q^{11} + 142805 q^{13} - 105973 q^{15} - 495669 q^{17} + 840738 q^{19} - 1599467 q^{21} + 592152 q^{23} + 1670362 q^{25} - 6847883 q^{27} + 10678182 q^{29} - 12885296 q^{31} + 17278298 q^{33} - 8380731 q^{35} + 7171823 q^{37} - 4598321 q^{39} + 9294012 q^{41} - 12831975 q^{43} + 26135198 q^{45} - 43354215 q^{47} + 25249488 q^{49} - 16905901 q^{51} + 93231780 q^{53} - 99448846 q^{55} + 90173382 q^{57} - 246496182 q^{59} - 132232612 q^{61} + 416955202 q^{63} + 51495483 q^{65} + 369388534 q^{67} - 579986760 q^{69} - 212150457 q^{71} - 252729806 q^{73} + 752457788 q^{75} + 449666118 q^{77} + 1247271728 q^{79} - 317713115 q^{81} - 1696894296 q^{83} - 775363765 q^{85} + 614530466 q^{87} - 753854382 q^{89} - 288437539 q^{91} - 892784668 q^{93} - 1442632962 q^{95} + 3824606 q^{97} - 3016199848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 195.094 1.39058 0.695292 0.718727i \(-0.255275\pi\)
0.695292 + 0.718727i \(0.255275\pi\)
\(4\) 0 0
\(5\) −1277.14 −0.913846 −0.456923 0.889506i \(-0.651049\pi\)
−0.456923 + 0.889506i \(0.651049\pi\)
\(6\) 0 0
\(7\) 2277.98 0.358599 0.179299 0.983795i \(-0.442617\pi\)
0.179299 + 0.983795i \(0.442617\pi\)
\(8\) 0 0
\(9\) 18378.5 0.933725
\(10\) 0 0
\(11\) 7177.94 0.147820 0.0739099 0.997265i \(-0.476452\pi\)
0.0739099 + 0.997265i \(0.476452\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) −249162. −1.27078
\(16\) 0 0
\(17\) −447890. −1.30062 −0.650311 0.759668i \(-0.725361\pi\)
−0.650311 + 0.759668i \(0.725361\pi\)
\(18\) 0 0
\(19\) 528333. 0.930071 0.465036 0.885292i \(-0.346041\pi\)
0.465036 + 0.885292i \(0.346041\pi\)
\(20\) 0 0
\(21\) 444419. 0.498662
\(22\) 0 0
\(23\) −2.24354e6 −1.67170 −0.835851 0.548957i \(-0.815025\pi\)
−0.835851 + 0.548957i \(0.815025\pi\)
\(24\) 0 0
\(25\) −322041. −0.164885
\(26\) 0 0
\(27\) −254496. −0.0921603
\(28\) 0 0
\(29\) 5.98542e6 1.57146 0.785730 0.618569i \(-0.212287\pi\)
0.785730 + 0.618569i \(0.212287\pi\)
\(30\) 0 0
\(31\) −169630. −0.0329894 −0.0164947 0.999864i \(-0.505251\pi\)
−0.0164947 + 0.999864i \(0.505251\pi\)
\(32\) 0 0
\(33\) 1.40037e6 0.205556
\(34\) 0 0
\(35\) −2.90930e6 −0.327704
\(36\) 0 0
\(37\) 1.26336e7 1.10820 0.554100 0.832450i \(-0.313062\pi\)
0.554100 + 0.832450i \(0.313062\pi\)
\(38\) 0 0
\(39\) 5.57207e6 0.385679
\(40\) 0 0
\(41\) −2.76549e7 −1.52843 −0.764213 0.644964i \(-0.776872\pi\)
−0.764213 + 0.644964i \(0.776872\pi\)
\(42\) 0 0
\(43\) 2.27606e7 1.01526 0.507628 0.861576i \(-0.330522\pi\)
0.507628 + 0.861576i \(0.330522\pi\)
\(44\) 0 0
\(45\) −2.34719e7 −0.853281
\(46\) 0 0
\(47\) −5.32103e7 −1.59058 −0.795289 0.606230i \(-0.792681\pi\)
−0.795289 + 0.606230i \(0.792681\pi\)
\(48\) 0 0
\(49\) −3.51644e7 −0.871407
\(50\) 0 0
\(51\) −8.73804e7 −1.80862
\(52\) 0 0
\(53\) 3.18756e7 0.554904 0.277452 0.960740i \(-0.410510\pi\)
0.277452 + 0.960740i \(0.410510\pi\)
\(54\) 0 0
\(55\) −9.16722e6 −0.135085
\(56\) 0 0
\(57\) 1.03074e8 1.29334
\(58\) 0 0
\(59\) −1.14800e8 −1.23341 −0.616705 0.787194i \(-0.711533\pi\)
−0.616705 + 0.787194i \(0.711533\pi\)
\(60\) 0 0
\(61\) −7.80352e7 −0.721616 −0.360808 0.932640i \(-0.617499\pi\)
−0.360808 + 0.932640i \(0.617499\pi\)
\(62\) 0 0
\(63\) 4.18659e7 0.334833
\(64\) 0 0
\(65\) −3.64764e7 −0.253455
\(66\) 0 0
\(67\) −8.40538e7 −0.509590 −0.254795 0.966995i \(-0.582008\pi\)
−0.254795 + 0.966995i \(0.582008\pi\)
\(68\) 0 0
\(69\) −4.37700e8 −2.32464
\(70\) 0 0
\(71\) −1.25752e8 −0.587288 −0.293644 0.955915i \(-0.594868\pi\)
−0.293644 + 0.955915i \(0.594868\pi\)
\(72\) 0 0
\(73\) −1.88250e8 −0.775859 −0.387929 0.921689i \(-0.626810\pi\)
−0.387929 + 0.921689i \(0.626810\pi\)
\(74\) 0 0
\(75\) −6.28282e7 −0.229287
\(76\) 0 0
\(77\) 1.63512e7 0.0530080
\(78\) 0 0
\(79\) 4.28673e8 1.23824 0.619120 0.785297i \(-0.287490\pi\)
0.619120 + 0.785297i \(0.287490\pi\)
\(80\) 0 0
\(81\) −4.11395e8 −1.06188
\(82\) 0 0
\(83\) −2.43067e8 −0.562180 −0.281090 0.959681i \(-0.590696\pi\)
−0.281090 + 0.959681i \(0.590696\pi\)
\(84\) 0 0
\(85\) 5.72018e8 1.18857
\(86\) 0 0
\(87\) 1.16772e9 2.18525
\(88\) 0 0
\(89\) 2.92716e8 0.494529 0.247265 0.968948i \(-0.420468\pi\)
0.247265 + 0.968948i \(0.420468\pi\)
\(90\) 0 0
\(91\) 6.50614e7 0.0994573
\(92\) 0 0
\(93\) −3.30937e7 −0.0458746
\(94\) 0 0
\(95\) −6.74754e8 −0.849942
\(96\) 0 0
\(97\) 1.14275e9 1.31063 0.655313 0.755358i \(-0.272537\pi\)
0.655313 + 0.755358i \(0.272537\pi\)
\(98\) 0 0
\(99\) 1.31920e8 0.138023
\(100\) 0 0
\(101\) −8.98629e8 −0.859279 −0.429640 0.903000i \(-0.641359\pi\)
−0.429640 + 0.903000i \(0.641359\pi\)
\(102\) 0 0
\(103\) −6.13518e8 −0.537106 −0.268553 0.963265i \(-0.586545\pi\)
−0.268553 + 0.963265i \(0.586545\pi\)
\(104\) 0 0
\(105\) −5.67585e8 −0.455700
\(106\) 0 0
\(107\) −1.46257e9 −1.07868 −0.539338 0.842090i \(-0.681325\pi\)
−0.539338 + 0.842090i \(0.681325\pi\)
\(108\) 0 0
\(109\) 7.17715e8 0.487005 0.243502 0.969900i \(-0.421704\pi\)
0.243502 + 0.969900i \(0.421704\pi\)
\(110\) 0 0
\(111\) 2.46473e9 1.54105
\(112\) 0 0
\(113\) 9.27444e7 0.0535099 0.0267550 0.999642i \(-0.491483\pi\)
0.0267550 + 0.999642i \(0.491483\pi\)
\(114\) 0 0
\(115\) 2.86531e9 1.52768
\(116\) 0 0
\(117\) 5.24909e8 0.258969
\(118\) 0 0
\(119\) −1.02028e9 −0.466401
\(120\) 0 0
\(121\) −2.30642e9 −0.978149
\(122\) 0 0
\(123\) −5.39529e9 −2.12540
\(124\) 0 0
\(125\) 2.90570e9 1.06453
\(126\) 0 0
\(127\) −4.40060e9 −1.50105 −0.750524 0.660843i \(-0.770199\pi\)
−0.750524 + 0.660843i \(0.770199\pi\)
\(128\) 0 0
\(129\) 4.44045e9 1.41180
\(130\) 0 0
\(131\) 1.21951e9 0.361798 0.180899 0.983502i \(-0.442099\pi\)
0.180899 + 0.983502i \(0.442099\pi\)
\(132\) 0 0
\(133\) 1.20353e9 0.333522
\(134\) 0 0
\(135\) 3.25027e8 0.0842204
\(136\) 0 0
\(137\) −6.73258e9 −1.63282 −0.816411 0.577472i \(-0.804039\pi\)
−0.816411 + 0.577472i \(0.804039\pi\)
\(138\) 0 0
\(139\) −4.12694e8 −0.0937695 −0.0468847 0.998900i \(-0.514929\pi\)
−0.0468847 + 0.998900i \(0.514929\pi\)
\(140\) 0 0
\(141\) −1.03810e10 −2.21183
\(142\) 0 0
\(143\) 2.05009e8 0.0409978
\(144\) 0 0
\(145\) −7.64421e9 −1.43607
\(146\) 0 0
\(147\) −6.86035e9 −1.21177
\(148\) 0 0
\(149\) 7.17339e9 1.19230 0.596151 0.802872i \(-0.296696\pi\)
0.596151 + 0.802872i \(0.296696\pi\)
\(150\) 0 0
\(151\) −9.30445e9 −1.45645 −0.728223 0.685340i \(-0.759654\pi\)
−0.728223 + 0.685340i \(0.759654\pi\)
\(152\) 0 0
\(153\) −8.23155e9 −1.21442
\(154\) 0 0
\(155\) 2.16641e8 0.0301472
\(156\) 0 0
\(157\) −5.86131e9 −0.769921 −0.384961 0.922933i \(-0.625785\pi\)
−0.384961 + 0.922933i \(0.625785\pi\)
\(158\) 0 0
\(159\) 6.21873e9 0.771640
\(160\) 0 0
\(161\) −5.11074e9 −0.599470
\(162\) 0 0
\(163\) −1.60676e10 −1.78282 −0.891409 0.453199i \(-0.850283\pi\)
−0.891409 + 0.453199i \(0.850283\pi\)
\(164\) 0 0
\(165\) −1.78847e9 −0.187847
\(166\) 0 0
\(167\) 1.49042e9 0.148281 0.0741404 0.997248i \(-0.476379\pi\)
0.0741404 + 0.997248i \(0.476379\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 9.70997e9 0.868431
\(172\) 0 0
\(173\) −6.62250e9 −0.562101 −0.281050 0.959693i \(-0.590683\pi\)
−0.281050 + 0.959693i \(0.590683\pi\)
\(174\) 0 0
\(175\) −7.33604e8 −0.0591276
\(176\) 0 0
\(177\) −2.23967e10 −1.71516
\(178\) 0 0
\(179\) −1.41019e10 −1.02669 −0.513344 0.858183i \(-0.671594\pi\)
−0.513344 + 0.858183i \(0.671594\pi\)
\(180\) 0 0
\(181\) 2.38898e10 1.65447 0.827234 0.561857i \(-0.189913\pi\)
0.827234 + 0.561857i \(0.189913\pi\)
\(182\) 0 0
\(183\) −1.52242e10 −1.00347
\(184\) 0 0
\(185\) −1.61348e10 −1.01272
\(186\) 0 0
\(187\) −3.21493e9 −0.192258
\(188\) 0 0
\(189\) −5.79737e8 −0.0330486
\(190\) 0 0
\(191\) 2.32674e10 1.26502 0.632509 0.774553i \(-0.282025\pi\)
0.632509 + 0.774553i \(0.282025\pi\)
\(192\) 0 0
\(193\) 8.87539e9 0.460447 0.230224 0.973138i \(-0.426054\pi\)
0.230224 + 0.973138i \(0.426054\pi\)
\(194\) 0 0
\(195\) −7.11631e9 −0.352451
\(196\) 0 0
\(197\) −9.96936e9 −0.471595 −0.235798 0.971802i \(-0.575770\pi\)
−0.235798 + 0.971802i \(0.575770\pi\)
\(198\) 0 0
\(199\) 5.92044e9 0.267618 0.133809 0.991007i \(-0.457279\pi\)
0.133809 + 0.991007i \(0.457279\pi\)
\(200\) 0 0
\(201\) −1.63984e10 −0.708628
\(202\) 0 0
\(203\) 1.36347e10 0.563524
\(204\) 0 0
\(205\) 3.53191e10 1.39675
\(206\) 0 0
\(207\) −4.12330e10 −1.56091
\(208\) 0 0
\(209\) 3.79234e9 0.137483
\(210\) 0 0
\(211\) 3.18290e10 1.10548 0.552741 0.833353i \(-0.313582\pi\)
0.552741 + 0.833353i \(0.313582\pi\)
\(212\) 0 0
\(213\) −2.45334e10 −0.816674
\(214\) 0 0
\(215\) −2.90685e10 −0.927788
\(216\) 0 0
\(217\) −3.86413e8 −0.0118300
\(218\) 0 0
\(219\) −3.67264e10 −1.07890
\(220\) 0 0
\(221\) −1.27922e10 −0.360728
\(222\) 0 0
\(223\) 2.33567e10 0.632470 0.316235 0.948681i \(-0.397581\pi\)
0.316235 + 0.948681i \(0.397581\pi\)
\(224\) 0 0
\(225\) −5.91865e9 −0.153958
\(226\) 0 0
\(227\) −2.96928e10 −0.742223 −0.371112 0.928588i \(-0.621023\pi\)
−0.371112 + 0.928588i \(0.621023\pi\)
\(228\) 0 0
\(229\) 4.24937e10 1.02109 0.510546 0.859850i \(-0.329443\pi\)
0.510546 + 0.859850i \(0.329443\pi\)
\(230\) 0 0
\(231\) 3.19001e9 0.0737121
\(232\) 0 0
\(233\) −3.84693e10 −0.855092 −0.427546 0.903994i \(-0.640622\pi\)
−0.427546 + 0.903994i \(0.640622\pi\)
\(234\) 0 0
\(235\) 6.79569e10 1.45354
\(236\) 0 0
\(237\) 8.36314e10 1.72188
\(238\) 0 0
\(239\) 1.98946e10 0.394407 0.197203 0.980363i \(-0.436814\pi\)
0.197203 + 0.980363i \(0.436814\pi\)
\(240\) 0 0
\(241\) −5.31240e10 −1.01441 −0.507206 0.861825i \(-0.669322\pi\)
−0.507206 + 0.861825i \(0.669322\pi\)
\(242\) 0 0
\(243\) −7.52513e10 −1.38448
\(244\) 0 0
\(245\) 4.49098e10 0.796332
\(246\) 0 0
\(247\) 1.50897e10 0.257955
\(248\) 0 0
\(249\) −4.74209e10 −0.781758
\(250\) 0 0
\(251\) −1.26269e10 −0.200801 −0.100400 0.994947i \(-0.532012\pi\)
−0.100400 + 0.994947i \(0.532012\pi\)
\(252\) 0 0
\(253\) −1.61040e10 −0.247111
\(254\) 0 0
\(255\) 1.11597e11 1.65280
\(256\) 0 0
\(257\) 1.11000e11 1.58717 0.793583 0.608461i \(-0.208213\pi\)
0.793583 + 0.608461i \(0.208213\pi\)
\(258\) 0 0
\(259\) 2.87790e10 0.397399
\(260\) 0 0
\(261\) 1.10003e11 1.46731
\(262\) 0 0
\(263\) −7.01020e10 −0.903503 −0.451752 0.892144i \(-0.649201\pi\)
−0.451752 + 0.892144i \(0.649201\pi\)
\(264\) 0 0
\(265\) −4.07096e10 −0.507097
\(266\) 0 0
\(267\) 5.71071e10 0.687685
\(268\) 0 0
\(269\) 7.41364e10 0.863269 0.431635 0.902049i \(-0.357937\pi\)
0.431635 + 0.902049i \(0.357937\pi\)
\(270\) 0 0
\(271\) −8.92477e10 −1.00516 −0.502580 0.864531i \(-0.667616\pi\)
−0.502580 + 0.864531i \(0.667616\pi\)
\(272\) 0 0
\(273\) 1.26931e10 0.138304
\(274\) 0 0
\(275\) −2.31159e9 −0.0243733
\(276\) 0 0
\(277\) −6.68313e10 −0.682057 −0.341028 0.940053i \(-0.610775\pi\)
−0.341028 + 0.940053i \(0.610775\pi\)
\(278\) 0 0
\(279\) −3.11754e9 −0.0308031
\(280\) 0 0
\(281\) −8.13670e10 −0.778520 −0.389260 0.921128i \(-0.627269\pi\)
−0.389260 + 0.921128i \(0.627269\pi\)
\(282\) 0 0
\(283\) 1.19236e11 1.10502 0.552508 0.833507i \(-0.313671\pi\)
0.552508 + 0.833507i \(0.313671\pi\)
\(284\) 0 0
\(285\) −1.31640e11 −1.18192
\(286\) 0 0
\(287\) −6.29972e10 −0.548091
\(288\) 0 0
\(289\) 8.20174e10 0.691617
\(290\) 0 0
\(291\) 2.22943e11 1.82254
\(292\) 0 0
\(293\) −6.95594e10 −0.551381 −0.275690 0.961246i \(-0.588906\pi\)
−0.275690 + 0.961246i \(0.588906\pi\)
\(294\) 0 0
\(295\) 1.46615e11 1.12715
\(296\) 0 0
\(297\) −1.82676e9 −0.0136231
\(298\) 0 0
\(299\) −6.40778e10 −0.463647
\(300\) 0 0
\(301\) 5.18482e10 0.364069
\(302\) 0 0
\(303\) −1.75317e11 −1.19490
\(304\) 0 0
\(305\) 9.96618e10 0.659446
\(306\) 0 0
\(307\) 4.02660e10 0.258711 0.129356 0.991598i \(-0.458709\pi\)
0.129356 + 0.991598i \(0.458709\pi\)
\(308\) 0 0
\(309\) −1.19693e11 −0.746891
\(310\) 0 0
\(311\) 1.78556e11 1.08231 0.541157 0.840921i \(-0.317986\pi\)
0.541157 + 0.840921i \(0.317986\pi\)
\(312\) 0 0
\(313\) 9.44550e9 0.0556257 0.0278128 0.999613i \(-0.491146\pi\)
0.0278128 + 0.999613i \(0.491146\pi\)
\(314\) 0 0
\(315\) −5.34685e10 −0.305985
\(316\) 0 0
\(317\) 5.42593e10 0.301792 0.150896 0.988550i \(-0.451784\pi\)
0.150896 + 0.988550i \(0.451784\pi\)
\(318\) 0 0
\(319\) 4.29630e10 0.232293
\(320\) 0 0
\(321\) −2.85339e11 −1.49999
\(322\) 0 0
\(323\) −2.36635e11 −1.20967
\(324\) 0 0
\(325\) −9.19783e9 −0.0457309
\(326\) 0 0
\(327\) 1.40022e11 0.677221
\(328\) 0 0
\(329\) −1.21212e11 −0.570379
\(330\) 0 0
\(331\) −6.66790e10 −0.305325 −0.152663 0.988278i \(-0.548785\pi\)
−0.152663 + 0.988278i \(0.548785\pi\)
\(332\) 0 0
\(333\) 2.32186e11 1.03476
\(334\) 0 0
\(335\) 1.07348e11 0.465687
\(336\) 0 0
\(337\) 2.13457e11 0.901522 0.450761 0.892645i \(-0.351153\pi\)
0.450761 + 0.892645i \(0.351153\pi\)
\(338\) 0 0
\(339\) 1.80938e10 0.0744101
\(340\) 0 0
\(341\) −1.21759e9 −0.00487649
\(342\) 0 0
\(343\) −1.72028e11 −0.671084
\(344\) 0 0
\(345\) 5.59004e11 2.12437
\(346\) 0 0
\(347\) 9.49978e10 0.351748 0.175874 0.984413i \(-0.443725\pi\)
0.175874 + 0.984413i \(0.443725\pi\)
\(348\) 0 0
\(349\) 2.52647e11 0.911590 0.455795 0.890085i \(-0.349355\pi\)
0.455795 + 0.890085i \(0.349355\pi\)
\(350\) 0 0
\(351\) −7.26866e9 −0.0255607
\(352\) 0 0
\(353\) 4.50376e11 1.54379 0.771896 0.635749i \(-0.219309\pi\)
0.771896 + 0.635749i \(0.219309\pi\)
\(354\) 0 0
\(355\) 1.60602e11 0.536691
\(356\) 0 0
\(357\) −1.99051e11 −0.648570
\(358\) 0 0
\(359\) −3.93740e11 −1.25108 −0.625539 0.780193i \(-0.715121\pi\)
−0.625539 + 0.780193i \(0.715121\pi\)
\(360\) 0 0
\(361\) −4.35522e10 −0.134967
\(362\) 0 0
\(363\) −4.49969e11 −1.36020
\(364\) 0 0
\(365\) 2.40422e11 0.709015
\(366\) 0 0
\(367\) 2.26305e11 0.651173 0.325586 0.945512i \(-0.394438\pi\)
0.325586 + 0.945512i \(0.394438\pi\)
\(368\) 0 0
\(369\) −5.08255e11 −1.42713
\(370\) 0 0
\(371\) 7.26120e10 0.198988
\(372\) 0 0
\(373\) 4.75023e11 1.27065 0.635323 0.772246i \(-0.280867\pi\)
0.635323 + 0.772246i \(0.280867\pi\)
\(374\) 0 0
\(375\) 5.66884e11 1.48031
\(376\) 0 0
\(377\) 1.70950e11 0.435845
\(378\) 0 0
\(379\) 1.67293e11 0.416486 0.208243 0.978077i \(-0.433225\pi\)
0.208243 + 0.978077i \(0.433225\pi\)
\(380\) 0 0
\(381\) −8.58528e11 −2.08733
\(382\) 0 0
\(383\) 5.36589e11 1.27423 0.637114 0.770769i \(-0.280128\pi\)
0.637114 + 0.770769i \(0.280128\pi\)
\(384\) 0 0
\(385\) −2.08827e10 −0.0484411
\(386\) 0 0
\(387\) 4.18306e11 0.947971
\(388\) 0 0
\(389\) 5.95613e11 1.31884 0.659418 0.751776i \(-0.270803\pi\)
0.659418 + 0.751776i \(0.270803\pi\)
\(390\) 0 0
\(391\) 1.00486e12 2.17425
\(392\) 0 0
\(393\) 2.37919e11 0.503110
\(394\) 0 0
\(395\) −5.47475e11 −1.13156
\(396\) 0 0
\(397\) −6.68797e11 −1.35125 −0.675627 0.737243i \(-0.736127\pi\)
−0.675627 + 0.737243i \(0.736127\pi\)
\(398\) 0 0
\(399\) 2.34801e11 0.463791
\(400\) 0 0
\(401\) 4.27579e11 0.825785 0.412892 0.910780i \(-0.364519\pi\)
0.412892 + 0.910780i \(0.364519\pi\)
\(402\) 0 0
\(403\) −4.84480e9 −0.00914962
\(404\) 0 0
\(405\) 5.25408e11 0.970397
\(406\) 0 0
\(407\) 9.06830e10 0.163814
\(408\) 0 0
\(409\) −4.37893e10 −0.0773772 −0.0386886 0.999251i \(-0.512318\pi\)
−0.0386886 + 0.999251i \(0.512318\pi\)
\(410\) 0 0
\(411\) −1.31348e12 −2.27058
\(412\) 0 0
\(413\) −2.61512e11 −0.442299
\(414\) 0 0
\(415\) 3.10431e11 0.513746
\(416\) 0 0
\(417\) −8.05139e10 −0.130394
\(418\) 0 0
\(419\) 1.14243e11 0.181079 0.0905395 0.995893i \(-0.471141\pi\)
0.0905395 + 0.995893i \(0.471141\pi\)
\(420\) 0 0
\(421\) −5.06520e11 −0.785828 −0.392914 0.919575i \(-0.628533\pi\)
−0.392914 + 0.919575i \(0.628533\pi\)
\(422\) 0 0
\(423\) −9.77926e11 −1.48516
\(424\) 0 0
\(425\) 1.44239e11 0.214453
\(426\) 0 0
\(427\) −1.77763e11 −0.258770
\(428\) 0 0
\(429\) 3.99960e10 0.0570110
\(430\) 0 0
\(431\) 1.32605e11 0.185103 0.0925513 0.995708i \(-0.470498\pi\)
0.0925513 + 0.995708i \(0.470498\pi\)
\(432\) 0 0
\(433\) 1.21346e12 1.65894 0.829469 0.558553i \(-0.188643\pi\)
0.829469 + 0.558553i \(0.188643\pi\)
\(434\) 0 0
\(435\) −1.49134e12 −1.99698
\(436\) 0 0
\(437\) −1.18534e12 −1.55480
\(438\) 0 0
\(439\) 7.26961e11 0.934159 0.467079 0.884215i \(-0.345306\pi\)
0.467079 + 0.884215i \(0.345306\pi\)
\(440\) 0 0
\(441\) −6.46270e11 −0.813655
\(442\) 0 0
\(443\) 1.02161e12 1.26028 0.630142 0.776480i \(-0.282997\pi\)
0.630142 + 0.776480i \(0.282997\pi\)
\(444\) 0 0
\(445\) −3.73840e11 −0.451924
\(446\) 0 0
\(447\) 1.39948e12 1.65800
\(448\) 0 0
\(449\) 5.91722e11 0.687083 0.343542 0.939137i \(-0.388373\pi\)
0.343542 + 0.939137i \(0.388373\pi\)
\(450\) 0 0
\(451\) −1.98505e11 −0.225932
\(452\) 0 0
\(453\) −1.81524e12 −2.02531
\(454\) 0 0
\(455\) −8.30924e10 −0.0908887
\(456\) 0 0
\(457\) −8.30664e11 −0.890845 −0.445423 0.895320i \(-0.646947\pi\)
−0.445423 + 0.895320i \(0.646947\pi\)
\(458\) 0 0
\(459\) 1.13986e11 0.119866
\(460\) 0 0
\(461\) 8.73246e11 0.900497 0.450249 0.892903i \(-0.351335\pi\)
0.450249 + 0.892903i \(0.351335\pi\)
\(462\) 0 0
\(463\) −7.70415e11 −0.779130 −0.389565 0.920999i \(-0.627375\pi\)
−0.389565 + 0.920999i \(0.627375\pi\)
\(464\) 0 0
\(465\) 4.22652e10 0.0419223
\(466\) 0 0
\(467\) −4.50995e11 −0.438779 −0.219390 0.975637i \(-0.570407\pi\)
−0.219390 + 0.975637i \(0.570407\pi\)
\(468\) 0 0
\(469\) −1.91473e11 −0.182738
\(470\) 0 0
\(471\) −1.14350e12 −1.07064
\(472\) 0 0
\(473\) 1.63374e11 0.150075
\(474\) 0 0
\(475\) −1.70145e11 −0.153355
\(476\) 0 0
\(477\) 5.85827e11 0.518128
\(478\) 0 0
\(479\) 5.26966e11 0.457376 0.228688 0.973500i \(-0.426556\pi\)
0.228688 + 0.973500i \(0.426556\pi\)
\(480\) 0 0
\(481\) 3.60827e11 0.307360
\(482\) 0 0
\(483\) −9.97072e11 −0.833613
\(484\) 0 0
\(485\) −1.45945e12 −1.19771
\(486\) 0 0
\(487\) −1.88076e12 −1.51514 −0.757570 0.652754i \(-0.773614\pi\)
−0.757570 + 0.652754i \(0.773614\pi\)
\(488\) 0 0
\(489\) −3.13469e12 −2.47916
\(490\) 0 0
\(491\) −1.68889e12 −1.31140 −0.655699 0.755022i \(-0.727626\pi\)
−0.655699 + 0.755022i \(0.727626\pi\)
\(492\) 0 0
\(493\) −2.68081e12 −2.04388
\(494\) 0 0
\(495\) −1.68480e11 −0.126132
\(496\) 0 0
\(497\) −2.86460e11 −0.210601
\(498\) 0 0
\(499\) −1.60699e12 −1.16027 −0.580137 0.814519i \(-0.697001\pi\)
−0.580137 + 0.814519i \(0.697001\pi\)
\(500\) 0 0
\(501\) 2.90772e11 0.206197
\(502\) 0 0
\(503\) −2.73565e12 −1.90548 −0.952740 0.303786i \(-0.901749\pi\)
−0.952740 + 0.303786i \(0.901749\pi\)
\(504\) 0 0
\(505\) 1.14767e12 0.785249
\(506\) 0 0
\(507\) 1.59144e11 0.106968
\(508\) 0 0
\(509\) 7.49256e11 0.494766 0.247383 0.968918i \(-0.420429\pi\)
0.247383 + 0.968918i \(0.420429\pi\)
\(510\) 0 0
\(511\) −4.28830e11 −0.278222
\(512\) 0 0
\(513\) −1.34459e11 −0.0857157
\(514\) 0 0
\(515\) 7.83548e11 0.490832
\(516\) 0 0
\(517\) −3.81940e11 −0.235119
\(518\) 0 0
\(519\) −1.29201e12 −0.781649
\(520\) 0 0
\(521\) 1.07862e12 0.641355 0.320678 0.947188i \(-0.396089\pi\)
0.320678 + 0.947188i \(0.396089\pi\)
\(522\) 0 0
\(523\) 2.69236e12 1.57353 0.786765 0.617253i \(-0.211754\pi\)
0.786765 + 0.617253i \(0.211754\pi\)
\(524\) 0 0
\(525\) −1.43121e11 −0.0822219
\(526\) 0 0
\(527\) 7.59755e10 0.0429067
\(528\) 0 0
\(529\) 3.23232e12 1.79459
\(530\) 0 0
\(531\) −2.10985e12 −1.15167
\(532\) 0 0
\(533\) −7.89851e11 −0.423909
\(534\) 0 0
\(535\) 1.86791e12 0.985743
\(536\) 0 0
\(537\) −2.75119e12 −1.42770
\(538\) 0 0
\(539\) −2.52408e11 −0.128811
\(540\) 0 0
\(541\) 1.94584e12 0.976604 0.488302 0.872675i \(-0.337616\pi\)
0.488302 + 0.872675i \(0.337616\pi\)
\(542\) 0 0
\(543\) 4.66074e12 2.30068
\(544\) 0 0
\(545\) −9.16622e11 −0.445047
\(546\) 0 0
\(547\) 7.49274e11 0.357847 0.178924 0.983863i \(-0.442739\pi\)
0.178924 + 0.983863i \(0.442739\pi\)
\(548\) 0 0
\(549\) −1.43417e12 −0.673791
\(550\) 0 0
\(551\) 3.16229e12 1.46157
\(552\) 0 0
\(553\) 9.76509e11 0.444031
\(554\) 0 0
\(555\) −3.14780e12 −1.40828
\(556\) 0 0
\(557\) 2.43252e12 1.07080 0.535399 0.844599i \(-0.320161\pi\)
0.535399 + 0.844599i \(0.320161\pi\)
\(558\) 0 0
\(559\) 6.50066e11 0.281581
\(560\) 0 0
\(561\) −6.27212e11 −0.267351
\(562\) 0 0
\(563\) 2.26566e12 0.950401 0.475200 0.879878i \(-0.342376\pi\)
0.475200 + 0.879878i \(0.342376\pi\)
\(564\) 0 0
\(565\) −1.18447e11 −0.0488999
\(566\) 0 0
\(567\) −9.37149e11 −0.380789
\(568\) 0 0
\(569\) 4.39567e12 1.75800 0.879002 0.476817i \(-0.158210\pi\)
0.879002 + 0.476817i \(0.158210\pi\)
\(570\) 0 0
\(571\) −2.81010e12 −1.10626 −0.553132 0.833094i \(-0.686567\pi\)
−0.553132 + 0.833094i \(0.686567\pi\)
\(572\) 0 0
\(573\) 4.53931e12 1.75912
\(574\) 0 0
\(575\) 7.22513e11 0.275639
\(576\) 0 0
\(577\) −3.06576e12 −1.15146 −0.575728 0.817642i \(-0.695281\pi\)
−0.575728 + 0.817642i \(0.695281\pi\)
\(578\) 0 0
\(579\) 1.73153e12 0.640291
\(580\) 0 0
\(581\) −5.53702e11 −0.201597
\(582\) 0 0
\(583\) 2.28801e11 0.0820257
\(584\) 0 0
\(585\) −6.70381e11 −0.236658
\(586\) 0 0
\(587\) −1.53677e12 −0.534240 −0.267120 0.963663i \(-0.586072\pi\)
−0.267120 + 0.963663i \(0.586072\pi\)
\(588\) 0 0
\(589\) −8.96210e10 −0.0306825
\(590\) 0 0
\(591\) −1.94496e12 −0.655793
\(592\) 0 0
\(593\) −3.34336e12 −1.11029 −0.555146 0.831753i \(-0.687338\pi\)
−0.555146 + 0.831753i \(0.687338\pi\)
\(594\) 0 0
\(595\) 1.30304e12 0.426219
\(596\) 0 0
\(597\) 1.15504e12 0.372145
\(598\) 0 0
\(599\) 9.97101e11 0.316460 0.158230 0.987402i \(-0.449421\pi\)
0.158230 + 0.987402i \(0.449421\pi\)
\(600\) 0 0
\(601\) −2.24332e12 −0.701386 −0.350693 0.936491i \(-0.614054\pi\)
−0.350693 + 0.936491i \(0.614054\pi\)
\(602\) 0 0
\(603\) −1.54478e12 −0.475817
\(604\) 0 0
\(605\) 2.94562e12 0.893878
\(606\) 0 0
\(607\) 5.75690e12 1.72123 0.860617 0.509253i \(-0.170078\pi\)
0.860617 + 0.509253i \(0.170078\pi\)
\(608\) 0 0
\(609\) 2.66003e12 0.783627
\(610\) 0 0
\(611\) −1.51974e12 −0.441147
\(612\) 0 0
\(613\) 3.44873e12 0.986479 0.493239 0.869894i \(-0.335813\pi\)
0.493239 + 0.869894i \(0.335813\pi\)
\(614\) 0 0
\(615\) 6.89053e12 1.94229
\(616\) 0 0
\(617\) −5.13402e12 −1.42618 −0.713089 0.701073i \(-0.752705\pi\)
−0.713089 + 0.701073i \(0.752705\pi\)
\(618\) 0 0
\(619\) −1.83851e12 −0.503336 −0.251668 0.967814i \(-0.580979\pi\)
−0.251668 + 0.967814i \(0.580979\pi\)
\(620\) 0 0
\(621\) 5.70972e11 0.154065
\(622\) 0 0
\(623\) 6.66802e11 0.177338
\(624\) 0 0
\(625\) −3.08200e12 −0.807928
\(626\) 0 0
\(627\) 7.39861e11 0.191182
\(628\) 0 0
\(629\) −5.65845e12 −1.44135
\(630\) 0 0
\(631\) −3.01780e12 −0.757805 −0.378903 0.925437i \(-0.623699\pi\)
−0.378903 + 0.925437i \(0.623699\pi\)
\(632\) 0 0
\(633\) 6.20963e12 1.53727
\(634\) 0 0
\(635\) 5.62017e12 1.37173
\(636\) 0 0
\(637\) −1.00433e12 −0.241685
\(638\) 0 0
\(639\) −2.31113e12 −0.548366
\(640\) 0 0
\(641\) 2.47728e12 0.579580 0.289790 0.957090i \(-0.406415\pi\)
0.289790 + 0.957090i \(0.406415\pi\)
\(642\) 0 0
\(643\) −5.96725e12 −1.37665 −0.688327 0.725401i \(-0.741654\pi\)
−0.688327 + 0.725401i \(0.741654\pi\)
\(644\) 0 0
\(645\) −5.67107e12 −1.29017
\(646\) 0 0
\(647\) 4.85153e12 1.08845 0.544227 0.838938i \(-0.316823\pi\)
0.544227 + 0.838938i \(0.316823\pi\)
\(648\) 0 0
\(649\) −8.24027e11 −0.182322
\(650\) 0 0
\(651\) −7.53867e10 −0.0164506
\(652\) 0 0
\(653\) −1.50523e12 −0.323961 −0.161980 0.986794i \(-0.551788\pi\)
−0.161980 + 0.986794i \(0.551788\pi\)
\(654\) 0 0
\(655\) −1.55749e12 −0.330628
\(656\) 0 0
\(657\) −3.45976e12 −0.724439
\(658\) 0 0
\(659\) 3.29009e12 0.679552 0.339776 0.940506i \(-0.389649\pi\)
0.339776 + 0.940506i \(0.389649\pi\)
\(660\) 0 0
\(661\) 7.79224e12 1.58765 0.793827 0.608144i \(-0.208086\pi\)
0.793827 + 0.608144i \(0.208086\pi\)
\(662\) 0 0
\(663\) −2.49567e12 −0.501622
\(664\) 0 0
\(665\) −1.53708e12 −0.304788
\(666\) 0 0
\(667\) −1.34285e13 −2.62701
\(668\) 0 0
\(669\) 4.55675e12 0.879503
\(670\) 0 0
\(671\) −5.60132e11 −0.106669
\(672\) 0 0
\(673\) −6.76161e12 −1.27052 −0.635261 0.772297i \(-0.719108\pi\)
−0.635261 + 0.772297i \(0.719108\pi\)
\(674\) 0 0
\(675\) 8.19583e10 0.0151959
\(676\) 0 0
\(677\) 6.04459e12 1.10590 0.552952 0.833213i \(-0.313501\pi\)
0.552952 + 0.833213i \(0.313501\pi\)
\(678\) 0 0
\(679\) 2.60316e12 0.469988
\(680\) 0 0
\(681\) −5.79287e12 −1.03212
\(682\) 0 0
\(683\) −3.24587e12 −0.570740 −0.285370 0.958417i \(-0.592116\pi\)
−0.285370 + 0.958417i \(0.592116\pi\)
\(684\) 0 0
\(685\) 8.59843e12 1.49215
\(686\) 0 0
\(687\) 8.29025e12 1.41992
\(688\) 0 0
\(689\) 9.10400e11 0.153903
\(690\) 0 0
\(691\) 4.14584e12 0.691769 0.345885 0.938277i \(-0.387579\pi\)
0.345885 + 0.938277i \(0.387579\pi\)
\(692\) 0 0
\(693\) 3.00511e11 0.0494949
\(694\) 0 0
\(695\) 5.27067e11 0.0856908
\(696\) 0 0
\(697\) 1.23863e13 1.98790
\(698\) 0 0
\(699\) −7.50512e12 −1.18908
\(700\) 0 0
\(701\) −5.47240e12 −0.855947 −0.427974 0.903791i \(-0.640772\pi\)
−0.427974 + 0.903791i \(0.640772\pi\)
\(702\) 0 0
\(703\) 6.67473e12 1.03071
\(704\) 0 0
\(705\) 1.32580e13 2.02128
\(706\) 0 0
\(707\) −2.04706e12 −0.308136
\(708\) 0 0
\(709\) 1.68810e12 0.250895 0.125447 0.992100i \(-0.459963\pi\)
0.125447 + 0.992100i \(0.459963\pi\)
\(710\) 0 0
\(711\) 7.87838e12 1.15618
\(712\) 0 0
\(713\) 3.80571e11 0.0551484
\(714\) 0 0
\(715\) −2.61825e11 −0.0374657
\(716\) 0 0
\(717\) 3.88131e12 0.548456
\(718\) 0 0
\(719\) 3.99409e12 0.557363 0.278681 0.960384i \(-0.410103\pi\)
0.278681 + 0.960384i \(0.410103\pi\)
\(720\) 0 0
\(721\) −1.39758e12 −0.192605
\(722\) 0 0
\(723\) −1.03642e13 −1.41062
\(724\) 0 0
\(725\) −1.92755e12 −0.259111
\(726\) 0 0
\(727\) 1.96928e12 0.261459 0.130730 0.991418i \(-0.458268\pi\)
0.130730 + 0.991418i \(0.458268\pi\)
\(728\) 0 0
\(729\) −6.58356e12 −0.863350
\(730\) 0 0
\(731\) −1.01942e13 −1.32046
\(732\) 0 0
\(733\) 2.48265e12 0.317649 0.158825 0.987307i \(-0.449230\pi\)
0.158825 + 0.987307i \(0.449230\pi\)
\(734\) 0 0
\(735\) 8.76162e12 1.10737
\(736\) 0 0
\(737\) −6.03333e11 −0.0753275
\(738\) 0 0
\(739\) 8.83198e12 1.08933 0.544664 0.838655i \(-0.316657\pi\)
0.544664 + 0.838655i \(0.316657\pi\)
\(740\) 0 0
\(741\) 2.94391e12 0.358709
\(742\) 0 0
\(743\) −5.88065e12 −0.707906 −0.353953 0.935263i \(-0.615163\pi\)
−0.353953 + 0.935263i \(0.615163\pi\)
\(744\) 0 0
\(745\) −9.16141e12 −1.08958
\(746\) 0 0
\(747\) −4.46722e12 −0.524921
\(748\) 0 0
\(749\) −3.33171e12 −0.386811
\(750\) 0 0
\(751\) 9.39265e12 1.07748 0.538739 0.842473i \(-0.318901\pi\)
0.538739 + 0.842473i \(0.318901\pi\)
\(752\) 0 0
\(753\) −2.46343e12 −0.279230
\(754\) 0 0
\(755\) 1.18831e13 1.33097
\(756\) 0 0
\(757\) 1.20690e13 1.33579 0.667897 0.744254i \(-0.267195\pi\)
0.667897 + 0.744254i \(0.267195\pi\)
\(758\) 0 0
\(759\) −3.14179e12 −0.343628
\(760\) 0 0
\(761\) 1.73414e12 0.187436 0.0937182 0.995599i \(-0.470125\pi\)
0.0937182 + 0.995599i \(0.470125\pi\)
\(762\) 0 0
\(763\) 1.63494e12 0.174639
\(764\) 0 0
\(765\) 1.05128e13 1.10980
\(766\) 0 0
\(767\) −3.27880e12 −0.342086
\(768\) 0 0
\(769\) −1.87490e13 −1.93335 −0.966675 0.256006i \(-0.917593\pi\)
−0.966675 + 0.256006i \(0.917593\pi\)
\(770\) 0 0
\(771\) 2.16553e13 2.20709
\(772\) 0 0
\(773\) −2.23308e12 −0.224956 −0.112478 0.993654i \(-0.535879\pi\)
−0.112478 + 0.993654i \(0.535879\pi\)
\(774\) 0 0
\(775\) 5.46278e10 0.00543947
\(776\) 0 0
\(777\) 5.61460e12 0.552617
\(778\) 0 0
\(779\) −1.46110e13 −1.42154
\(780\) 0 0
\(781\) −9.02638e11 −0.0868129
\(782\) 0 0
\(783\) −1.52327e12 −0.144826
\(784\) 0 0
\(785\) 7.48571e12 0.703590
\(786\) 0 0
\(787\) −7.05497e12 −0.655555 −0.327777 0.944755i \(-0.606300\pi\)
−0.327777 + 0.944755i \(0.606300\pi\)
\(788\) 0 0
\(789\) −1.36765e13 −1.25640
\(790\) 0 0
\(791\) 2.11270e11 0.0191886
\(792\) 0 0
\(793\) −2.22876e12 −0.200140
\(794\) 0 0
\(795\) −7.94219e12 −0.705161
\(796\) 0 0
\(797\) 1.16654e13 1.02409 0.512045 0.858959i \(-0.328888\pi\)
0.512045 + 0.858959i \(0.328888\pi\)
\(798\) 0 0
\(799\) 2.38323e13 2.06874
\(800\) 0 0
\(801\) 5.37969e12 0.461755
\(802\) 0 0
\(803\) −1.35125e12 −0.114687
\(804\) 0 0
\(805\) 6.52712e12 0.547823
\(806\) 0 0
\(807\) 1.44635e13 1.20045
\(808\) 0 0
\(809\) −1.37043e13 −1.12483 −0.562415 0.826855i \(-0.690128\pi\)
−0.562415 + 0.826855i \(0.690128\pi\)
\(810\) 0 0
\(811\) −2.07440e12 −0.168383 −0.0841917 0.996450i \(-0.526831\pi\)
−0.0841917 + 0.996450i \(0.526831\pi\)
\(812\) 0 0
\(813\) −1.74117e13 −1.39776
\(814\) 0 0
\(815\) 2.05206e13 1.62922
\(816\) 0 0
\(817\) 1.20252e13 0.944261
\(818\) 0 0
\(819\) 1.19573e12 0.0928658
\(820\) 0 0
\(821\) −1.51952e13 −1.16724 −0.583622 0.812026i \(-0.698365\pi\)
−0.583622 + 0.812026i \(0.698365\pi\)
\(822\) 0 0
\(823\) −8.32881e12 −0.632825 −0.316412 0.948622i \(-0.602478\pi\)
−0.316412 + 0.948622i \(0.602478\pi\)
\(824\) 0 0
\(825\) −4.50977e11 −0.0338931
\(826\) 0 0
\(827\) 1.50997e13 1.12252 0.561258 0.827641i \(-0.310317\pi\)
0.561258 + 0.827641i \(0.310317\pi\)
\(828\) 0 0
\(829\) −9.65383e12 −0.709912 −0.354956 0.934883i \(-0.615504\pi\)
−0.354956 + 0.934883i \(0.615504\pi\)
\(830\) 0 0
\(831\) −1.30384e13 −0.948458
\(832\) 0 0
\(833\) 1.57498e13 1.13337
\(834\) 0 0
\(835\) −1.90347e12 −0.135506
\(836\) 0 0
\(837\) 4.31701e10 0.00304032
\(838\) 0 0
\(839\) −1.96235e13 −1.36725 −0.683623 0.729835i \(-0.739597\pi\)
−0.683623 + 0.729835i \(0.739597\pi\)
\(840\) 0 0
\(841\) 2.13181e13 1.46949
\(842\) 0 0
\(843\) −1.58742e13 −1.08260
\(844\) 0 0
\(845\) −1.04180e12 −0.0702959
\(846\) 0 0
\(847\) −5.25399e12 −0.350763
\(848\) 0 0
\(849\) 2.32622e13 1.53662
\(850\) 0 0
\(851\) −2.83439e13 −1.85258
\(852\) 0 0
\(853\) −1.66671e13 −1.07793 −0.538963 0.842329i \(-0.681184\pi\)
−0.538963 + 0.842329i \(0.681184\pi\)
\(854\) 0 0
\(855\) −1.24010e13 −0.793613
\(856\) 0 0
\(857\) −8.56434e12 −0.542351 −0.271175 0.962530i \(-0.587412\pi\)
−0.271175 + 0.962530i \(0.587412\pi\)
\(858\) 0 0
\(859\) −1.87649e12 −0.117592 −0.0587958 0.998270i \(-0.518726\pi\)
−0.0587958 + 0.998270i \(0.518726\pi\)
\(860\) 0 0
\(861\) −1.22904e13 −0.762167
\(862\) 0 0
\(863\) −2.54184e11 −0.0155991 −0.00779956 0.999970i \(-0.502483\pi\)
−0.00779956 + 0.999970i \(0.502483\pi\)
\(864\) 0 0
\(865\) 8.45785e12 0.513674
\(866\) 0 0
\(867\) 1.60011e13 0.961753
\(868\) 0 0
\(869\) 3.07699e12 0.183036
\(870\) 0 0
\(871\) −2.40066e12 −0.141335
\(872\) 0 0
\(873\) 2.10021e13 1.22376
\(874\) 0 0
\(875\) 6.61913e12 0.381737
\(876\) 0 0
\(877\) −2.88730e13 −1.64814 −0.824069 0.566490i \(-0.808301\pi\)
−0.824069 + 0.566490i \(0.808301\pi\)
\(878\) 0 0
\(879\) −1.35706e13 −0.766742
\(880\) 0 0
\(881\) −1.43284e13 −0.801317 −0.400659 0.916227i \(-0.631219\pi\)
−0.400659 + 0.916227i \(0.631219\pi\)
\(882\) 0 0
\(883\) −3.54065e12 −0.196001 −0.0980007 0.995186i \(-0.531245\pi\)
−0.0980007 + 0.995186i \(0.531245\pi\)
\(884\) 0 0
\(885\) 2.86037e13 1.56739
\(886\) 0 0
\(887\) −1.07018e13 −0.580497 −0.290249 0.956951i \(-0.593738\pi\)
−0.290249 + 0.956951i \(0.593738\pi\)
\(888\) 0 0
\(889\) −1.00245e13 −0.538274
\(890\) 0 0
\(891\) −2.95297e12 −0.156967
\(892\) 0 0
\(893\) −2.81127e13 −1.47935
\(894\) 0 0
\(895\) 1.80101e13 0.938235
\(896\) 0 0
\(897\) −1.25012e13 −0.644740
\(898\) 0 0
\(899\) −1.01531e12 −0.0518416
\(900\) 0 0
\(901\) −1.42768e13 −0.721720
\(902\) 0 0
\(903\) 1.01152e13 0.506269
\(904\) 0 0
\(905\) −3.05106e13 −1.51193
\(906\) 0 0
\(907\) −2.74516e13 −1.34690 −0.673448 0.739234i \(-0.735188\pi\)
−0.673448 + 0.739234i \(0.735188\pi\)
\(908\) 0 0
\(909\) −1.65155e13 −0.802331
\(910\) 0 0
\(911\) −1.57903e13 −0.759550 −0.379775 0.925079i \(-0.623999\pi\)
−0.379775 + 0.925079i \(0.623999\pi\)
\(912\) 0 0
\(913\) −1.74472e12 −0.0831013
\(914\) 0 0
\(915\) 1.94434e13 0.917016
\(916\) 0 0
\(917\) 2.77803e12 0.129740
\(918\) 0 0
\(919\) −3.33575e13 −1.54267 −0.771335 0.636429i \(-0.780411\pi\)
−0.771335 + 0.636429i \(0.780411\pi\)
\(920\) 0 0
\(921\) 7.85564e12 0.359760
\(922\) 0 0
\(923\) −3.59160e12 −0.162885
\(924\) 0 0
\(925\) −4.06853e12 −0.182726
\(926\) 0 0
\(927\) −1.12756e13 −0.501509
\(928\) 0 0
\(929\) −5.90953e12 −0.260305 −0.130152 0.991494i \(-0.541547\pi\)
−0.130152 + 0.991494i \(0.541547\pi\)
\(930\) 0 0
\(931\) −1.85785e13 −0.810471
\(932\) 0 0
\(933\) 3.48352e13 1.50505
\(934\) 0 0
\(935\) 4.10591e12 0.175694
\(936\) 0 0
\(937\) 2.94135e13 1.24657 0.623287 0.781993i \(-0.285797\pi\)
0.623287 + 0.781993i \(0.285797\pi\)
\(938\) 0 0
\(939\) 1.84276e12 0.0773522
\(940\) 0 0
\(941\) −1.78277e13 −0.741212 −0.370606 0.928790i \(-0.620850\pi\)
−0.370606 + 0.928790i \(0.620850\pi\)
\(942\) 0 0
\(943\) 6.20448e13 2.55507
\(944\) 0 0
\(945\) 7.40404e11 0.0302013
\(946\) 0 0
\(947\) 2.20380e13 0.890427 0.445213 0.895425i \(-0.353128\pi\)
0.445213 + 0.895425i \(0.353128\pi\)
\(948\) 0 0
\(949\) −5.37661e12 −0.215184
\(950\) 0 0
\(951\) 1.05856e13 0.419667
\(952\) 0 0
\(953\) 3.10318e13 1.21868 0.609340 0.792909i \(-0.291435\pi\)
0.609340 + 0.792909i \(0.291435\pi\)
\(954\) 0 0
\(955\) −2.97156e13 −1.15603
\(956\) 0 0
\(957\) 8.38180e12 0.323023
\(958\) 0 0
\(959\) −1.53367e13 −0.585527
\(960\) 0 0
\(961\) −2.64108e13 −0.998912
\(962\) 0 0
\(963\) −2.68799e13 −1.00719
\(964\) 0 0
\(965\) −1.13351e13 −0.420778
\(966\) 0 0
\(967\) −3.86641e13 −1.42196 −0.710982 0.703210i \(-0.751749\pi\)
−0.710982 + 0.703210i \(0.751749\pi\)
\(968\) 0 0
\(969\) −4.61660e13 −1.68215
\(970\) 0 0
\(971\) −2.91204e13 −1.05126 −0.525631 0.850713i \(-0.676171\pi\)
−0.525631 + 0.850713i \(0.676171\pi\)
\(972\) 0 0
\(973\) −9.40108e11 −0.0336256
\(974\) 0 0
\(975\) −1.79444e12 −0.0635927
\(976\) 0 0
\(977\) −2.43957e13 −0.856618 −0.428309 0.903632i \(-0.640891\pi\)
−0.428309 + 0.903632i \(0.640891\pi\)
\(978\) 0 0
\(979\) 2.10110e12 0.0731012
\(980\) 0 0
\(981\) 1.31905e13 0.454729
\(982\) 0 0
\(983\) −1.65480e13 −0.565268 −0.282634 0.959228i \(-0.591208\pi\)
−0.282634 + 0.959228i \(0.591208\pi\)
\(984\) 0 0
\(985\) 1.27323e13 0.430965
\(986\) 0 0
\(987\) −2.36477e13 −0.793160
\(988\) 0 0
\(989\) −5.10643e13 −1.69721
\(990\) 0 0
\(991\) 6.37548e12 0.209982 0.104991 0.994473i \(-0.466519\pi\)
0.104991 + 0.994473i \(0.466519\pi\)
\(992\) 0 0
\(993\) −1.30086e13 −0.424581
\(994\) 0 0
\(995\) −7.56122e12 −0.244561
\(996\) 0 0
\(997\) 1.52049e13 0.487366 0.243683 0.969855i \(-0.421644\pi\)
0.243683 + 0.969855i \(0.421644\pi\)
\(998\) 0 0
\(999\) −3.21519e12 −0.102132
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.h.1.5 5
4.3 odd 2 13.10.a.b.1.2 5
12.11 even 2 117.10.a.e.1.4 5
20.19 odd 2 325.10.a.b.1.4 5
52.51 odd 2 169.10.a.b.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.2 5 4.3 odd 2
117.10.a.e.1.4 5 12.11 even 2
169.10.a.b.1.4 5 52.51 odd 2
208.10.a.h.1.5 5 1.1 even 1 trivial
325.10.a.b.1.4 5 20.19 odd 2