Properties

Label 208.10.a.h.1.4
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.150341\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+136.532 q^{3} +2554.62 q^{5} -9399.91 q^{7} -1041.89 q^{9} -44094.1 q^{11} +28561.0 q^{13} +348788. q^{15} +28289.4 q^{17} -273836. q^{19} -1.28339e6 q^{21} +1.12921e6 q^{23} +4.57295e6 q^{25} -2.82962e6 q^{27} -1.63691e6 q^{29} -6.65402e6 q^{31} -6.02028e6 q^{33} -2.40132e7 q^{35} -1.71193e7 q^{37} +3.89950e6 q^{39} -5.15179e6 q^{41} +1.97275e7 q^{43} -2.66162e6 q^{45} -4.82947e7 q^{47} +4.80048e7 q^{49} +3.86242e6 q^{51} -3.06731e7 q^{53} -1.12644e8 q^{55} -3.73875e7 q^{57} +1.15154e7 q^{59} -3.62567e7 q^{61} +9.79364e6 q^{63} +7.29624e7 q^{65} +6.48390e7 q^{67} +1.54174e8 q^{69} +1.47071e8 q^{71} -3.37321e8 q^{73} +6.24356e8 q^{75} +4.14481e8 q^{77} +2.04060e8 q^{79} -3.65828e8 q^{81} -7.61700e8 q^{83} +7.22685e7 q^{85} -2.23491e8 q^{87} -8.29058e8 q^{89} -2.68471e8 q^{91} -9.08490e8 q^{93} -6.99547e8 q^{95} +1.00647e9 q^{97} +4.59410e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 161 q^{3} + 1803 q^{5} - 10099 q^{7} + 61060 q^{9} - 121746 q^{11} + 142805 q^{13} - 105973 q^{15} - 495669 q^{17} + 840738 q^{19} - 1599467 q^{21} + 592152 q^{23} + 1670362 q^{25} - 6847883 q^{27}+ \cdots - 3016199848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 136.532 0.973174 0.486587 0.873632i \(-0.338242\pi\)
0.486587 + 0.873632i \(0.338242\pi\)
\(4\) 0 0
\(5\) 2554.62 1.82794 0.913968 0.405787i \(-0.133002\pi\)
0.913968 + 0.405787i \(0.133002\pi\)
\(6\) 0 0
\(7\) −9399.91 −1.47973 −0.739865 0.672755i \(-0.765111\pi\)
−0.739865 + 0.672755i \(0.765111\pi\)
\(8\) 0 0
\(9\) −1041.89 −0.0529333
\(10\) 0 0
\(11\) −44094.1 −0.908058 −0.454029 0.890987i \(-0.650014\pi\)
−0.454029 + 0.890987i \(0.650014\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) 348788. 1.77890
\(16\) 0 0
\(17\) 28289.4 0.0821492 0.0410746 0.999156i \(-0.486922\pi\)
0.0410746 + 0.999156i \(0.486922\pi\)
\(18\) 0 0
\(19\) −273836. −0.482058 −0.241029 0.970518i \(-0.577485\pi\)
−0.241029 + 0.970518i \(0.577485\pi\)
\(20\) 0 0
\(21\) −1.28339e6 −1.44003
\(22\) 0 0
\(23\) 1.12921e6 0.841393 0.420697 0.907201i \(-0.361786\pi\)
0.420697 + 0.907201i \(0.361786\pi\)
\(24\) 0 0
\(25\) 4.57295e6 2.34135
\(26\) 0 0
\(27\) −2.82962e6 −1.02469
\(28\) 0 0
\(29\) −1.63691e6 −0.429768 −0.214884 0.976640i \(-0.568937\pi\)
−0.214884 + 0.976640i \(0.568937\pi\)
\(30\) 0 0
\(31\) −6.65402e6 −1.29407 −0.647033 0.762462i \(-0.723991\pi\)
−0.647033 + 0.762462i \(0.723991\pi\)
\(32\) 0 0
\(33\) −6.02028e6 −0.883698
\(34\) 0 0
\(35\) −2.40132e7 −2.70485
\(36\) 0 0
\(37\) −1.71193e7 −1.50169 −0.750843 0.660481i \(-0.770352\pi\)
−0.750843 + 0.660481i \(0.770352\pi\)
\(38\) 0 0
\(39\) 3.89950e6 0.269910
\(40\) 0 0
\(41\) −5.15179e6 −0.284728 −0.142364 0.989814i \(-0.545470\pi\)
−0.142364 + 0.989814i \(0.545470\pi\)
\(42\) 0 0
\(43\) 1.97275e7 0.879962 0.439981 0.898007i \(-0.354985\pi\)
0.439981 + 0.898007i \(0.354985\pi\)
\(44\) 0 0
\(45\) −2.66162e6 −0.0967587
\(46\) 0 0
\(47\) −4.82947e7 −1.44364 −0.721821 0.692080i \(-0.756695\pi\)
−0.721821 + 0.692080i \(0.756695\pi\)
\(48\) 0 0
\(49\) 4.80048e7 1.18960
\(50\) 0 0
\(51\) 3.86242e6 0.0799454
\(52\) 0 0
\(53\) −3.06731e7 −0.533970 −0.266985 0.963701i \(-0.586027\pi\)
−0.266985 + 0.963701i \(0.586027\pi\)
\(54\) 0 0
\(55\) −1.12644e8 −1.65987
\(56\) 0 0
\(57\) −3.73875e7 −0.469126
\(58\) 0 0
\(59\) 1.15154e7 0.123722 0.0618609 0.998085i \(-0.480296\pi\)
0.0618609 + 0.998085i \(0.480296\pi\)
\(60\) 0 0
\(61\) −3.62567e7 −0.335277 −0.167639 0.985849i \(-0.553614\pi\)
−0.167639 + 0.985849i \(0.553614\pi\)
\(62\) 0 0
\(63\) 9.79364e6 0.0783271
\(64\) 0 0
\(65\) 7.29624e7 0.506978
\(66\) 0 0
\(67\) 6.48390e7 0.393097 0.196548 0.980494i \(-0.437027\pi\)
0.196548 + 0.980494i \(0.437027\pi\)
\(68\) 0 0
\(69\) 1.54174e8 0.818822
\(70\) 0 0
\(71\) 1.47071e8 0.686853 0.343427 0.939180i \(-0.388412\pi\)
0.343427 + 0.939180i \(0.388412\pi\)
\(72\) 0 0
\(73\) −3.37321e8 −1.39024 −0.695122 0.718892i \(-0.744650\pi\)
−0.695122 + 0.718892i \(0.744650\pi\)
\(74\) 0 0
\(75\) 6.24356e8 2.27854
\(76\) 0 0
\(77\) 4.14481e8 1.34368
\(78\) 0 0
\(79\) 2.04060e8 0.589436 0.294718 0.955584i \(-0.404774\pi\)
0.294718 + 0.955584i \(0.404774\pi\)
\(80\) 0 0
\(81\) −3.65828e8 −0.944265
\(82\) 0 0
\(83\) −7.61700e8 −1.76170 −0.880851 0.473394i \(-0.843029\pi\)
−0.880851 + 0.473394i \(0.843029\pi\)
\(84\) 0 0
\(85\) 7.22685e7 0.150163
\(86\) 0 0
\(87\) −2.23491e8 −0.418239
\(88\) 0 0
\(89\) −8.29058e8 −1.40065 −0.700326 0.713823i \(-0.746962\pi\)
−0.700326 + 0.713823i \(0.746962\pi\)
\(90\) 0 0
\(91\) −2.68471e8 −0.410403
\(92\) 0 0
\(93\) −9.08490e8 −1.25935
\(94\) 0 0
\(95\) −6.99547e8 −0.881172
\(96\) 0 0
\(97\) 1.00647e9 1.15432 0.577161 0.816631i \(-0.304161\pi\)
0.577161 + 0.816631i \(0.304161\pi\)
\(98\) 0 0
\(99\) 4.59410e7 0.0480665
\(100\) 0 0
\(101\) 1.59054e9 1.52089 0.760446 0.649401i \(-0.224980\pi\)
0.760446 + 0.649401i \(0.224980\pi\)
\(102\) 0 0
\(103\) −1.13889e9 −0.997040 −0.498520 0.866878i \(-0.666123\pi\)
−0.498520 + 0.866878i \(0.666123\pi\)
\(104\) 0 0
\(105\) −3.27858e9 −2.63229
\(106\) 0 0
\(107\) 7.21432e8 0.532069 0.266035 0.963963i \(-0.414286\pi\)
0.266035 + 0.963963i \(0.414286\pi\)
\(108\) 0 0
\(109\) −6.86462e8 −0.465798 −0.232899 0.972501i \(-0.574821\pi\)
−0.232899 + 0.972501i \(0.574821\pi\)
\(110\) 0 0
\(111\) −2.33734e9 −1.46140
\(112\) 0 0
\(113\) −8.33795e8 −0.481068 −0.240534 0.970641i \(-0.577323\pi\)
−0.240534 + 0.970641i \(0.577323\pi\)
\(114\) 0 0
\(115\) 2.88470e9 1.53801
\(116\) 0 0
\(117\) −2.97573e7 −0.0146811
\(118\) 0 0
\(119\) −2.65918e8 −0.121559
\(120\) 0 0
\(121\) −4.13658e8 −0.175431
\(122\) 0 0
\(123\) −7.03386e8 −0.277090
\(124\) 0 0
\(125\) 6.69264e9 2.45190
\(126\) 0 0
\(127\) 4.01307e8 0.136886 0.0684431 0.997655i \(-0.478197\pi\)
0.0684431 + 0.997655i \(0.478197\pi\)
\(128\) 0 0
\(129\) 2.69344e9 0.856356
\(130\) 0 0
\(131\) 3.78377e9 1.12255 0.561273 0.827631i \(-0.310312\pi\)
0.561273 + 0.827631i \(0.310312\pi\)
\(132\) 0 0
\(133\) 2.57404e9 0.713317
\(134\) 0 0
\(135\) −7.22860e9 −1.87306
\(136\) 0 0
\(137\) 1.45518e9 0.352919 0.176459 0.984308i \(-0.443536\pi\)
0.176459 + 0.984308i \(0.443536\pi\)
\(138\) 0 0
\(139\) −1.50381e9 −0.341685 −0.170842 0.985298i \(-0.554649\pi\)
−0.170842 + 0.985298i \(0.554649\pi\)
\(140\) 0 0
\(141\) −6.59380e9 −1.40491
\(142\) 0 0
\(143\) −1.25937e9 −0.251850
\(144\) 0 0
\(145\) −4.18168e9 −0.785588
\(146\) 0 0
\(147\) 6.55421e9 1.15769
\(148\) 0 0
\(149\) −4.28624e9 −0.712423 −0.356212 0.934405i \(-0.615932\pi\)
−0.356212 + 0.934405i \(0.615932\pi\)
\(150\) 0 0
\(151\) −4.79918e8 −0.0751226 −0.0375613 0.999294i \(-0.511959\pi\)
−0.0375613 + 0.999294i \(0.511959\pi\)
\(152\) 0 0
\(153\) −2.94743e7 −0.00434843
\(154\) 0 0
\(155\) −1.69985e10 −2.36547
\(156\) 0 0
\(157\) −8.24624e9 −1.08320 −0.541598 0.840637i \(-0.682181\pi\)
−0.541598 + 0.840637i \(0.682181\pi\)
\(158\) 0 0
\(159\) −4.18788e9 −0.519646
\(160\) 0 0
\(161\) −1.06145e10 −1.24504
\(162\) 0 0
\(163\) 5.93537e9 0.658573 0.329286 0.944230i \(-0.393192\pi\)
0.329286 + 0.944230i \(0.393192\pi\)
\(164\) 0 0
\(165\) −1.53795e10 −1.61534
\(166\) 0 0
\(167\) 7.41172e9 0.737386 0.368693 0.929551i \(-0.379805\pi\)
0.368693 + 0.929551i \(0.379805\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 2.85306e8 0.0255169
\(172\) 0 0
\(173\) 5.63923e9 0.478643 0.239322 0.970940i \(-0.423075\pi\)
0.239322 + 0.970940i \(0.423075\pi\)
\(174\) 0 0
\(175\) −4.29853e10 −3.46457
\(176\) 0 0
\(177\) 1.57223e9 0.120403
\(178\) 0 0
\(179\) −1.23881e10 −0.901916 −0.450958 0.892545i \(-0.648918\pi\)
−0.450958 + 0.892545i \(0.648918\pi\)
\(180\) 0 0
\(181\) −2.45852e10 −1.70263 −0.851314 0.524657i \(-0.824194\pi\)
−0.851314 + 0.524657i \(0.824194\pi\)
\(182\) 0 0
\(183\) −4.95022e9 −0.326283
\(184\) 0 0
\(185\) −4.37334e10 −2.74499
\(186\) 0 0
\(187\) −1.24739e9 −0.0745962
\(188\) 0 0
\(189\) 2.65982e10 1.51626
\(190\) 0 0
\(191\) 1.06604e10 0.579592 0.289796 0.957088i \(-0.406413\pi\)
0.289796 + 0.957088i \(0.406413\pi\)
\(192\) 0 0
\(193\) −2.09640e10 −1.08759 −0.543797 0.839217i \(-0.683014\pi\)
−0.543797 + 0.839217i \(0.683014\pi\)
\(194\) 0 0
\(195\) 9.96174e9 0.493378
\(196\) 0 0
\(197\) 1.27051e10 0.601009 0.300504 0.953780i \(-0.402845\pi\)
0.300504 + 0.953780i \(0.402845\pi\)
\(198\) 0 0
\(199\) −2.57825e9 −0.116543 −0.0582715 0.998301i \(-0.518559\pi\)
−0.0582715 + 0.998301i \(0.518559\pi\)
\(200\) 0 0
\(201\) 8.85262e9 0.382551
\(202\) 0 0
\(203\) 1.53868e10 0.635941
\(204\) 0 0
\(205\) −1.31608e10 −0.520465
\(206\) 0 0
\(207\) −1.17651e9 −0.0445377
\(208\) 0 0
\(209\) 1.20746e10 0.437737
\(210\) 0 0
\(211\) −1.94301e10 −0.674846 −0.337423 0.941353i \(-0.609555\pi\)
−0.337423 + 0.941353i \(0.609555\pi\)
\(212\) 0 0
\(213\) 2.00799e10 0.668427
\(214\) 0 0
\(215\) 5.03962e10 1.60851
\(216\) 0 0
\(217\) 6.25472e10 1.91487
\(218\) 0 0
\(219\) −4.60553e10 −1.35295
\(220\) 0 0
\(221\) 8.07973e8 0.0227841
\(222\) 0 0
\(223\) −9.56077e9 −0.258893 −0.129447 0.991586i \(-0.541320\pi\)
−0.129447 + 0.991586i \(0.541320\pi\)
\(224\) 0 0
\(225\) −4.76449e9 −0.123935
\(226\) 0 0
\(227\) 2.02032e10 0.505015 0.252507 0.967595i \(-0.418745\pi\)
0.252507 + 0.967595i \(0.418745\pi\)
\(228\) 0 0
\(229\) −2.45816e10 −0.590678 −0.295339 0.955392i \(-0.595433\pi\)
−0.295339 + 0.955392i \(0.595433\pi\)
\(230\) 0 0
\(231\) 5.65901e10 1.30763
\(232\) 0 0
\(233\) 7.93260e10 1.76325 0.881625 0.471951i \(-0.156450\pi\)
0.881625 + 0.471951i \(0.156450\pi\)
\(234\) 0 0
\(235\) −1.23375e11 −2.63888
\(236\) 0 0
\(237\) 2.78609e10 0.573623
\(238\) 0 0
\(239\) 2.62515e10 0.520431 0.260215 0.965551i \(-0.416206\pi\)
0.260215 + 0.965551i \(0.416206\pi\)
\(240\) 0 0
\(241\) −1.00766e11 −1.92415 −0.962074 0.272787i \(-0.912055\pi\)
−0.962074 + 0.272787i \(0.912055\pi\)
\(242\) 0 0
\(243\) 5.74808e9 0.105753
\(244\) 0 0
\(245\) 1.22634e11 2.17452
\(246\) 0 0
\(247\) −7.82103e9 −0.133699
\(248\) 0 0
\(249\) −1.03997e11 −1.71444
\(250\) 0 0
\(251\) 8.72780e10 1.38795 0.693973 0.720001i \(-0.255858\pi\)
0.693973 + 0.720001i \(0.255858\pi\)
\(252\) 0 0
\(253\) −4.97914e10 −0.764034
\(254\) 0 0
\(255\) 9.86700e9 0.146135
\(256\) 0 0
\(257\) 4.84205e10 0.692358 0.346179 0.938169i \(-0.387479\pi\)
0.346179 + 0.938169i \(0.387479\pi\)
\(258\) 0 0
\(259\) 1.60920e11 2.22209
\(260\) 0 0
\(261\) 1.70547e9 0.0227490
\(262\) 0 0
\(263\) 4.40656e9 0.0567935 0.0283968 0.999597i \(-0.490960\pi\)
0.0283968 + 0.999597i \(0.490960\pi\)
\(264\) 0 0
\(265\) −7.83582e10 −0.976063
\(266\) 0 0
\(267\) −1.13193e11 −1.36308
\(268\) 0 0
\(269\) 1.41879e11 1.65209 0.826045 0.563604i \(-0.190586\pi\)
0.826045 + 0.563604i \(0.190586\pi\)
\(270\) 0 0
\(271\) 7.09707e10 0.799313 0.399657 0.916665i \(-0.369129\pi\)
0.399657 + 0.916665i \(0.369129\pi\)
\(272\) 0 0
\(273\) −3.66550e10 −0.399394
\(274\) 0 0
\(275\) −2.01640e11 −2.12608
\(276\) 0 0
\(277\) 1.22293e11 1.24808 0.624039 0.781393i \(-0.285491\pi\)
0.624039 + 0.781393i \(0.285491\pi\)
\(278\) 0 0
\(279\) 6.93274e9 0.0684992
\(280\) 0 0
\(281\) −9.91936e10 −0.949085 −0.474543 0.880233i \(-0.657387\pi\)
−0.474543 + 0.880233i \(0.657387\pi\)
\(282\) 0 0
\(283\) −1.89673e11 −1.75779 −0.878893 0.477019i \(-0.841717\pi\)
−0.878893 + 0.477019i \(0.841717\pi\)
\(284\) 0 0
\(285\) −9.55108e10 −0.857533
\(286\) 0 0
\(287\) 4.84264e10 0.421321
\(288\) 0 0
\(289\) −1.17788e11 −0.993252
\(290\) 0 0
\(291\) 1.37415e11 1.12336
\(292\) 0 0
\(293\) 1.95772e11 1.55183 0.775917 0.630835i \(-0.217287\pi\)
0.775917 + 0.630835i \(0.217287\pi\)
\(294\) 0 0
\(295\) 2.94175e10 0.226155
\(296\) 0 0
\(297\) 1.24770e11 0.930475
\(298\) 0 0
\(299\) 3.22513e10 0.233360
\(300\) 0 0
\(301\) −1.85437e11 −1.30211
\(302\) 0 0
\(303\) 2.17160e11 1.48009
\(304\) 0 0
\(305\) −9.26220e10 −0.612865
\(306\) 0 0
\(307\) 7.17504e10 0.461001 0.230500 0.973072i \(-0.425964\pi\)
0.230500 + 0.973072i \(0.425964\pi\)
\(308\) 0 0
\(309\) −1.55495e11 −0.970293
\(310\) 0 0
\(311\) −2.11023e10 −0.127911 −0.0639554 0.997953i \(-0.520372\pi\)
−0.0639554 + 0.997953i \(0.520372\pi\)
\(312\) 0 0
\(313\) −1.44667e11 −0.851963 −0.425982 0.904732i \(-0.640071\pi\)
−0.425982 + 0.904732i \(0.640071\pi\)
\(314\) 0 0
\(315\) 2.50190e10 0.143177
\(316\) 0 0
\(317\) 5.78709e10 0.321880 0.160940 0.986964i \(-0.448547\pi\)
0.160940 + 0.986964i \(0.448547\pi\)
\(318\) 0 0
\(319\) 7.21781e10 0.390254
\(320\) 0 0
\(321\) 9.84988e10 0.517796
\(322\) 0 0
\(323\) −7.74665e9 −0.0396007
\(324\) 0 0
\(325\) 1.30608e11 0.649373
\(326\) 0 0
\(327\) −9.37244e10 −0.453302
\(328\) 0 0
\(329\) 4.53966e11 2.13620
\(330\) 0 0
\(331\) 1.00283e11 0.459199 0.229600 0.973285i \(-0.426258\pi\)
0.229600 + 0.973285i \(0.426258\pi\)
\(332\) 0 0
\(333\) 1.78364e10 0.0794892
\(334\) 0 0
\(335\) 1.65639e11 0.718555
\(336\) 0 0
\(337\) −5.73297e10 −0.242128 −0.121064 0.992645i \(-0.538631\pi\)
−0.121064 + 0.992645i \(0.538631\pi\)
\(338\) 0 0
\(339\) −1.13840e11 −0.468163
\(340\) 0 0
\(341\) 2.93403e11 1.17509
\(342\) 0 0
\(343\) −7.19204e10 −0.280562
\(344\) 0 0
\(345\) 3.93855e11 1.49675
\(346\) 0 0
\(347\) 2.34072e10 0.0866695 0.0433347 0.999061i \(-0.486202\pi\)
0.0433347 + 0.999061i \(0.486202\pi\)
\(348\) 0 0
\(349\) 3.92804e11 1.41730 0.708649 0.705562i \(-0.249305\pi\)
0.708649 + 0.705562i \(0.249305\pi\)
\(350\) 0 0
\(351\) −8.08168e10 −0.284197
\(352\) 0 0
\(353\) 2.16422e11 0.741849 0.370925 0.928663i \(-0.379041\pi\)
0.370925 + 0.928663i \(0.379041\pi\)
\(354\) 0 0
\(355\) 3.75710e11 1.25552
\(356\) 0 0
\(357\) −3.63064e10 −0.118298
\(358\) 0 0
\(359\) −3.49576e11 −1.11075 −0.555376 0.831600i \(-0.687426\pi\)
−0.555376 + 0.831600i \(0.687426\pi\)
\(360\) 0 0
\(361\) −2.47701e11 −0.767620
\(362\) 0 0
\(363\) −5.64778e10 −0.170725
\(364\) 0 0
\(365\) −8.61727e11 −2.54128
\(366\) 0 0
\(367\) 1.83237e9 0.00527248 0.00263624 0.999997i \(-0.499161\pi\)
0.00263624 + 0.999997i \(0.499161\pi\)
\(368\) 0 0
\(369\) 5.36758e9 0.0150716
\(370\) 0 0
\(371\) 2.88325e11 0.790132
\(372\) 0 0
\(373\) 5.52030e10 0.147663 0.0738317 0.997271i \(-0.476477\pi\)
0.0738317 + 0.997271i \(0.476477\pi\)
\(374\) 0 0
\(375\) 9.13763e11 2.38612
\(376\) 0 0
\(377\) −4.67518e10 −0.119196
\(378\) 0 0
\(379\) −2.25258e11 −0.560795 −0.280397 0.959884i \(-0.590466\pi\)
−0.280397 + 0.959884i \(0.590466\pi\)
\(380\) 0 0
\(381\) 5.47914e10 0.133214
\(382\) 0 0
\(383\) −4.64079e11 −1.10204 −0.551020 0.834492i \(-0.685761\pi\)
−0.551020 + 0.834492i \(0.685761\pi\)
\(384\) 0 0
\(385\) 1.05884e12 2.45616
\(386\) 0 0
\(387\) −2.05538e10 −0.0465793
\(388\) 0 0
\(389\) −2.63061e11 −0.582482 −0.291241 0.956650i \(-0.594068\pi\)
−0.291241 + 0.956650i \(0.594068\pi\)
\(390\) 0 0
\(391\) 3.19446e10 0.0691198
\(392\) 0 0
\(393\) 5.16608e11 1.09243
\(394\) 0 0
\(395\) 5.21296e11 1.07745
\(396\) 0 0
\(397\) −1.80382e10 −0.0364449 −0.0182224 0.999834i \(-0.505801\pi\)
−0.0182224 + 0.999834i \(0.505801\pi\)
\(398\) 0 0
\(399\) 3.51440e11 0.694181
\(400\) 0 0
\(401\) 7.18792e10 0.138821 0.0694103 0.997588i \(-0.477888\pi\)
0.0694103 + 0.997588i \(0.477888\pi\)
\(402\) 0 0
\(403\) −1.90046e11 −0.358910
\(404\) 0 0
\(405\) −9.34549e11 −1.72606
\(406\) 0 0
\(407\) 7.54862e11 1.36362
\(408\) 0 0
\(409\) 5.31862e11 0.939819 0.469910 0.882715i \(-0.344287\pi\)
0.469910 + 0.882715i \(0.344287\pi\)
\(410\) 0 0
\(411\) 1.98680e11 0.343451
\(412\) 0 0
\(413\) −1.08244e11 −0.183075
\(414\) 0 0
\(415\) −1.94585e12 −3.22028
\(416\) 0 0
\(417\) −2.05319e11 −0.332519
\(418\) 0 0
\(419\) −1.45942e11 −0.231322 −0.115661 0.993289i \(-0.536899\pi\)
−0.115661 + 0.993289i \(0.536899\pi\)
\(420\) 0 0
\(421\) 3.66247e11 0.568204 0.284102 0.958794i \(-0.408305\pi\)
0.284102 + 0.958794i \(0.408305\pi\)
\(422\) 0 0
\(423\) 5.03176e10 0.0764168
\(424\) 0 0
\(425\) 1.29366e11 0.192340
\(426\) 0 0
\(427\) 3.40810e11 0.496120
\(428\) 0 0
\(429\) −1.71945e11 −0.245094
\(430\) 0 0
\(431\) −7.66389e11 −1.06980 −0.534899 0.844916i \(-0.679650\pi\)
−0.534899 + 0.844916i \(0.679650\pi\)
\(432\) 0 0
\(433\) −1.24176e12 −1.69763 −0.848813 0.528694i \(-0.822682\pi\)
−0.848813 + 0.528694i \(0.822682\pi\)
\(434\) 0 0
\(435\) −5.70935e11 −0.764513
\(436\) 0 0
\(437\) −3.09218e11 −0.405601
\(438\) 0 0
\(439\) 1.48429e12 1.90734 0.953671 0.300852i \(-0.0972710\pi\)
0.953671 + 0.300852i \(0.0972710\pi\)
\(440\) 0 0
\(441\) −5.00155e10 −0.0629696
\(442\) 0 0
\(443\) −1.03343e12 −1.27487 −0.637433 0.770506i \(-0.720004\pi\)
−0.637433 + 0.770506i \(0.720004\pi\)
\(444\) 0 0
\(445\) −2.11793e12 −2.56030
\(446\) 0 0
\(447\) −5.85211e11 −0.693312
\(448\) 0 0
\(449\) −5.83072e11 −0.677039 −0.338519 0.940959i \(-0.609926\pi\)
−0.338519 + 0.940959i \(0.609926\pi\)
\(450\) 0 0
\(451\) 2.27163e11 0.258550
\(452\) 0 0
\(453\) −6.55244e10 −0.0731073
\(454\) 0 0
\(455\) −6.85841e11 −0.750191
\(456\) 0 0
\(457\) 7.39681e11 0.793271 0.396635 0.917976i \(-0.370178\pi\)
0.396635 + 0.917976i \(0.370178\pi\)
\(458\) 0 0
\(459\) −8.00482e10 −0.0841772
\(460\) 0 0
\(461\) 1.45843e12 1.50394 0.751971 0.659197i \(-0.229104\pi\)
0.751971 + 0.659197i \(0.229104\pi\)
\(462\) 0 0
\(463\) 1.63194e12 1.65040 0.825200 0.564841i \(-0.191063\pi\)
0.825200 + 0.564841i \(0.191063\pi\)
\(464\) 0 0
\(465\) −2.32084e12 −2.30201
\(466\) 0 0
\(467\) 8.24440e11 0.802109 0.401054 0.916054i \(-0.368644\pi\)
0.401054 + 0.916054i \(0.368644\pi\)
\(468\) 0 0
\(469\) −6.09481e11 −0.581677
\(470\) 0 0
\(471\) −1.12588e12 −1.05414
\(472\) 0 0
\(473\) −8.69866e11 −0.799056
\(474\) 0 0
\(475\) −1.25224e12 −1.12867
\(476\) 0 0
\(477\) 3.19579e10 0.0282648
\(478\) 0 0
\(479\) 1.80073e11 0.156293 0.0781463 0.996942i \(-0.475100\pi\)
0.0781463 + 0.996942i \(0.475100\pi\)
\(480\) 0 0
\(481\) −4.88945e11 −0.416493
\(482\) 0 0
\(483\) −1.44922e12 −1.21164
\(484\) 0 0
\(485\) 2.57114e12 2.11003
\(486\) 0 0
\(487\) 7.22045e11 0.581680 0.290840 0.956772i \(-0.406065\pi\)
0.290840 + 0.956772i \(0.406065\pi\)
\(488\) 0 0
\(489\) 8.10371e11 0.640905
\(490\) 0 0
\(491\) −1.98313e12 −1.53987 −0.769937 0.638119i \(-0.779713\pi\)
−0.769937 + 0.638119i \(0.779713\pi\)
\(492\) 0 0
\(493\) −4.63072e10 −0.0353051
\(494\) 0 0
\(495\) 1.17362e11 0.0878625
\(496\) 0 0
\(497\) −1.38245e12 −1.01636
\(498\) 0 0
\(499\) 8.27327e11 0.597344 0.298672 0.954356i \(-0.403456\pi\)
0.298672 + 0.954356i \(0.403456\pi\)
\(500\) 0 0
\(501\) 1.01194e12 0.717605
\(502\) 0 0
\(503\) −4.94554e11 −0.344475 −0.172238 0.985055i \(-0.555100\pi\)
−0.172238 + 0.985055i \(0.555100\pi\)
\(504\) 0 0
\(505\) 4.06322e12 2.78009
\(506\) 0 0
\(507\) 1.11374e11 0.0748595
\(508\) 0 0
\(509\) −2.31118e12 −1.52617 −0.763087 0.646296i \(-0.776317\pi\)
−0.763087 + 0.646296i \(0.776317\pi\)
\(510\) 0 0
\(511\) 3.17079e12 2.05719
\(512\) 0 0
\(513\) 7.74852e11 0.493959
\(514\) 0 0
\(515\) −2.90942e12 −1.82252
\(516\) 0 0
\(517\) 2.12951e12 1.31091
\(518\) 0 0
\(519\) 7.69937e11 0.465803
\(520\) 0 0
\(521\) 2.20997e12 1.31406 0.657031 0.753864i \(-0.271812\pi\)
0.657031 + 0.753864i \(0.271812\pi\)
\(522\) 0 0
\(523\) −2.43867e12 −1.42527 −0.712633 0.701537i \(-0.752497\pi\)
−0.712633 + 0.701537i \(0.752497\pi\)
\(524\) 0 0
\(525\) −5.86889e12 −3.37162
\(526\) 0 0
\(527\) −1.88238e11 −0.106307
\(528\) 0 0
\(529\) −5.26040e11 −0.292057
\(530\) 0 0
\(531\) −1.19978e10 −0.00654900
\(532\) 0 0
\(533\) −1.47140e11 −0.0789694
\(534\) 0 0
\(535\) 1.84298e12 0.972588
\(536\) 0 0
\(537\) −1.69138e12 −0.877720
\(538\) 0 0
\(539\) −2.11673e12 −1.08023
\(540\) 0 0
\(541\) −1.84418e12 −0.925585 −0.462792 0.886467i \(-0.653152\pi\)
−0.462792 + 0.886467i \(0.653152\pi\)
\(542\) 0 0
\(543\) −3.35667e12 −1.65695
\(544\) 0 0
\(545\) −1.75365e12 −0.851448
\(546\) 0 0
\(547\) 2.62022e12 1.25140 0.625698 0.780065i \(-0.284814\pi\)
0.625698 + 0.780065i \(0.284814\pi\)
\(548\) 0 0
\(549\) 3.77754e10 0.0177473
\(550\) 0 0
\(551\) 4.48245e11 0.207173
\(552\) 0 0
\(553\) −1.91815e12 −0.872206
\(554\) 0 0
\(555\) −5.97102e12 −2.67135
\(556\) 0 0
\(557\) 2.45908e12 1.08249 0.541245 0.840865i \(-0.317953\pi\)
0.541245 + 0.840865i \(0.317953\pi\)
\(558\) 0 0
\(559\) 5.63437e11 0.244058
\(560\) 0 0
\(561\) −1.70310e11 −0.0725950
\(562\) 0 0
\(563\) 1.30659e12 0.548091 0.274046 0.961717i \(-0.411638\pi\)
0.274046 + 0.961717i \(0.411638\pi\)
\(564\) 0 0
\(565\) −2.13003e12 −0.879361
\(566\) 0 0
\(567\) 3.43875e12 1.39726
\(568\) 0 0
\(569\) −2.68810e12 −1.07508 −0.537539 0.843239i \(-0.680646\pi\)
−0.537539 + 0.843239i \(0.680646\pi\)
\(570\) 0 0
\(571\) −2.99602e12 −1.17946 −0.589729 0.807601i \(-0.700765\pi\)
−0.589729 + 0.807601i \(0.700765\pi\)
\(572\) 0 0
\(573\) 1.45549e12 0.564044
\(574\) 0 0
\(575\) 5.16381e12 1.97000
\(576\) 0 0
\(577\) 6.04343e11 0.226982 0.113491 0.993539i \(-0.463797\pi\)
0.113491 + 0.993539i \(0.463797\pi\)
\(578\) 0 0
\(579\) −2.86227e12 −1.05842
\(580\) 0 0
\(581\) 7.15991e12 2.60684
\(582\) 0 0
\(583\) 1.35250e12 0.484876
\(584\) 0 0
\(585\) −7.60186e10 −0.0268360
\(586\) 0 0
\(587\) 7.41276e11 0.257697 0.128848 0.991664i \(-0.458872\pi\)
0.128848 + 0.991664i \(0.458872\pi\)
\(588\) 0 0
\(589\) 1.82211e12 0.623816
\(590\) 0 0
\(591\) 1.73466e12 0.584886
\(592\) 0 0
\(593\) −5.55536e12 −1.84487 −0.922435 0.386152i \(-0.873804\pi\)
−0.922435 + 0.386152i \(0.873804\pi\)
\(594\) 0 0
\(595\) −6.79318e11 −0.222201
\(596\) 0 0
\(597\) −3.52015e11 −0.113417
\(598\) 0 0
\(599\) 3.35363e12 1.06437 0.532187 0.846627i \(-0.321370\pi\)
0.532187 + 0.846627i \(0.321370\pi\)
\(600\) 0 0
\(601\) 1.88646e12 0.589809 0.294905 0.955527i \(-0.404712\pi\)
0.294905 + 0.955527i \(0.404712\pi\)
\(602\) 0 0
\(603\) −6.75548e10 −0.0208079
\(604\) 0 0
\(605\) −1.05674e12 −0.320677
\(606\) 0 0
\(607\) −1.01740e12 −0.304188 −0.152094 0.988366i \(-0.548602\pi\)
−0.152094 + 0.988366i \(0.548602\pi\)
\(608\) 0 0
\(609\) 2.10080e12 0.618881
\(610\) 0 0
\(611\) −1.37935e12 −0.400394
\(612\) 0 0
\(613\) −5.21446e11 −0.149155 −0.0745774 0.997215i \(-0.523761\pi\)
−0.0745774 + 0.997215i \(0.523761\pi\)
\(614\) 0 0
\(615\) −1.79688e12 −0.506503
\(616\) 0 0
\(617\) 1.14541e12 0.318183 0.159092 0.987264i \(-0.449143\pi\)
0.159092 + 0.987264i \(0.449143\pi\)
\(618\) 0 0
\(619\) 1.10612e12 0.302827 0.151414 0.988470i \(-0.451617\pi\)
0.151414 + 0.988470i \(0.451617\pi\)
\(620\) 0 0
\(621\) −3.19523e12 −0.862165
\(622\) 0 0
\(623\) 7.79308e12 2.07259
\(624\) 0 0
\(625\) 8.16561e12 2.14057
\(626\) 0 0
\(627\) 1.64857e12 0.425994
\(628\) 0 0
\(629\) −4.84295e11 −0.123362
\(630\) 0 0
\(631\) −3.20443e12 −0.804671 −0.402336 0.915492i \(-0.631802\pi\)
−0.402336 + 0.915492i \(0.631802\pi\)
\(632\) 0 0
\(633\) −2.65284e12 −0.656742
\(634\) 0 0
\(635\) 1.02518e12 0.250219
\(636\) 0 0
\(637\) 1.37106e12 0.329937
\(638\) 0 0
\(639\) −1.53231e11 −0.0363574
\(640\) 0 0
\(641\) −4.90467e12 −1.14749 −0.573745 0.819034i \(-0.694510\pi\)
−0.573745 + 0.819034i \(0.694510\pi\)
\(642\) 0 0
\(643\) −1.53529e12 −0.354194 −0.177097 0.984193i \(-0.556671\pi\)
−0.177097 + 0.984193i \(0.556671\pi\)
\(644\) 0 0
\(645\) 6.88072e12 1.56536
\(646\) 0 0
\(647\) 6.61326e11 0.148370 0.0741850 0.997244i \(-0.476364\pi\)
0.0741850 + 0.997244i \(0.476364\pi\)
\(648\) 0 0
\(649\) −5.07763e11 −0.112347
\(650\) 0 0
\(651\) 8.53973e12 1.86350
\(652\) 0 0
\(653\) 4.61469e12 0.993192 0.496596 0.867982i \(-0.334583\pi\)
0.496596 + 0.867982i \(0.334583\pi\)
\(654\) 0 0
\(655\) 9.66610e12 2.05194
\(656\) 0 0
\(657\) 3.51450e11 0.0735902
\(658\) 0 0
\(659\) 9.04687e12 1.86859 0.934294 0.356502i \(-0.116031\pi\)
0.934294 + 0.356502i \(0.116031\pi\)
\(660\) 0 0
\(661\) 3.59295e12 0.732057 0.366028 0.930604i \(-0.380717\pi\)
0.366028 + 0.930604i \(0.380717\pi\)
\(662\) 0 0
\(663\) 1.10315e11 0.0221729
\(664\) 0 0
\(665\) 6.57568e12 1.30390
\(666\) 0 0
\(667\) −1.84841e12 −0.361604
\(668\) 0 0
\(669\) −1.30536e12 −0.251948
\(670\) 0 0
\(671\) 1.59871e12 0.304451
\(672\) 0 0
\(673\) 2.13714e12 0.401573 0.200786 0.979635i \(-0.435650\pi\)
0.200786 + 0.979635i \(0.435650\pi\)
\(674\) 0 0
\(675\) −1.29397e13 −2.39915
\(676\) 0 0
\(677\) −2.55166e12 −0.466847 −0.233423 0.972375i \(-0.574993\pi\)
−0.233423 + 0.972375i \(0.574993\pi\)
\(678\) 0 0
\(679\) −9.46070e12 −1.70809
\(680\) 0 0
\(681\) 2.75840e12 0.491467
\(682\) 0 0
\(683\) −7.63188e12 −1.34196 −0.670978 0.741477i \(-0.734126\pi\)
−0.670978 + 0.741477i \(0.734126\pi\)
\(684\) 0 0
\(685\) 3.71743e12 0.645113
\(686\) 0 0
\(687\) −3.35619e12 −0.574832
\(688\) 0 0
\(689\) −8.76056e11 −0.148097
\(690\) 0 0
\(691\) 2.36970e12 0.395405 0.197703 0.980262i \(-0.436652\pi\)
0.197703 + 0.980262i \(0.436652\pi\)
\(692\) 0 0
\(693\) −4.31842e11 −0.0711255
\(694\) 0 0
\(695\) −3.84165e12 −0.624578
\(696\) 0 0
\(697\) −1.45741e11 −0.0233902
\(698\) 0 0
\(699\) 1.08306e13 1.71595
\(700\) 0 0
\(701\) −1.72803e12 −0.270284 −0.135142 0.990826i \(-0.543149\pi\)
−0.135142 + 0.990826i \(0.543149\pi\)
\(702\) 0 0
\(703\) 4.68789e12 0.723900
\(704\) 0 0
\(705\) −1.68446e13 −2.56809
\(706\) 0 0
\(707\) −1.49509e13 −2.25051
\(708\) 0 0
\(709\) −3.26440e12 −0.485172 −0.242586 0.970130i \(-0.577996\pi\)
−0.242586 + 0.970130i \(0.577996\pi\)
\(710\) 0 0
\(711\) −2.12608e11 −0.0312008
\(712\) 0 0
\(713\) −7.51378e12 −1.08882
\(714\) 0 0
\(715\) −3.21721e12 −0.460365
\(716\) 0 0
\(717\) 3.58418e12 0.506469
\(718\) 0 0
\(719\) 6.17850e11 0.0862191 0.0431095 0.999070i \(-0.486274\pi\)
0.0431095 + 0.999070i \(0.486274\pi\)
\(720\) 0 0
\(721\) 1.07054e13 1.47535
\(722\) 0 0
\(723\) −1.37579e13 −1.87253
\(724\) 0 0
\(725\) −7.48550e12 −1.00624
\(726\) 0 0
\(727\) −5.84000e12 −0.775368 −0.387684 0.921792i \(-0.626725\pi\)
−0.387684 + 0.921792i \(0.626725\pi\)
\(728\) 0 0
\(729\) 7.98538e12 1.04718
\(730\) 0 0
\(731\) 5.58079e11 0.0722882
\(732\) 0 0
\(733\) −7.18908e10 −0.00919826 −0.00459913 0.999989i \(-0.501464\pi\)
−0.00459913 + 0.999989i \(0.501464\pi\)
\(734\) 0 0
\(735\) 1.67435e13 2.11618
\(736\) 0 0
\(737\) −2.85902e12 −0.356954
\(738\) 0 0
\(739\) 1.01033e13 1.24613 0.623067 0.782168i \(-0.285886\pi\)
0.623067 + 0.782168i \(0.285886\pi\)
\(740\) 0 0
\(741\) −1.06783e12 −0.130112
\(742\) 0 0
\(743\) 6.09193e12 0.733340 0.366670 0.930351i \(-0.380498\pi\)
0.366670 + 0.930351i \(0.380498\pi\)
\(744\) 0 0
\(745\) −1.09497e13 −1.30226
\(746\) 0 0
\(747\) 7.93604e11 0.0932527
\(748\) 0 0
\(749\) −6.78139e12 −0.787319
\(750\) 0 0
\(751\) 1.43572e13 1.64698 0.823491 0.567330i \(-0.192024\pi\)
0.823491 + 0.567330i \(0.192024\pi\)
\(752\) 0 0
\(753\) 1.19163e13 1.35071
\(754\) 0 0
\(755\) −1.22601e12 −0.137319
\(756\) 0 0
\(757\) 1.33786e13 1.48074 0.740370 0.672200i \(-0.234651\pi\)
0.740370 + 0.672200i \(0.234651\pi\)
\(758\) 0 0
\(759\) −6.79815e12 −0.743537
\(760\) 0 0
\(761\) 1.00649e13 1.08788 0.543938 0.839126i \(-0.316933\pi\)
0.543938 + 0.839126i \(0.316933\pi\)
\(762\) 0 0
\(763\) 6.45269e12 0.689255
\(764\) 0 0
\(765\) −7.52956e10 −0.00794865
\(766\) 0 0
\(767\) 3.28892e11 0.0343142
\(768\) 0 0
\(769\) 4.34623e12 0.448172 0.224086 0.974569i \(-0.428060\pi\)
0.224086 + 0.974569i \(0.428060\pi\)
\(770\) 0 0
\(771\) 6.61097e12 0.673784
\(772\) 0 0
\(773\) 2.50017e12 0.251862 0.125931 0.992039i \(-0.459808\pi\)
0.125931 + 0.992039i \(0.459808\pi\)
\(774\) 0 0
\(775\) −3.04285e13 −3.02986
\(776\) 0 0
\(777\) 2.19708e13 2.16248
\(778\) 0 0
\(779\) 1.41075e12 0.137256
\(780\) 0 0
\(781\) −6.48495e12 −0.623702
\(782\) 0 0
\(783\) 4.63183e12 0.440377
\(784\) 0 0
\(785\) −2.10660e13 −1.98001
\(786\) 0 0
\(787\) 1.47010e13 1.36603 0.683013 0.730406i \(-0.260669\pi\)
0.683013 + 0.730406i \(0.260669\pi\)
\(788\) 0 0
\(789\) 6.01639e11 0.0552700
\(790\) 0 0
\(791\) 7.83761e12 0.711851
\(792\) 0 0
\(793\) −1.03553e12 −0.0929892
\(794\) 0 0
\(795\) −1.06984e13 −0.949879
\(796\) 0 0
\(797\) 8.96898e12 0.787373 0.393687 0.919245i \(-0.371199\pi\)
0.393687 + 0.919245i \(0.371199\pi\)
\(798\) 0 0
\(799\) −1.36623e12 −0.118594
\(800\) 0 0
\(801\) 8.63785e11 0.0741411
\(802\) 0 0
\(803\) 1.48739e13 1.26242
\(804\) 0 0
\(805\) −2.71159e13 −2.27584
\(806\) 0 0
\(807\) 1.93711e13 1.60777
\(808\) 0 0
\(809\) 1.74450e13 1.43187 0.715934 0.698168i \(-0.246001\pi\)
0.715934 + 0.698168i \(0.246001\pi\)
\(810\) 0 0
\(811\) 8.34611e12 0.677470 0.338735 0.940882i \(-0.390001\pi\)
0.338735 + 0.940882i \(0.390001\pi\)
\(812\) 0 0
\(813\) 9.68980e12 0.777871
\(814\) 0 0
\(815\) 1.51626e13 1.20383
\(816\) 0 0
\(817\) −5.40210e12 −0.424193
\(818\) 0 0
\(819\) 2.79716e11 0.0217240
\(820\) 0 0
\(821\) 1.88288e13 1.44637 0.723183 0.690657i \(-0.242678\pi\)
0.723183 + 0.690657i \(0.242678\pi\)
\(822\) 0 0
\(823\) −4.02178e12 −0.305576 −0.152788 0.988259i \(-0.548825\pi\)
−0.152788 + 0.988259i \(0.548825\pi\)
\(824\) 0 0
\(825\) −2.75304e13 −2.06904
\(826\) 0 0
\(827\) −3.84013e12 −0.285477 −0.142738 0.989760i \(-0.545591\pi\)
−0.142738 + 0.989760i \(0.545591\pi\)
\(828\) 0 0
\(829\) 1.81041e13 1.33132 0.665660 0.746255i \(-0.268150\pi\)
0.665660 + 0.746255i \(0.268150\pi\)
\(830\) 0 0
\(831\) 1.66969e13 1.21460
\(832\) 0 0
\(833\) 1.35803e12 0.0977249
\(834\) 0 0
\(835\) 1.89341e13 1.34789
\(836\) 0 0
\(837\) 1.88284e13 1.32601
\(838\) 0 0
\(839\) −1.83543e13 −1.27882 −0.639410 0.768866i \(-0.720821\pi\)
−0.639410 + 0.768866i \(0.720821\pi\)
\(840\) 0 0
\(841\) −1.18277e13 −0.815300
\(842\) 0 0
\(843\) −1.35431e13 −0.923625
\(844\) 0 0
\(845\) 2.08388e12 0.140610
\(846\) 0 0
\(847\) 3.88835e12 0.259591
\(848\) 0 0
\(849\) −2.58965e13 −1.71063
\(850\) 0 0
\(851\) −1.93313e13 −1.26351
\(852\) 0 0
\(853\) −1.20116e13 −0.776835 −0.388418 0.921483i \(-0.626978\pi\)
−0.388418 + 0.921483i \(0.626978\pi\)
\(854\) 0 0
\(855\) 7.28848e11 0.0466433
\(856\) 0 0
\(857\) −6.17723e12 −0.391183 −0.195592 0.980685i \(-0.562663\pi\)
−0.195592 + 0.980685i \(0.562663\pi\)
\(858\) 0 0
\(859\) −2.76160e13 −1.73058 −0.865291 0.501269i \(-0.832867\pi\)
−0.865291 + 0.501269i \(0.832867\pi\)
\(860\) 0 0
\(861\) 6.61177e12 0.410019
\(862\) 0 0
\(863\) −9.27582e12 −0.569251 −0.284626 0.958639i \(-0.591869\pi\)
−0.284626 + 0.958639i \(0.591869\pi\)
\(864\) 0 0
\(865\) 1.44061e13 0.874929
\(866\) 0 0
\(867\) −1.60818e13 −0.966606
\(868\) 0 0
\(869\) −8.99785e12 −0.535242
\(870\) 0 0
\(871\) 1.85187e12 0.109025
\(872\) 0 0
\(873\) −1.04862e12 −0.0611021
\(874\) 0 0
\(875\) −6.29103e13 −3.62815
\(876\) 0 0
\(877\) −2.19078e13 −1.25055 −0.625274 0.780405i \(-0.715013\pi\)
−0.625274 + 0.780405i \(0.715013\pi\)
\(878\) 0 0
\(879\) 2.67292e13 1.51020
\(880\) 0 0
\(881\) 2.92416e12 0.163534 0.0817672 0.996651i \(-0.473944\pi\)
0.0817672 + 0.996651i \(0.473944\pi\)
\(882\) 0 0
\(883\) −3.35851e13 −1.85919 −0.929594 0.368585i \(-0.879842\pi\)
−0.929594 + 0.368585i \(0.879842\pi\)
\(884\) 0 0
\(885\) 4.01645e12 0.220089
\(886\) 0 0
\(887\) 3.31699e13 1.79924 0.899619 0.436676i \(-0.143844\pi\)
0.899619 + 0.436676i \(0.143844\pi\)
\(888\) 0 0
\(889\) −3.77225e12 −0.202555
\(890\) 0 0
\(891\) 1.61308e13 0.857447
\(892\) 0 0
\(893\) 1.32248e13 0.695920
\(894\) 0 0
\(895\) −3.16469e13 −1.64864
\(896\) 0 0
\(897\) 4.40335e12 0.227100
\(898\) 0 0
\(899\) 1.08920e13 0.556148
\(900\) 0 0
\(901\) −8.67724e11 −0.0438652
\(902\) 0 0
\(903\) −2.53181e13 −1.26718
\(904\) 0 0
\(905\) −6.28057e13 −3.11229
\(906\) 0 0
\(907\) −2.27086e13 −1.11418 −0.557092 0.830451i \(-0.688083\pi\)
−0.557092 + 0.830451i \(0.688083\pi\)
\(908\) 0 0
\(909\) −1.65716e12 −0.0805059
\(910\) 0 0
\(911\) −4.92090e12 −0.236707 −0.118354 0.992972i \(-0.537762\pi\)
−0.118354 + 0.992972i \(0.537762\pi\)
\(912\) 0 0
\(913\) 3.35865e13 1.59973
\(914\) 0 0
\(915\) −1.26459e13 −0.596424
\(916\) 0 0
\(917\) −3.55671e13 −1.66107
\(918\) 0 0
\(919\) 9.41621e12 0.435468 0.217734 0.976008i \(-0.430133\pi\)
0.217734 + 0.976008i \(0.430133\pi\)
\(920\) 0 0
\(921\) 9.79626e12 0.448634
\(922\) 0 0
\(923\) 4.20049e12 0.190499
\(924\) 0 0
\(925\) −7.82858e13 −3.51597
\(926\) 0 0
\(927\) 1.18659e12 0.0527766
\(928\) 0 0
\(929\) −3.87518e13 −1.70695 −0.853476 0.521131i \(-0.825510\pi\)
−0.853476 + 0.521131i \(0.825510\pi\)
\(930\) 0 0
\(931\) −1.31454e13 −0.573458
\(932\) 0 0
\(933\) −2.88114e12 −0.124479
\(934\) 0 0
\(935\) −3.18662e12 −0.136357
\(936\) 0 0
\(937\) 1.41425e13 0.599373 0.299687 0.954038i \(-0.403118\pi\)
0.299687 + 0.954038i \(0.403118\pi\)
\(938\) 0 0
\(939\) −1.97518e13 −0.829108
\(940\) 0 0
\(941\) −2.29704e13 −0.955027 −0.477514 0.878624i \(-0.658462\pi\)
−0.477514 + 0.878624i \(0.658462\pi\)
\(942\) 0 0
\(943\) −5.81744e12 −0.239568
\(944\) 0 0
\(945\) 6.79482e13 2.77163
\(946\) 0 0
\(947\) 1.50510e12 0.0608120 0.0304060 0.999538i \(-0.490320\pi\)
0.0304060 + 0.999538i \(0.490320\pi\)
\(948\) 0 0
\(949\) −9.63423e12 −0.385584
\(950\) 0 0
\(951\) 7.90126e12 0.313245
\(952\) 0 0
\(953\) 2.42253e13 0.951373 0.475686 0.879615i \(-0.342200\pi\)
0.475686 + 0.879615i \(0.342200\pi\)
\(954\) 0 0
\(955\) 2.72332e13 1.05946
\(956\) 0 0
\(957\) 9.85465e12 0.379785
\(958\) 0 0
\(959\) −1.36786e13 −0.522225
\(960\) 0 0
\(961\) 1.78364e13 0.674608
\(962\) 0 0
\(963\) −7.51650e11 −0.0281642
\(964\) 0 0
\(965\) −5.35551e13 −1.98805
\(966\) 0 0
\(967\) −2.41172e13 −0.886967 −0.443484 0.896282i \(-0.646258\pi\)
−0.443484 + 0.896282i \(0.646258\pi\)
\(968\) 0 0
\(969\) −1.05767e12 −0.0385383
\(970\) 0 0
\(971\) −3.13584e13 −1.13206 −0.566028 0.824386i \(-0.691521\pi\)
−0.566028 + 0.824386i \(0.691521\pi\)
\(972\) 0 0
\(973\) 1.41357e13 0.505602
\(974\) 0 0
\(975\) 1.78322e13 0.631953
\(976\) 0 0
\(977\) 4.44366e13 1.56033 0.780163 0.625576i \(-0.215136\pi\)
0.780163 + 0.625576i \(0.215136\pi\)
\(978\) 0 0
\(979\) 3.65566e13 1.27187
\(980\) 0 0
\(981\) 7.15216e11 0.0246562
\(982\) 0 0
\(983\) −1.53216e13 −0.523376 −0.261688 0.965153i \(-0.584279\pi\)
−0.261688 + 0.965153i \(0.584279\pi\)
\(984\) 0 0
\(985\) 3.24567e13 1.09861
\(986\) 0 0
\(987\) 6.19812e13 2.07889
\(988\) 0 0
\(989\) 2.22765e13 0.740394
\(990\) 0 0
\(991\) −2.32887e13 −0.767034 −0.383517 0.923534i \(-0.625287\pi\)
−0.383517 + 0.923534i \(0.625287\pi\)
\(992\) 0 0
\(993\) 1.36919e13 0.446881
\(994\) 0 0
\(995\) −6.58644e12 −0.213033
\(996\) 0 0
\(997\) −1.12247e13 −0.359788 −0.179894 0.983686i \(-0.557575\pi\)
−0.179894 + 0.983686i \(0.557575\pi\)
\(998\) 0 0
\(999\) 4.84412e13 1.53876
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.h.1.4 5
4.3 odd 2 13.10.a.b.1.3 5
12.11 even 2 117.10.a.e.1.3 5
20.19 odd 2 325.10.a.b.1.3 5
52.51 odd 2 169.10.a.b.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.3 5 4.3 odd 2
117.10.a.e.1.3 5 12.11 even 2
169.10.a.b.1.3 5 52.51 odd 2
208.10.a.h.1.4 5 1.1 even 1 trivial
325.10.a.b.1.3 5 20.19 odd 2