Properties

Label 208.10.a.h.1.2
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-27.7188\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-194.269 q^{3} -920.299 q^{5} -5359.02 q^{7} +18057.4 q^{9} +O(q^{10})\) \(q-194.269 q^{3} -920.299 q^{5} -5359.02 q^{7} +18057.4 q^{9} -79284.0 q^{11} +28561.0 q^{13} +178785. q^{15} +452068. q^{17} -212533. q^{19} +1.04109e6 q^{21} +759566. q^{23} -1.10618e6 q^{25} +315803. q^{27} -900101. q^{29} -2.27141e6 q^{31} +1.54024e7 q^{33} +4.93189e6 q^{35} -4.70433e6 q^{37} -5.54851e6 q^{39} +3.39775e7 q^{41} +2.33244e7 q^{43} -1.66182e7 q^{45} +5.14121e7 q^{47} -1.16346e7 q^{49} -8.78228e7 q^{51} +1.01005e8 q^{53} +7.29650e7 q^{55} +4.12885e7 q^{57} -1.32234e8 q^{59} -1.23648e8 q^{61} -9.67699e7 q^{63} -2.62846e7 q^{65} +2.15282e8 q^{67} -1.47560e8 q^{69} +2.06198e8 q^{71} +3.44444e8 q^{73} +2.14896e8 q^{75} +4.24884e8 q^{77} -5.03324e7 q^{79} -4.16775e8 q^{81} -8.20266e7 q^{83} -4.16038e8 q^{85} +1.74862e8 q^{87} -6.17891e8 q^{89} -1.53059e8 q^{91} +4.41265e8 q^{93} +1.95594e8 q^{95} -9.91253e8 q^{97} -1.43166e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 161 q^{3} + 1803 q^{5} - 10099 q^{7} + 61060 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 161 q^{3} + 1803 q^{5} - 10099 q^{7} + 61060 q^{9} - 121746 q^{11} + 142805 q^{13} - 105973 q^{15} - 495669 q^{17} + 840738 q^{19} - 1599467 q^{21} + 592152 q^{23} + 1670362 q^{25} - 6847883 q^{27} + 10678182 q^{29} - 12885296 q^{31} + 17278298 q^{33} - 8380731 q^{35} + 7171823 q^{37} - 4598321 q^{39} + 9294012 q^{41} - 12831975 q^{43} + 26135198 q^{45} - 43354215 q^{47} + 25249488 q^{49} - 16905901 q^{51} + 93231780 q^{53} - 99448846 q^{55} + 90173382 q^{57} - 246496182 q^{59} - 132232612 q^{61} + 416955202 q^{63} + 51495483 q^{65} + 369388534 q^{67} - 579986760 q^{69} - 212150457 q^{71} - 252729806 q^{73} + 752457788 q^{75} + 449666118 q^{77} + 1247271728 q^{79} - 317713115 q^{81} - 1696894296 q^{83} - 775363765 q^{85} + 614530466 q^{87} - 753854382 q^{89} - 288437539 q^{91} - 892784668 q^{93} - 1442632962 q^{95} + 3824606 q^{97} - 3016199848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −194.269 −1.38471 −0.692353 0.721559i \(-0.743426\pi\)
−0.692353 + 0.721559i \(0.743426\pi\)
\(4\) 0 0
\(5\) −920.299 −0.658512 −0.329256 0.944241i \(-0.606798\pi\)
−0.329256 + 0.944241i \(0.606798\pi\)
\(6\) 0 0
\(7\) −5359.02 −0.843614 −0.421807 0.906686i \(-0.638604\pi\)
−0.421807 + 0.906686i \(0.638604\pi\)
\(8\) 0 0
\(9\) 18057.4 0.917411
\(10\) 0 0
\(11\) −79284.0 −1.63275 −0.816373 0.577525i \(-0.804019\pi\)
−0.816373 + 0.577525i \(0.804019\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) 178785. 0.911846
\(16\) 0 0
\(17\) 452068. 1.31276 0.656378 0.754432i \(-0.272088\pi\)
0.656378 + 0.754432i \(0.272088\pi\)
\(18\) 0 0
\(19\) −212533. −0.374141 −0.187070 0.982347i \(-0.559899\pi\)
−0.187070 + 0.982347i \(0.559899\pi\)
\(20\) 0 0
\(21\) 1.04109e6 1.16816
\(22\) 0 0
\(23\) 759566. 0.565966 0.282983 0.959125i \(-0.408676\pi\)
0.282983 + 0.959125i \(0.408676\pi\)
\(24\) 0 0
\(25\) −1.10618e6 −0.566362
\(26\) 0 0
\(27\) 315803. 0.114361
\(28\) 0 0
\(29\) −900101. −0.236320 −0.118160 0.992995i \(-0.537700\pi\)
−0.118160 + 0.992995i \(0.537700\pi\)
\(30\) 0 0
\(31\) −2.27141e6 −0.441742 −0.220871 0.975303i \(-0.570890\pi\)
−0.220871 + 0.975303i \(0.570890\pi\)
\(32\) 0 0
\(33\) 1.54024e7 2.26087
\(34\) 0 0
\(35\) 4.93189e6 0.555530
\(36\) 0 0
\(37\) −4.70433e6 −0.412658 −0.206329 0.978483i \(-0.566152\pi\)
−0.206329 + 0.978483i \(0.566152\pi\)
\(38\) 0 0
\(39\) −5.54851e6 −0.384048
\(40\) 0 0
\(41\) 3.39775e7 1.87786 0.938932 0.344102i \(-0.111817\pi\)
0.938932 + 0.344102i \(0.111817\pi\)
\(42\) 0 0
\(43\) 2.33244e7 1.04041 0.520203 0.854042i \(-0.325856\pi\)
0.520203 + 0.854042i \(0.325856\pi\)
\(44\) 0 0
\(45\) −1.66182e7 −0.604126
\(46\) 0 0
\(47\) 5.14121e7 1.53683 0.768413 0.639954i \(-0.221046\pi\)
0.768413 + 0.639954i \(0.221046\pi\)
\(48\) 0 0
\(49\) −1.16346e7 −0.288315
\(50\) 0 0
\(51\) −8.78228e7 −1.81778
\(52\) 0 0
\(53\) 1.01005e8 1.75834 0.879170 0.476509i \(-0.158098\pi\)
0.879170 + 0.476509i \(0.158098\pi\)
\(54\) 0 0
\(55\) 7.29650e7 1.07518
\(56\) 0 0
\(57\) 4.12885e7 0.518075
\(58\) 0 0
\(59\) −1.32234e8 −1.42073 −0.710363 0.703836i \(-0.751469\pi\)
−0.710363 + 0.703836i \(0.751469\pi\)
\(60\) 0 0
\(61\) −1.23648e8 −1.14341 −0.571706 0.820459i \(-0.693718\pi\)
−0.571706 + 0.820459i \(0.693718\pi\)
\(62\) 0 0
\(63\) −9.67699e7 −0.773941
\(64\) 0 0
\(65\) −2.62846e7 −0.182638
\(66\) 0 0
\(67\) 2.15282e8 1.30518 0.652592 0.757710i \(-0.273682\pi\)
0.652592 + 0.757710i \(0.273682\pi\)
\(68\) 0 0
\(69\) −1.47560e8 −0.783696
\(70\) 0 0
\(71\) 2.06198e8 0.962992 0.481496 0.876448i \(-0.340094\pi\)
0.481496 + 0.876448i \(0.340094\pi\)
\(72\) 0 0
\(73\) 3.44444e8 1.41960 0.709800 0.704403i \(-0.248785\pi\)
0.709800 + 0.704403i \(0.248785\pi\)
\(74\) 0 0
\(75\) 2.14896e8 0.784245
\(76\) 0 0
\(77\) 4.24884e8 1.37741
\(78\) 0 0
\(79\) −5.03324e7 −0.145387 −0.0726935 0.997354i \(-0.523159\pi\)
−0.0726935 + 0.997354i \(0.523159\pi\)
\(80\) 0 0
\(81\) −4.16775e8 −1.07577
\(82\) 0 0
\(83\) −8.20266e7 −0.189716 −0.0948579 0.995491i \(-0.530240\pi\)
−0.0948579 + 0.995491i \(0.530240\pi\)
\(84\) 0 0
\(85\) −4.16038e8 −0.864465
\(86\) 0 0
\(87\) 1.74862e8 0.327233
\(88\) 0 0
\(89\) −6.17891e8 −1.04390 −0.521948 0.852977i \(-0.674794\pi\)
−0.521948 + 0.852977i \(0.674794\pi\)
\(90\) 0 0
\(91\) −1.53059e8 −0.233976
\(92\) 0 0
\(93\) 4.41265e8 0.611682
\(94\) 0 0
\(95\) 1.95594e8 0.246376
\(96\) 0 0
\(97\) −9.91253e8 −1.13687 −0.568436 0.822727i \(-0.692451\pi\)
−0.568436 + 0.822727i \(0.692451\pi\)
\(98\) 0 0
\(99\) −1.43166e9 −1.49790
\(100\) 0 0
\(101\) −1.15157e9 −1.10115 −0.550573 0.834787i \(-0.685591\pi\)
−0.550573 + 0.834787i \(0.685591\pi\)
\(102\) 0 0
\(103\) −1.28814e9 −1.12770 −0.563852 0.825876i \(-0.690681\pi\)
−0.563852 + 0.825876i \(0.690681\pi\)
\(104\) 0 0
\(105\) −9.58114e8 −0.769246
\(106\) 0 0
\(107\) −7.90577e8 −0.583065 −0.291533 0.956561i \(-0.594165\pi\)
−0.291533 + 0.956561i \(0.594165\pi\)
\(108\) 0 0
\(109\) −4.40070e8 −0.298609 −0.149304 0.988791i \(-0.547703\pi\)
−0.149304 + 0.988791i \(0.547703\pi\)
\(110\) 0 0
\(111\) 9.13906e8 0.571410
\(112\) 0 0
\(113\) −8.28687e8 −0.478121 −0.239060 0.971005i \(-0.576839\pi\)
−0.239060 + 0.971005i \(0.576839\pi\)
\(114\) 0 0
\(115\) −6.99027e8 −0.372695
\(116\) 0 0
\(117\) 5.15737e8 0.254444
\(118\) 0 0
\(119\) −2.42264e9 −1.10746
\(120\) 0 0
\(121\) 3.92801e9 1.66586
\(122\) 0 0
\(123\) −6.60077e9 −2.60029
\(124\) 0 0
\(125\) 2.81547e9 1.03147
\(126\) 0 0
\(127\) 2.09036e9 0.713025 0.356513 0.934291i \(-0.383966\pi\)
0.356513 + 0.934291i \(0.383966\pi\)
\(128\) 0 0
\(129\) −4.53121e9 −1.44066
\(130\) 0 0
\(131\) −1.23787e8 −0.0367243 −0.0183621 0.999831i \(-0.505845\pi\)
−0.0183621 + 0.999831i \(0.505845\pi\)
\(132\) 0 0
\(133\) 1.13897e9 0.315630
\(134\) 0 0
\(135\) −2.90633e8 −0.0753084
\(136\) 0 0
\(137\) −1.31278e9 −0.318383 −0.159192 0.987248i \(-0.550889\pi\)
−0.159192 + 0.987248i \(0.550889\pi\)
\(138\) 0 0
\(139\) 4.82994e9 1.09743 0.548713 0.836011i \(-0.315118\pi\)
0.548713 + 0.836011i \(0.315118\pi\)
\(140\) 0 0
\(141\) −9.98777e9 −2.12805
\(142\) 0 0
\(143\) −2.26443e9 −0.452842
\(144\) 0 0
\(145\) 8.28361e8 0.155619
\(146\) 0 0
\(147\) 2.26023e9 0.399232
\(148\) 0 0
\(149\) −4.39244e9 −0.730075 −0.365037 0.930993i \(-0.618944\pi\)
−0.365037 + 0.930993i \(0.618944\pi\)
\(150\) 0 0
\(151\) 4.70301e9 0.736172 0.368086 0.929792i \(-0.380013\pi\)
0.368086 + 0.929792i \(0.380013\pi\)
\(152\) 0 0
\(153\) 8.16318e9 1.20434
\(154\) 0 0
\(155\) 2.09038e9 0.290892
\(156\) 0 0
\(157\) −5.28793e9 −0.694605 −0.347302 0.937753i \(-0.612902\pi\)
−0.347302 + 0.937753i \(0.612902\pi\)
\(158\) 0 0
\(159\) −1.96222e10 −2.43478
\(160\) 0 0
\(161\) −4.07052e9 −0.477457
\(162\) 0 0
\(163\) −6.72980e9 −0.746721 −0.373360 0.927686i \(-0.621794\pi\)
−0.373360 + 0.927686i \(0.621794\pi\)
\(164\) 0 0
\(165\) −1.41748e10 −1.48881
\(166\) 0 0
\(167\) −5.87782e9 −0.584780 −0.292390 0.956299i \(-0.594450\pi\)
−0.292390 + 0.956299i \(0.594450\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −3.83779e9 −0.343241
\(172\) 0 0
\(173\) −1.40328e10 −1.19107 −0.595534 0.803330i \(-0.703059\pi\)
−0.595534 + 0.803330i \(0.703059\pi\)
\(174\) 0 0
\(175\) 5.92801e9 0.477791
\(176\) 0 0
\(177\) 2.56890e10 1.96729
\(178\) 0 0
\(179\) 2.48592e10 1.80987 0.904936 0.425548i \(-0.139919\pi\)
0.904936 + 0.425548i \(0.139919\pi\)
\(180\) 0 0
\(181\) 1.35989e10 0.941784 0.470892 0.882191i \(-0.343932\pi\)
0.470892 + 0.882191i \(0.343932\pi\)
\(182\) 0 0
\(183\) 2.40209e10 1.58329
\(184\) 0 0
\(185\) 4.32939e9 0.271740
\(186\) 0 0
\(187\) −3.58418e10 −2.14340
\(188\) 0 0
\(189\) −1.69240e9 −0.0964770
\(190\) 0 0
\(191\) 1.65985e9 0.0902440 0.0451220 0.998981i \(-0.485632\pi\)
0.0451220 + 0.998981i \(0.485632\pi\)
\(192\) 0 0
\(193\) 3.09499e10 1.60565 0.802827 0.596212i \(-0.203328\pi\)
0.802827 + 0.596212i \(0.203328\pi\)
\(194\) 0 0
\(195\) 5.10629e9 0.252900
\(196\) 0 0
\(197\) −3.04341e10 −1.43967 −0.719835 0.694145i \(-0.755783\pi\)
−0.719835 + 0.694145i \(0.755783\pi\)
\(198\) 0 0
\(199\) −4.44812e8 −0.0201066 −0.0100533 0.999949i \(-0.503200\pi\)
−0.0100533 + 0.999949i \(0.503200\pi\)
\(200\) 0 0
\(201\) −4.18227e10 −1.80730
\(202\) 0 0
\(203\) 4.82365e9 0.199363
\(204\) 0 0
\(205\) −3.12695e10 −1.23660
\(206\) 0 0
\(207\) 1.37158e10 0.519223
\(208\) 0 0
\(209\) 1.68505e10 0.610877
\(210\) 0 0
\(211\) −4.88078e9 −0.169519 −0.0847595 0.996401i \(-0.527012\pi\)
−0.0847595 + 0.996401i \(0.527012\pi\)
\(212\) 0 0
\(213\) −4.00579e10 −1.33346
\(214\) 0 0
\(215\) −2.14654e10 −0.685120
\(216\) 0 0
\(217\) 1.21725e10 0.372660
\(218\) 0 0
\(219\) −6.69148e10 −1.96573
\(220\) 0 0
\(221\) 1.29115e10 0.364093
\(222\) 0 0
\(223\) −2.47486e10 −0.670162 −0.335081 0.942189i \(-0.608764\pi\)
−0.335081 + 0.942189i \(0.608764\pi\)
\(224\) 0 0
\(225\) −1.99747e10 −0.519587
\(226\) 0 0
\(227\) −2.62443e10 −0.656022 −0.328011 0.944674i \(-0.606378\pi\)
−0.328011 + 0.944674i \(0.606378\pi\)
\(228\) 0 0
\(229\) −4.15262e10 −0.997844 −0.498922 0.866647i \(-0.666271\pi\)
−0.498922 + 0.866647i \(0.666271\pi\)
\(230\) 0 0
\(231\) −8.25418e10 −1.90731
\(232\) 0 0
\(233\) 3.67402e10 0.816657 0.408329 0.912835i \(-0.366112\pi\)
0.408329 + 0.912835i \(0.366112\pi\)
\(234\) 0 0
\(235\) −4.73145e10 −1.01202
\(236\) 0 0
\(237\) 9.77802e9 0.201318
\(238\) 0 0
\(239\) 4.35921e10 0.864206 0.432103 0.901824i \(-0.357772\pi\)
0.432103 + 0.901824i \(0.357772\pi\)
\(240\) 0 0
\(241\) −1.04473e10 −0.199493 −0.0997464 0.995013i \(-0.531803\pi\)
−0.0997464 + 0.995013i \(0.531803\pi\)
\(242\) 0 0
\(243\) 7.47504e10 1.37526
\(244\) 0 0
\(245\) 1.07073e10 0.189859
\(246\) 0 0
\(247\) −6.07015e9 −0.103768
\(248\) 0 0
\(249\) 1.59352e10 0.262701
\(250\) 0 0
\(251\) −8.69402e10 −1.38258 −0.691288 0.722580i \(-0.742956\pi\)
−0.691288 + 0.722580i \(0.742956\pi\)
\(252\) 0 0
\(253\) −6.02214e10 −0.924078
\(254\) 0 0
\(255\) 8.08232e10 1.19703
\(256\) 0 0
\(257\) 4.05492e10 0.579807 0.289903 0.957056i \(-0.406377\pi\)
0.289903 + 0.957056i \(0.406377\pi\)
\(258\) 0 0
\(259\) 2.52106e10 0.348124
\(260\) 0 0
\(261\) −1.62535e10 −0.216802
\(262\) 0 0
\(263\) −1.55920e10 −0.200956 −0.100478 0.994939i \(-0.532037\pi\)
−0.100478 + 0.994939i \(0.532037\pi\)
\(264\) 0 0
\(265\) −9.29550e10 −1.15789
\(266\) 0 0
\(267\) 1.20037e11 1.44549
\(268\) 0 0
\(269\) 1.34814e11 1.56982 0.784911 0.619608i \(-0.212708\pi\)
0.784911 + 0.619608i \(0.212708\pi\)
\(270\) 0 0
\(271\) −1.08155e10 −0.121810 −0.0609052 0.998144i \(-0.519399\pi\)
−0.0609052 + 0.998144i \(0.519399\pi\)
\(272\) 0 0
\(273\) 2.97346e10 0.323989
\(274\) 0 0
\(275\) 8.77021e10 0.924725
\(276\) 0 0
\(277\) 1.05265e11 1.07429 0.537147 0.843488i \(-0.319502\pi\)
0.537147 + 0.843488i \(0.319502\pi\)
\(278\) 0 0
\(279\) −4.10158e10 −0.405259
\(280\) 0 0
\(281\) 5.90656e10 0.565140 0.282570 0.959247i \(-0.408813\pi\)
0.282570 + 0.959247i \(0.408813\pi\)
\(282\) 0 0
\(283\) 1.45893e11 1.35206 0.676030 0.736875i \(-0.263699\pi\)
0.676030 + 0.736875i \(0.263699\pi\)
\(284\) 0 0
\(285\) −3.79978e10 −0.341158
\(286\) 0 0
\(287\) −1.82086e11 −1.58419
\(288\) 0 0
\(289\) 8.57779e10 0.723328
\(290\) 0 0
\(291\) 1.92570e11 1.57423
\(292\) 0 0
\(293\) −7.69633e9 −0.0610070 −0.0305035 0.999535i \(-0.509711\pi\)
−0.0305035 + 0.999535i \(0.509711\pi\)
\(294\) 0 0
\(295\) 1.21695e11 0.935565
\(296\) 0 0
\(297\) −2.50382e10 −0.186723
\(298\) 0 0
\(299\) 2.16940e10 0.156971
\(300\) 0 0
\(301\) −1.24996e11 −0.877702
\(302\) 0 0
\(303\) 2.23715e11 1.52476
\(304\) 0 0
\(305\) 1.13793e11 0.752950
\(306\) 0 0
\(307\) −7.83929e10 −0.503679 −0.251839 0.967769i \(-0.581035\pi\)
−0.251839 + 0.967769i \(0.581035\pi\)
\(308\) 0 0
\(309\) 2.50245e11 1.56154
\(310\) 0 0
\(311\) 2.02455e11 1.22717 0.613587 0.789627i \(-0.289726\pi\)
0.613587 + 0.789627i \(0.289726\pi\)
\(312\) 0 0
\(313\) 4.65893e10 0.274370 0.137185 0.990545i \(-0.456195\pi\)
0.137185 + 0.990545i \(0.456195\pi\)
\(314\) 0 0
\(315\) 8.90572e10 0.509649
\(316\) 0 0
\(317\) −1.19232e10 −0.0663170 −0.0331585 0.999450i \(-0.510557\pi\)
−0.0331585 + 0.999450i \(0.510557\pi\)
\(318\) 0 0
\(319\) 7.13636e10 0.385850
\(320\) 0 0
\(321\) 1.53585e11 0.807374
\(322\) 0 0
\(323\) −9.60794e10 −0.491155
\(324\) 0 0
\(325\) −3.15935e10 −0.157081
\(326\) 0 0
\(327\) 8.54918e10 0.413485
\(328\) 0 0
\(329\) −2.75518e11 −1.29649
\(330\) 0 0
\(331\) −1.99404e11 −0.913076 −0.456538 0.889704i \(-0.650911\pi\)
−0.456538 + 0.889704i \(0.650911\pi\)
\(332\) 0 0
\(333\) −8.49480e10 −0.378577
\(334\) 0 0
\(335\) −1.98124e11 −0.859479
\(336\) 0 0
\(337\) 3.29370e11 1.39107 0.695536 0.718491i \(-0.255167\pi\)
0.695536 + 0.718491i \(0.255167\pi\)
\(338\) 0 0
\(339\) 1.60988e11 0.662057
\(340\) 0 0
\(341\) 1.80087e11 0.721252
\(342\) 0 0
\(343\) 2.78605e11 1.08684
\(344\) 0 0
\(345\) 1.35799e11 0.516073
\(346\) 0 0
\(347\) 2.16834e10 0.0802868 0.0401434 0.999194i \(-0.487219\pi\)
0.0401434 + 0.999194i \(0.487219\pi\)
\(348\) 0 0
\(349\) 1.43336e11 0.517178 0.258589 0.965987i \(-0.416742\pi\)
0.258589 + 0.965987i \(0.416742\pi\)
\(350\) 0 0
\(351\) 9.01966e9 0.0317182
\(352\) 0 0
\(353\) −8.38423e10 −0.287393 −0.143697 0.989622i \(-0.545899\pi\)
−0.143697 + 0.989622i \(0.545899\pi\)
\(354\) 0 0
\(355\) −1.89764e11 −0.634142
\(356\) 0 0
\(357\) 4.70644e11 1.53351
\(358\) 0 0
\(359\) −1.26213e11 −0.401033 −0.200516 0.979690i \(-0.564262\pi\)
−0.200516 + 0.979690i \(0.564262\pi\)
\(360\) 0 0
\(361\) −2.77517e11 −0.860019
\(362\) 0 0
\(363\) −7.63090e11 −2.30673
\(364\) 0 0
\(365\) −3.16992e11 −0.934824
\(366\) 0 0
\(367\) 6.56218e11 1.88821 0.944106 0.329642i \(-0.106928\pi\)
0.944106 + 0.329642i \(0.106928\pi\)
\(368\) 0 0
\(369\) 6.13546e11 1.72277
\(370\) 0 0
\(371\) −5.41289e11 −1.48336
\(372\) 0 0
\(373\) −5.52730e11 −1.47851 −0.739253 0.673428i \(-0.764821\pi\)
−0.739253 + 0.673428i \(0.764821\pi\)
\(374\) 0 0
\(375\) −5.46958e11 −1.42828
\(376\) 0 0
\(377\) −2.57078e10 −0.0655433
\(378\) 0 0
\(379\) 3.07664e11 0.765950 0.382975 0.923759i \(-0.374900\pi\)
0.382975 + 0.923759i \(0.374900\pi\)
\(380\) 0 0
\(381\) −4.06092e11 −0.987330
\(382\) 0 0
\(383\) −1.31812e11 −0.313012 −0.156506 0.987677i \(-0.550023\pi\)
−0.156506 + 0.987677i \(0.550023\pi\)
\(384\) 0 0
\(385\) −3.91021e11 −0.907040
\(386\) 0 0
\(387\) 4.21179e11 0.954480
\(388\) 0 0
\(389\) 1.31742e11 0.291709 0.145855 0.989306i \(-0.453407\pi\)
0.145855 + 0.989306i \(0.453407\pi\)
\(390\) 0 0
\(391\) 3.43376e11 0.742975
\(392\) 0 0
\(393\) 2.40479e10 0.0508523
\(394\) 0 0
\(395\) 4.63208e10 0.0957391
\(396\) 0 0
\(397\) 4.44767e11 0.898619 0.449309 0.893376i \(-0.351670\pi\)
0.449309 + 0.893376i \(0.351670\pi\)
\(398\) 0 0
\(399\) −2.21266e11 −0.437055
\(400\) 0 0
\(401\) −8.36539e11 −1.61561 −0.807805 0.589450i \(-0.799345\pi\)
−0.807805 + 0.589450i \(0.799345\pi\)
\(402\) 0 0
\(403\) −6.48738e10 −0.122517
\(404\) 0 0
\(405\) 3.83557e11 0.708406
\(406\) 0 0
\(407\) 3.72979e11 0.673766
\(408\) 0 0
\(409\) 2.11826e11 0.374304 0.187152 0.982331i \(-0.440074\pi\)
0.187152 + 0.982331i \(0.440074\pi\)
\(410\) 0 0
\(411\) 2.55033e11 0.440867
\(412\) 0 0
\(413\) 7.08646e11 1.19854
\(414\) 0 0
\(415\) 7.54890e10 0.124930
\(416\) 0 0
\(417\) −9.38307e11 −1.51961
\(418\) 0 0
\(419\) −5.30153e11 −0.840308 −0.420154 0.907453i \(-0.638024\pi\)
−0.420154 + 0.907453i \(0.638024\pi\)
\(420\) 0 0
\(421\) 3.41563e10 0.0529909 0.0264955 0.999649i \(-0.491565\pi\)
0.0264955 + 0.999649i \(0.491565\pi\)
\(422\) 0 0
\(423\) 9.28369e11 1.40990
\(424\) 0 0
\(425\) −5.00067e11 −0.743495
\(426\) 0 0
\(427\) 6.62631e11 0.964598
\(428\) 0 0
\(429\) 4.39909e11 0.627054
\(430\) 0 0
\(431\) −8.63019e11 −1.20468 −0.602342 0.798238i \(-0.705765\pi\)
−0.602342 + 0.798238i \(0.705765\pi\)
\(432\) 0 0
\(433\) −3.23681e11 −0.442509 −0.221254 0.975216i \(-0.571015\pi\)
−0.221254 + 0.975216i \(0.571015\pi\)
\(434\) 0 0
\(435\) −1.60925e11 −0.215487
\(436\) 0 0
\(437\) −1.61433e11 −0.211751
\(438\) 0 0
\(439\) 1.45809e12 1.87368 0.936838 0.349763i \(-0.113738\pi\)
0.936838 + 0.349763i \(0.113738\pi\)
\(440\) 0 0
\(441\) −2.10090e11 −0.264503
\(442\) 0 0
\(443\) −1.49027e12 −1.83844 −0.919219 0.393748i \(-0.871178\pi\)
−0.919219 + 0.393748i \(0.871178\pi\)
\(444\) 0 0
\(445\) 5.68645e11 0.687418
\(446\) 0 0
\(447\) 8.53314e11 1.01094
\(448\) 0 0
\(449\) 3.04750e11 0.353862 0.176931 0.984223i \(-0.443383\pi\)
0.176931 + 0.984223i \(0.443383\pi\)
\(450\) 0 0
\(451\) −2.69387e12 −3.06608
\(452\) 0 0
\(453\) −9.13648e11 −1.01938
\(454\) 0 0
\(455\) 1.40860e11 0.154076
\(456\) 0 0
\(457\) −1.23809e11 −0.132779 −0.0663896 0.997794i \(-0.521148\pi\)
−0.0663896 + 0.997794i \(0.521148\pi\)
\(458\) 0 0
\(459\) 1.42765e11 0.150129
\(460\) 0 0
\(461\) 3.16152e11 0.326018 0.163009 0.986625i \(-0.447880\pi\)
0.163009 + 0.986625i \(0.447880\pi\)
\(462\) 0 0
\(463\) −1.73371e12 −1.75332 −0.876659 0.481112i \(-0.840233\pi\)
−0.876659 + 0.481112i \(0.840233\pi\)
\(464\) 0 0
\(465\) −4.06095e11 −0.402800
\(466\) 0 0
\(467\) 5.67889e11 0.552506 0.276253 0.961085i \(-0.410907\pi\)
0.276253 + 0.961085i \(0.410907\pi\)
\(468\) 0 0
\(469\) −1.15370e12 −1.10107
\(470\) 0 0
\(471\) 1.02728e12 0.961823
\(472\) 0 0
\(473\) −1.84926e12 −1.69872
\(474\) 0 0
\(475\) 2.35099e11 0.211899
\(476\) 0 0
\(477\) 1.82389e12 1.61312
\(478\) 0 0
\(479\) −9.31010e11 −0.808062 −0.404031 0.914745i \(-0.632391\pi\)
−0.404031 + 0.914745i \(0.632391\pi\)
\(480\) 0 0
\(481\) −1.34360e11 −0.114451
\(482\) 0 0
\(483\) 7.90776e11 0.661137
\(484\) 0 0
\(485\) 9.12249e11 0.748644
\(486\) 0 0
\(487\) 4.49592e10 0.0362192 0.0181096 0.999836i \(-0.494235\pi\)
0.0181096 + 0.999836i \(0.494235\pi\)
\(488\) 0 0
\(489\) 1.30739e12 1.03399
\(490\) 0 0
\(491\) −4.47956e11 −0.347831 −0.173916 0.984761i \(-0.555642\pi\)
−0.173916 + 0.984761i \(0.555642\pi\)
\(492\) 0 0
\(493\) −4.06907e11 −0.310230
\(494\) 0 0
\(495\) 1.31756e12 0.986385
\(496\) 0 0
\(497\) −1.10502e12 −0.812394
\(498\) 0 0
\(499\) −7.27774e11 −0.525465 −0.262733 0.964869i \(-0.584624\pi\)
−0.262733 + 0.964869i \(0.584624\pi\)
\(500\) 0 0
\(501\) 1.14188e12 0.809748
\(502\) 0 0
\(503\) −6.23613e11 −0.434369 −0.217185 0.976131i \(-0.569687\pi\)
−0.217185 + 0.976131i \(0.569687\pi\)
\(504\) 0 0
\(505\) 1.05979e12 0.725118
\(506\) 0 0
\(507\) −1.58471e11 −0.106516
\(508\) 0 0
\(509\) 1.18958e12 0.785534 0.392767 0.919638i \(-0.371518\pi\)
0.392767 + 0.919638i \(0.371518\pi\)
\(510\) 0 0
\(511\) −1.84588e12 −1.19760
\(512\) 0 0
\(513\) −6.71186e10 −0.0427873
\(514\) 0 0
\(515\) 1.18547e12 0.742607
\(516\) 0 0
\(517\) −4.07616e12 −2.50925
\(518\) 0 0
\(519\) 2.72613e12 1.64928
\(520\) 0 0
\(521\) 2.26245e12 1.34527 0.672635 0.739974i \(-0.265162\pi\)
0.672635 + 0.739974i \(0.265162\pi\)
\(522\) 0 0
\(523\) −1.15246e12 −0.673549 −0.336775 0.941585i \(-0.609336\pi\)
−0.336775 + 0.941585i \(0.609336\pi\)
\(524\) 0 0
\(525\) −1.15163e12 −0.661600
\(526\) 0 0
\(527\) −1.02683e12 −0.579899
\(528\) 0 0
\(529\) −1.22421e12 −0.679683
\(530\) 0 0
\(531\) −2.38781e12 −1.30339
\(532\) 0 0
\(533\) 9.70432e11 0.520826
\(534\) 0 0
\(535\) 7.27567e11 0.383955
\(536\) 0 0
\(537\) −4.82936e12 −2.50614
\(538\) 0 0
\(539\) 9.22434e11 0.470745
\(540\) 0 0
\(541\) 1.31455e12 0.659766 0.329883 0.944022i \(-0.392991\pi\)
0.329883 + 0.944022i \(0.392991\pi\)
\(542\) 0 0
\(543\) −2.64185e12 −1.30409
\(544\) 0 0
\(545\) 4.04995e11 0.196637
\(546\) 0 0
\(547\) −1.63148e12 −0.779182 −0.389591 0.920988i \(-0.627384\pi\)
−0.389591 + 0.920988i \(0.627384\pi\)
\(548\) 0 0
\(549\) −2.23276e12 −1.04898
\(550\) 0 0
\(551\) 1.91301e11 0.0884168
\(552\) 0 0
\(553\) 2.69732e11 0.122651
\(554\) 0 0
\(555\) −8.41066e11 −0.376280
\(556\) 0 0
\(557\) −2.20811e12 −0.972013 −0.486007 0.873955i \(-0.661547\pi\)
−0.486007 + 0.873955i \(0.661547\pi\)
\(558\) 0 0
\(559\) 6.66169e11 0.288557
\(560\) 0 0
\(561\) 6.96295e12 2.96797
\(562\) 0 0
\(563\) 1.16602e12 0.489125 0.244563 0.969634i \(-0.421356\pi\)
0.244563 + 0.969634i \(0.421356\pi\)
\(564\) 0 0
\(565\) 7.62639e11 0.314848
\(566\) 0 0
\(567\) 2.23350e12 0.907533
\(568\) 0 0
\(569\) −2.63455e12 −1.05366 −0.526831 0.849970i \(-0.676620\pi\)
−0.526831 + 0.849970i \(0.676620\pi\)
\(570\) 0 0
\(571\) 1.65379e12 0.651055 0.325527 0.945533i \(-0.394458\pi\)
0.325527 + 0.945533i \(0.394458\pi\)
\(572\) 0 0
\(573\) −3.22457e11 −0.124961
\(574\) 0 0
\(575\) −8.40213e11 −0.320541
\(576\) 0 0
\(577\) 1.77685e12 0.667358 0.333679 0.942687i \(-0.391710\pi\)
0.333679 + 0.942687i \(0.391710\pi\)
\(578\) 0 0
\(579\) −6.01261e12 −2.22336
\(580\) 0 0
\(581\) 4.39582e11 0.160047
\(582\) 0 0
\(583\) −8.00811e12 −2.87092
\(584\) 0 0
\(585\) −4.74632e11 −0.167554
\(586\) 0 0
\(587\) −4.61417e12 −1.60406 −0.802032 0.597281i \(-0.796248\pi\)
−0.802032 + 0.597281i \(0.796248\pi\)
\(588\) 0 0
\(589\) 4.82750e11 0.165273
\(590\) 0 0
\(591\) 5.91241e12 1.99352
\(592\) 0 0
\(593\) −1.60396e12 −0.532655 −0.266328 0.963883i \(-0.585810\pi\)
−0.266328 + 0.963883i \(0.585810\pi\)
\(594\) 0 0
\(595\) 2.22955e12 0.729275
\(596\) 0 0
\(597\) 8.64132e10 0.0278417
\(598\) 0 0
\(599\) 3.56445e12 1.13128 0.565642 0.824651i \(-0.308628\pi\)
0.565642 + 0.824651i \(0.308628\pi\)
\(600\) 0 0
\(601\) −4.23106e12 −1.32286 −0.661431 0.750006i \(-0.730051\pi\)
−0.661431 + 0.750006i \(0.730051\pi\)
\(602\) 0 0
\(603\) 3.88744e12 1.19739
\(604\) 0 0
\(605\) −3.61494e12 −1.09699
\(606\) 0 0
\(607\) −2.69700e12 −0.806366 −0.403183 0.915119i \(-0.632096\pi\)
−0.403183 + 0.915119i \(0.632096\pi\)
\(608\) 0 0
\(609\) −9.37086e11 −0.276059
\(610\) 0 0
\(611\) 1.46838e12 0.426239
\(612\) 0 0
\(613\) −4.29368e12 −1.22817 −0.614084 0.789240i \(-0.710475\pi\)
−0.614084 + 0.789240i \(0.710475\pi\)
\(614\) 0 0
\(615\) 6.07468e12 1.71232
\(616\) 0 0
\(617\) 2.63888e12 0.733054 0.366527 0.930407i \(-0.380547\pi\)
0.366527 + 0.930407i \(0.380547\pi\)
\(618\) 0 0
\(619\) 2.36449e12 0.647335 0.323667 0.946171i \(-0.395084\pi\)
0.323667 + 0.946171i \(0.395084\pi\)
\(620\) 0 0
\(621\) 2.39873e11 0.0647247
\(622\) 0 0
\(623\) 3.31129e12 0.880645
\(624\) 0 0
\(625\) −4.30574e11 −0.112872
\(626\) 0 0
\(627\) −3.27352e12 −0.845885
\(628\) 0 0
\(629\) −2.12668e12 −0.541719
\(630\) 0 0
\(631\) 4.08896e12 1.02679 0.513393 0.858153i \(-0.328388\pi\)
0.513393 + 0.858153i \(0.328388\pi\)
\(632\) 0 0
\(633\) 9.48184e11 0.234734
\(634\) 0 0
\(635\) −1.92376e12 −0.469536
\(636\) 0 0
\(637\) −3.32295e11 −0.0799642
\(638\) 0 0
\(639\) 3.72341e12 0.883459
\(640\) 0 0
\(641\) −3.55153e12 −0.830911 −0.415456 0.909613i \(-0.636378\pi\)
−0.415456 + 0.909613i \(0.636378\pi\)
\(642\) 0 0
\(643\) −6.85000e12 −1.58031 −0.790153 0.612910i \(-0.789999\pi\)
−0.790153 + 0.612910i \(0.789999\pi\)
\(644\) 0 0
\(645\) 4.17007e12 0.948690
\(646\) 0 0
\(647\) 4.28931e12 0.962317 0.481159 0.876634i \(-0.340216\pi\)
0.481159 + 0.876634i \(0.340216\pi\)
\(648\) 0 0
\(649\) 1.04841e13 2.31968
\(650\) 0 0
\(651\) −2.36474e12 −0.516024
\(652\) 0 0
\(653\) 8.81913e12 1.89809 0.949045 0.315142i \(-0.102052\pi\)
0.949045 + 0.315142i \(0.102052\pi\)
\(654\) 0 0
\(655\) 1.13921e11 0.0241834
\(656\) 0 0
\(657\) 6.21977e12 1.30236
\(658\) 0 0
\(659\) −5.76538e12 −1.19081 −0.595406 0.803425i \(-0.703009\pi\)
−0.595406 + 0.803425i \(0.703009\pi\)
\(660\) 0 0
\(661\) −4.77184e12 −0.972254 −0.486127 0.873888i \(-0.661591\pi\)
−0.486127 + 0.873888i \(0.661591\pi\)
\(662\) 0 0
\(663\) −2.50831e12 −0.504162
\(664\) 0 0
\(665\) −1.04819e12 −0.207846
\(666\) 0 0
\(667\) −6.83686e11 −0.133749
\(668\) 0 0
\(669\) 4.80789e12 0.927977
\(670\) 0 0
\(671\) 9.80330e12 1.86690
\(672\) 0 0
\(673\) 1.38206e10 0.00259692 0.00129846 0.999999i \(-0.499587\pi\)
0.00129846 + 0.999999i \(0.499587\pi\)
\(674\) 0 0
\(675\) −3.49334e11 −0.0647700
\(676\) 0 0
\(677\) −2.70699e12 −0.495265 −0.247633 0.968854i \(-0.579653\pi\)
−0.247633 + 0.968854i \(0.579653\pi\)
\(678\) 0 0
\(679\) 5.31214e12 0.959082
\(680\) 0 0
\(681\) 5.09845e12 0.908398
\(682\) 0 0
\(683\) 3.77305e12 0.663436 0.331718 0.943379i \(-0.392372\pi\)
0.331718 + 0.943379i \(0.392372\pi\)
\(684\) 0 0
\(685\) 1.20815e12 0.209659
\(686\) 0 0
\(687\) 8.06725e12 1.38172
\(688\) 0 0
\(689\) 2.88481e12 0.487676
\(690\) 0 0
\(691\) 1.42326e12 0.237484 0.118742 0.992925i \(-0.462114\pi\)
0.118742 + 0.992925i \(0.462114\pi\)
\(692\) 0 0
\(693\) 7.67231e12 1.26365
\(694\) 0 0
\(695\) −4.44499e12 −0.722668
\(696\) 0 0
\(697\) 1.53602e13 2.46518
\(698\) 0 0
\(699\) −7.13748e12 −1.13083
\(700\) 0 0
\(701\) −4.18953e12 −0.655291 −0.327645 0.944801i \(-0.606255\pi\)
−0.327645 + 0.944801i \(0.606255\pi\)
\(702\) 0 0
\(703\) 9.99825e11 0.154392
\(704\) 0 0
\(705\) 9.19173e12 1.40135
\(706\) 0 0
\(707\) 6.17129e12 0.928942
\(708\) 0 0
\(709\) −5.30584e12 −0.788580 −0.394290 0.918986i \(-0.629009\pi\)
−0.394290 + 0.918986i \(0.629009\pi\)
\(710\) 0 0
\(711\) −9.08872e11 −0.133380
\(712\) 0 0
\(713\) −1.72529e12 −0.250011
\(714\) 0 0
\(715\) 2.08395e12 0.298202
\(716\) 0 0
\(717\) −8.46859e12 −1.19667
\(718\) 0 0
\(719\) −2.67496e12 −0.373282 −0.186641 0.982428i \(-0.559760\pi\)
−0.186641 + 0.982428i \(0.559760\pi\)
\(720\) 0 0
\(721\) 6.90316e12 0.951347
\(722\) 0 0
\(723\) 2.02958e12 0.276239
\(724\) 0 0
\(725\) 9.95669e11 0.133843
\(726\) 0 0
\(727\) 8.33355e12 1.10643 0.553217 0.833037i \(-0.313400\pi\)
0.553217 + 0.833037i \(0.313400\pi\)
\(728\) 0 0
\(729\) −6.31830e12 −0.828564
\(730\) 0 0
\(731\) 1.05442e13 1.36580
\(732\) 0 0
\(733\) 1.11038e11 0.0142071 0.00710355 0.999975i \(-0.497739\pi\)
0.00710355 + 0.999975i \(0.497739\pi\)
\(734\) 0 0
\(735\) −2.08009e12 −0.262899
\(736\) 0 0
\(737\) −1.70684e13 −2.13103
\(738\) 0 0
\(739\) −1.02565e13 −1.26502 −0.632511 0.774551i \(-0.717976\pi\)
−0.632511 + 0.774551i \(0.717976\pi\)
\(740\) 0 0
\(741\) 1.17924e12 0.143688
\(742\) 0 0
\(743\) −3.90792e12 −0.470431 −0.235215 0.971943i \(-0.575580\pi\)
−0.235215 + 0.971943i \(0.575580\pi\)
\(744\) 0 0
\(745\) 4.04235e12 0.480763
\(746\) 0 0
\(747\) −1.48119e12 −0.174047
\(748\) 0 0
\(749\) 4.23671e12 0.491882
\(750\) 0 0
\(751\) 2.63552e12 0.302333 0.151167 0.988508i \(-0.451697\pi\)
0.151167 + 0.988508i \(0.451697\pi\)
\(752\) 0 0
\(753\) 1.68898e13 1.91446
\(754\) 0 0
\(755\) −4.32817e12 −0.484778
\(756\) 0 0
\(757\) −1.02796e13 −1.13774 −0.568870 0.822428i \(-0.692619\pi\)
−0.568870 + 0.822428i \(0.692619\pi\)
\(758\) 0 0
\(759\) 1.16992e13 1.27958
\(760\) 0 0
\(761\) 1.47695e12 0.159638 0.0798190 0.996809i \(-0.474566\pi\)
0.0798190 + 0.996809i \(0.474566\pi\)
\(762\) 0 0
\(763\) 2.35834e12 0.251910
\(764\) 0 0
\(765\) −7.51256e12 −0.793070
\(766\) 0 0
\(767\) −3.77674e12 −0.394038
\(768\) 0 0
\(769\) −3.06990e12 −0.316560 −0.158280 0.987394i \(-0.550595\pi\)
−0.158280 + 0.987394i \(0.550595\pi\)
\(770\) 0 0
\(771\) −7.87745e12 −0.802862
\(772\) 0 0
\(773\) 1.22536e13 1.23440 0.617200 0.786807i \(-0.288267\pi\)
0.617200 + 0.786807i \(0.288267\pi\)
\(774\) 0 0
\(775\) 2.51258e12 0.250186
\(776\) 0 0
\(777\) −4.89764e12 −0.482050
\(778\) 0 0
\(779\) −7.22134e12 −0.702585
\(780\) 0 0
\(781\) −1.63482e13 −1.57232
\(782\) 0 0
\(783\) −2.84255e11 −0.0270259
\(784\) 0 0
\(785\) 4.86648e12 0.457405
\(786\) 0 0
\(787\) −1.16840e13 −1.08569 −0.542847 0.839832i \(-0.682653\pi\)
−0.542847 + 0.839832i \(0.682653\pi\)
\(788\) 0 0
\(789\) 3.02904e12 0.278265
\(790\) 0 0
\(791\) 4.44095e12 0.403349
\(792\) 0 0
\(793\) −3.53151e12 −0.317125
\(794\) 0 0
\(795\) 1.80583e13 1.60333
\(796\) 0 0
\(797\) −1.05711e13 −0.928024 −0.464012 0.885829i \(-0.653590\pi\)
−0.464012 + 0.885829i \(0.653590\pi\)
\(798\) 0 0
\(799\) 2.32418e13 2.01748
\(800\) 0 0
\(801\) −1.11575e13 −0.957682
\(802\) 0 0
\(803\) −2.73089e13 −2.31785
\(804\) 0 0
\(805\) 3.74610e12 0.314411
\(806\) 0 0
\(807\) −2.61902e13 −2.17374
\(808\) 0 0
\(809\) −9.18043e12 −0.753520 −0.376760 0.926311i \(-0.622962\pi\)
−0.376760 + 0.926311i \(0.622962\pi\)
\(810\) 0 0
\(811\) 1.38738e12 0.112616 0.0563081 0.998413i \(-0.482067\pi\)
0.0563081 + 0.998413i \(0.482067\pi\)
\(812\) 0 0
\(813\) 2.10111e12 0.168672
\(814\) 0 0
\(815\) 6.19343e12 0.491725
\(816\) 0 0
\(817\) −4.95721e12 −0.389258
\(818\) 0 0
\(819\) −2.76385e12 −0.214653
\(820\) 0 0
\(821\) 1.09862e12 0.0843924 0.0421962 0.999109i \(-0.486565\pi\)
0.0421962 + 0.999109i \(0.486565\pi\)
\(822\) 0 0
\(823\) 1.94330e13 1.47653 0.738263 0.674513i \(-0.235646\pi\)
0.738263 + 0.674513i \(0.235646\pi\)
\(824\) 0 0
\(825\) −1.70378e13 −1.28047
\(826\) 0 0
\(827\) 2.56778e12 0.190890 0.0954448 0.995435i \(-0.469573\pi\)
0.0954448 + 0.995435i \(0.469573\pi\)
\(828\) 0 0
\(829\) 1.15684e13 0.850703 0.425352 0.905028i \(-0.360150\pi\)
0.425352 + 0.905028i \(0.360150\pi\)
\(830\) 0 0
\(831\) −2.04496e13 −1.48758
\(832\) 0 0
\(833\) −5.25961e12 −0.378487
\(834\) 0 0
\(835\) 5.40935e12 0.385085
\(836\) 0 0
\(837\) −7.17320e11 −0.0505182
\(838\) 0 0
\(839\) 1.07035e13 0.745754 0.372877 0.927881i \(-0.378371\pi\)
0.372877 + 0.927881i \(0.378371\pi\)
\(840\) 0 0
\(841\) −1.36970e13 −0.944153
\(842\) 0 0
\(843\) −1.14746e13 −0.782553
\(844\) 0 0
\(845\) −7.50716e11 −0.0506548
\(846\) 0 0
\(847\) −2.10503e13 −1.40534
\(848\) 0 0
\(849\) −2.83425e13 −1.87220
\(850\) 0 0
\(851\) −3.57325e12 −0.233550
\(852\) 0 0
\(853\) 1.85417e13 1.19917 0.599583 0.800313i \(-0.295333\pi\)
0.599583 + 0.800313i \(0.295333\pi\)
\(854\) 0 0
\(855\) 3.53191e12 0.226028
\(856\) 0 0
\(857\) 8.38633e12 0.531078 0.265539 0.964100i \(-0.414450\pi\)
0.265539 + 0.964100i \(0.414450\pi\)
\(858\) 0 0
\(859\) −2.49383e12 −0.156278 −0.0781390 0.996942i \(-0.524898\pi\)
−0.0781390 + 0.996942i \(0.524898\pi\)
\(860\) 0 0
\(861\) 3.53736e13 2.19364
\(862\) 0 0
\(863\) 1.05758e12 0.0649029 0.0324515 0.999473i \(-0.489669\pi\)
0.0324515 + 0.999473i \(0.489669\pi\)
\(864\) 0 0
\(865\) 1.29143e13 0.784332
\(866\) 0 0
\(867\) −1.66640e13 −1.00160
\(868\) 0 0
\(869\) 3.99056e12 0.237380
\(870\) 0 0
\(871\) 6.14868e12 0.361993
\(872\) 0 0
\(873\) −1.78995e13 −1.04298
\(874\) 0 0
\(875\) −1.50881e13 −0.870161
\(876\) 0 0
\(877\) 2.46623e13 1.40778 0.703891 0.710308i \(-0.251444\pi\)
0.703891 + 0.710308i \(0.251444\pi\)
\(878\) 0 0
\(879\) 1.49516e12 0.0844767
\(880\) 0 0
\(881\) −7.21428e12 −0.403461 −0.201731 0.979441i \(-0.564657\pi\)
−0.201731 + 0.979441i \(0.564657\pi\)
\(882\) 0 0
\(883\) 5.65890e12 0.313263 0.156631 0.987657i \(-0.449937\pi\)
0.156631 + 0.987657i \(0.449937\pi\)
\(884\) 0 0
\(885\) −2.36416e13 −1.29548
\(886\) 0 0
\(887\) −1.70857e13 −0.926778 −0.463389 0.886155i \(-0.653367\pi\)
−0.463389 + 0.886155i \(0.653367\pi\)
\(888\) 0 0
\(889\) −1.12023e13 −0.601518
\(890\) 0 0
\(891\) 3.30436e13 1.75646
\(892\) 0 0
\(893\) −1.09268e13 −0.574989
\(894\) 0 0
\(895\) −2.28779e13 −1.19182
\(896\) 0 0
\(897\) −4.21446e12 −0.217358
\(898\) 0 0
\(899\) 2.04450e12 0.104392
\(900\) 0 0
\(901\) 4.56613e13 2.30827
\(902\) 0 0
\(903\) 2.42828e13 1.21536
\(904\) 0 0
\(905\) −1.25151e13 −0.620176
\(906\) 0 0
\(907\) −4.31310e12 −0.211620 −0.105810 0.994386i \(-0.533744\pi\)
−0.105810 + 0.994386i \(0.533744\pi\)
\(908\) 0 0
\(909\) −2.07944e13 −1.01020
\(910\) 0 0
\(911\) −3.59972e13 −1.73155 −0.865777 0.500430i \(-0.833175\pi\)
−0.865777 + 0.500430i \(0.833175\pi\)
\(912\) 0 0
\(913\) 6.50340e12 0.309758
\(914\) 0 0
\(915\) −2.21064e13 −1.04261
\(916\) 0 0
\(917\) 6.63375e11 0.0309811
\(918\) 0 0
\(919\) 1.78486e13 0.825437 0.412719 0.910859i \(-0.364579\pi\)
0.412719 + 0.910859i \(0.364579\pi\)
\(920\) 0 0
\(921\) 1.52293e13 0.697447
\(922\) 0 0
\(923\) 5.88923e12 0.267086
\(924\) 0 0
\(925\) 5.20382e12 0.233714
\(926\) 0 0
\(927\) −2.32604e13 −1.03457
\(928\) 0 0
\(929\) −2.28123e13 −1.00484 −0.502422 0.864622i \(-0.667558\pi\)
−0.502422 + 0.864622i \(0.667558\pi\)
\(930\) 0 0
\(931\) 2.47272e12 0.107870
\(932\) 0 0
\(933\) −3.93307e13 −1.69928
\(934\) 0 0
\(935\) 3.29852e13 1.41145
\(936\) 0 0
\(937\) 9.14211e12 0.387452 0.193726 0.981056i \(-0.437943\pi\)
0.193726 + 0.981056i \(0.437943\pi\)
\(938\) 0 0
\(939\) −9.05084e12 −0.379922
\(940\) 0 0
\(941\) 2.42073e13 1.00645 0.503225 0.864155i \(-0.332147\pi\)
0.503225 + 0.864155i \(0.332147\pi\)
\(942\) 0 0
\(943\) 2.58082e13 1.06281
\(944\) 0 0
\(945\) 1.55751e12 0.0635312
\(946\) 0 0
\(947\) −1.63239e13 −0.659550 −0.329775 0.944060i \(-0.606973\pi\)
−0.329775 + 0.944060i \(0.606973\pi\)
\(948\) 0 0
\(949\) 9.83767e12 0.393726
\(950\) 0 0
\(951\) 2.31630e12 0.0918295
\(952\) 0 0
\(953\) 2.42382e13 0.951880 0.475940 0.879478i \(-0.342108\pi\)
0.475940 + 0.879478i \(0.342108\pi\)
\(954\) 0 0
\(955\) −1.52756e12 −0.0594268
\(956\) 0 0
\(957\) −1.38637e13 −0.534289
\(958\) 0 0
\(959\) 7.03523e12 0.268593
\(960\) 0 0
\(961\) −2.12803e13 −0.804864
\(962\) 0 0
\(963\) −1.42758e13 −0.534910
\(964\) 0 0
\(965\) −2.84832e13 −1.05734
\(966\) 0 0
\(967\) 1.11387e13 0.409654 0.204827 0.978798i \(-0.434337\pi\)
0.204827 + 0.978798i \(0.434337\pi\)
\(968\) 0 0
\(969\) 1.86652e13 0.680106
\(970\) 0 0
\(971\) 3.10112e13 1.11952 0.559760 0.828655i \(-0.310893\pi\)
0.559760 + 0.828655i \(0.310893\pi\)
\(972\) 0 0
\(973\) −2.58837e13 −0.925804
\(974\) 0 0
\(975\) 6.13763e12 0.217510
\(976\) 0 0
\(977\) 1.16626e13 0.409516 0.204758 0.978813i \(-0.434359\pi\)
0.204758 + 0.978813i \(0.434359\pi\)
\(978\) 0 0
\(979\) 4.89889e13 1.70442
\(980\) 0 0
\(981\) −7.94651e12 −0.273947
\(982\) 0 0
\(983\) 1.20376e13 0.411198 0.205599 0.978636i \(-0.434086\pi\)
0.205599 + 0.978636i \(0.434086\pi\)
\(984\) 0 0
\(985\) 2.80085e13 0.948040
\(986\) 0 0
\(987\) 5.35246e13 1.79526
\(988\) 0 0
\(989\) 1.77164e13 0.588834
\(990\) 0 0
\(991\) −4.45908e13 −1.46863 −0.734317 0.678806i \(-0.762498\pi\)
−0.734317 + 0.678806i \(0.762498\pi\)
\(992\) 0 0
\(993\) 3.87379e13 1.26434
\(994\) 0 0
\(995\) 4.09360e11 0.0132404
\(996\) 0 0
\(997\) 5.03829e13 1.61493 0.807467 0.589912i \(-0.200838\pi\)
0.807467 + 0.589912i \(0.200838\pi\)
\(998\) 0 0
\(999\) −1.48564e12 −0.0471922
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.h.1.2 5
4.3 odd 2 13.10.a.b.1.1 5
12.11 even 2 117.10.a.e.1.5 5
20.19 odd 2 325.10.a.b.1.5 5
52.51 odd 2 169.10.a.b.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.1 5 4.3 odd 2
117.10.a.e.1.5 5 12.11 even 2
169.10.a.b.1.5 5 52.51 odd 2
208.10.a.h.1.2 5 1.1 even 1 trivial
325.10.a.b.1.5 5 20.19 odd 2