Properties

Label 208.10.a.h.1.1
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(16.7176\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-250.479 q^{3} +1555.58 q^{5} +8329.39 q^{7} +43056.6 q^{9} +O(q^{10})\) \(q-250.479 q^{3} +1555.58 q^{5} +8329.39 q^{7} +43056.6 q^{9} -30751.5 q^{11} +28561.0 q^{13} -389640. q^{15} -637455. q^{17} -105834. q^{19} -2.08634e6 q^{21} +511169. q^{23} +466710. q^{25} -5.85460e6 q^{27} +781868. q^{29} +2.83285e6 q^{31} +7.70259e6 q^{33} +1.29571e7 q^{35} +1.22183e7 q^{37} -7.15392e6 q^{39} -6.83367e6 q^{41} -3.84656e7 q^{43} +6.69781e7 q^{45} +1.30402e7 q^{47} +2.90252e7 q^{49} +1.59669e8 q^{51} -2.42871e7 q^{53} -4.78364e7 q^{55} +2.65092e7 q^{57} -1.63738e8 q^{59} +1.90751e7 q^{61} +3.58636e8 q^{63} +4.44290e7 q^{65} +7.22869e7 q^{67} -1.28037e8 q^{69} -2.65461e7 q^{71} +2.42850e8 q^{73} -1.16901e8 q^{75} -2.56141e8 q^{77} +4.64290e8 q^{79} +6.18969e8 q^{81} -5.46643e8 q^{83} -9.91613e8 q^{85} -1.95841e8 q^{87} +3.65672e8 q^{89} +2.37896e8 q^{91} -7.09568e8 q^{93} -1.64634e8 q^{95} +9.98914e7 q^{97} -1.32405e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 161 q^{3} + 1803 q^{5} - 10099 q^{7} + 61060 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 161 q^{3} + 1803 q^{5} - 10099 q^{7} + 61060 q^{9} - 121746 q^{11} + 142805 q^{13} - 105973 q^{15} - 495669 q^{17} + 840738 q^{19} - 1599467 q^{21} + 592152 q^{23} + 1670362 q^{25} - 6847883 q^{27} + 10678182 q^{29} - 12885296 q^{31} + 17278298 q^{33} - 8380731 q^{35} + 7171823 q^{37} - 4598321 q^{39} + 9294012 q^{41} - 12831975 q^{43} + 26135198 q^{45} - 43354215 q^{47} + 25249488 q^{49} - 16905901 q^{51} + 93231780 q^{53} - 99448846 q^{55} + 90173382 q^{57} - 246496182 q^{59} - 132232612 q^{61} + 416955202 q^{63} + 51495483 q^{65} + 369388534 q^{67} - 579986760 q^{69} - 212150457 q^{71} - 252729806 q^{73} + 752457788 q^{75} + 449666118 q^{77} + 1247271728 q^{79} - 317713115 q^{81} - 1696894296 q^{83} - 775363765 q^{85} + 614530466 q^{87} - 753854382 q^{89} - 288437539 q^{91} - 892784668 q^{93} - 1442632962 q^{95} + 3824606 q^{97} - 3016199848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −250.479 −1.78536 −0.892679 0.450693i \(-0.851177\pi\)
−0.892679 + 0.450693i \(0.851177\pi\)
\(4\) 0 0
\(5\) 1555.58 1.11308 0.556542 0.830820i \(-0.312128\pi\)
0.556542 + 0.830820i \(0.312128\pi\)
\(6\) 0 0
\(7\) 8329.39 1.31121 0.655605 0.755104i \(-0.272414\pi\)
0.655605 + 0.755104i \(0.272414\pi\)
\(8\) 0 0
\(9\) 43056.6 2.18750
\(10\) 0 0
\(11\) −30751.5 −0.633284 −0.316642 0.948545i \(-0.602555\pi\)
−0.316642 + 0.948545i \(0.602555\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) −389640. −1.98725
\(16\) 0 0
\(17\) −637455. −1.85110 −0.925549 0.378629i \(-0.876396\pi\)
−0.925549 + 0.378629i \(0.876396\pi\)
\(18\) 0 0
\(19\) −105834. −0.186310 −0.0931548 0.995652i \(-0.529695\pi\)
−0.0931548 + 0.995652i \(0.529695\pi\)
\(20\) 0 0
\(21\) −2.08634e6 −2.34098
\(22\) 0 0
\(23\) 511169. 0.380881 0.190441 0.981699i \(-0.439008\pi\)
0.190441 + 0.981699i \(0.439008\pi\)
\(24\) 0 0
\(25\) 466710. 0.238955
\(26\) 0 0
\(27\) −5.85460e6 −2.12012
\(28\) 0 0
\(29\) 781868. 0.205278 0.102639 0.994719i \(-0.467271\pi\)
0.102639 + 0.994719i \(0.467271\pi\)
\(30\) 0 0
\(31\) 2.83285e6 0.550929 0.275464 0.961311i \(-0.411168\pi\)
0.275464 + 0.961311i \(0.411168\pi\)
\(32\) 0 0
\(33\) 7.70259e6 1.13064
\(34\) 0 0
\(35\) 1.29571e7 1.45949
\(36\) 0 0
\(37\) 1.22183e7 1.07178 0.535889 0.844289i \(-0.319977\pi\)
0.535889 + 0.844289i \(0.319977\pi\)
\(38\) 0 0
\(39\) −7.15392e6 −0.495169
\(40\) 0 0
\(41\) −6.83367e6 −0.377682 −0.188841 0.982008i \(-0.560473\pi\)
−0.188841 + 0.982008i \(0.560473\pi\)
\(42\) 0 0
\(43\) −3.84656e7 −1.71579 −0.857896 0.513823i \(-0.828229\pi\)
−0.857896 + 0.513823i \(0.828229\pi\)
\(44\) 0 0
\(45\) 6.69781e7 2.43487
\(46\) 0 0
\(47\) 1.30402e7 0.389802 0.194901 0.980823i \(-0.437561\pi\)
0.194901 + 0.980823i \(0.437561\pi\)
\(48\) 0 0
\(49\) 2.90252e7 0.719272
\(50\) 0 0
\(51\) 1.59669e8 3.30487
\(52\) 0 0
\(53\) −2.42871e7 −0.422800 −0.211400 0.977400i \(-0.567802\pi\)
−0.211400 + 0.977400i \(0.567802\pi\)
\(54\) 0 0
\(55\) −4.78364e7 −0.704898
\(56\) 0 0
\(57\) 2.65092e7 0.332629
\(58\) 0 0
\(59\) −1.63738e8 −1.75920 −0.879599 0.475716i \(-0.842189\pi\)
−0.879599 + 0.475716i \(0.842189\pi\)
\(60\) 0 0
\(61\) 1.90751e7 0.176394 0.0881968 0.996103i \(-0.471890\pi\)
0.0881968 + 0.996103i \(0.471890\pi\)
\(62\) 0 0
\(63\) 3.58636e8 2.86828
\(64\) 0 0
\(65\) 4.44290e7 0.308714
\(66\) 0 0
\(67\) 7.22869e7 0.438251 0.219125 0.975697i \(-0.429680\pi\)
0.219125 + 0.975697i \(0.429680\pi\)
\(68\) 0 0
\(69\) −1.28037e8 −0.680009
\(70\) 0 0
\(71\) −2.65461e7 −0.123976 −0.0619880 0.998077i \(-0.519744\pi\)
−0.0619880 + 0.998077i \(0.519744\pi\)
\(72\) 0 0
\(73\) 2.42850e8 1.00089 0.500445 0.865769i \(-0.333170\pi\)
0.500445 + 0.865769i \(0.333170\pi\)
\(74\) 0 0
\(75\) −1.16901e8 −0.426621
\(76\) 0 0
\(77\) −2.56141e8 −0.830369
\(78\) 0 0
\(79\) 4.64290e8 1.34112 0.670560 0.741855i \(-0.266054\pi\)
0.670560 + 0.741855i \(0.266054\pi\)
\(80\) 0 0
\(81\) 6.18969e8 1.59767
\(82\) 0 0
\(83\) −5.46643e8 −1.26431 −0.632153 0.774843i \(-0.717829\pi\)
−0.632153 + 0.774843i \(0.717829\pi\)
\(84\) 0 0
\(85\) −9.91613e8 −2.06043
\(86\) 0 0
\(87\) −1.95841e8 −0.366495
\(88\) 0 0
\(89\) 3.65672e8 0.617783 0.308892 0.951097i \(-0.400042\pi\)
0.308892 + 0.951097i \(0.400042\pi\)
\(90\) 0 0
\(91\) 2.37896e8 0.363664
\(92\) 0 0
\(93\) −7.09568e8 −0.983605
\(94\) 0 0
\(95\) −1.64634e8 −0.207378
\(96\) 0 0
\(97\) 9.98914e7 0.114566 0.0572830 0.998358i \(-0.481756\pi\)
0.0572830 + 0.998358i \(0.481756\pi\)
\(98\) 0 0
\(99\) −1.32405e9 −1.38531
\(100\) 0 0
\(101\) −6.76155e8 −0.646547 −0.323273 0.946306i \(-0.604783\pi\)
−0.323273 + 0.946306i \(0.604783\pi\)
\(102\) 0 0
\(103\) 1.73267e8 0.151687 0.0758434 0.997120i \(-0.475835\pi\)
0.0758434 + 0.997120i \(0.475835\pi\)
\(104\) 0 0
\(105\) −3.24547e9 −2.60571
\(106\) 0 0
\(107\) −1.23684e9 −0.912191 −0.456095 0.889931i \(-0.650752\pi\)
−0.456095 + 0.889931i \(0.650752\pi\)
\(108\) 0 0
\(109\) −1.04481e9 −0.708956 −0.354478 0.935064i \(-0.615341\pi\)
−0.354478 + 0.935064i \(0.615341\pi\)
\(110\) 0 0
\(111\) −3.06044e9 −1.91351
\(112\) 0 0
\(113\) −1.17492e9 −0.677884 −0.338942 0.940807i \(-0.610069\pi\)
−0.338942 + 0.940807i \(0.610069\pi\)
\(114\) 0 0
\(115\) 7.95166e8 0.423953
\(116\) 0 0
\(117\) 1.22974e9 0.606704
\(118\) 0 0
\(119\) −5.30961e9 −2.42718
\(120\) 0 0
\(121\) −1.41230e9 −0.598951
\(122\) 0 0
\(123\) 1.71169e9 0.674298
\(124\) 0 0
\(125\) −2.31224e9 −0.847106
\(126\) 0 0
\(127\) −6.34961e8 −0.216586 −0.108293 0.994119i \(-0.534538\pi\)
−0.108293 + 0.994119i \(0.534538\pi\)
\(128\) 0 0
\(129\) 9.63482e9 3.06330
\(130\) 0 0
\(131\) 5.68611e9 1.68692 0.843459 0.537193i \(-0.180515\pi\)
0.843459 + 0.537193i \(0.180515\pi\)
\(132\) 0 0
\(133\) −8.81536e8 −0.244291
\(134\) 0 0
\(135\) −9.10731e9 −2.35987
\(136\) 0 0
\(137\) 4.47162e9 1.08448 0.542241 0.840223i \(-0.317576\pi\)
0.542241 + 0.840223i \(0.317576\pi\)
\(138\) 0 0
\(139\) 8.63285e9 1.96150 0.980748 0.195275i \(-0.0625601\pi\)
0.980748 + 0.195275i \(0.0625601\pi\)
\(140\) 0 0
\(141\) −3.26629e9 −0.695936
\(142\) 0 0
\(143\) −8.78292e8 −0.175641
\(144\) 0 0
\(145\) 1.21626e9 0.228492
\(146\) 0 0
\(147\) −7.27020e9 −1.28416
\(148\) 0 0
\(149\) −6.88630e9 −1.14458 −0.572292 0.820050i \(-0.693946\pi\)
−0.572292 + 0.820050i \(0.693946\pi\)
\(150\) 0 0
\(151\) −4.01063e9 −0.627792 −0.313896 0.949457i \(-0.601634\pi\)
−0.313896 + 0.949457i \(0.601634\pi\)
\(152\) 0 0
\(153\) −2.74467e10 −4.04928
\(154\) 0 0
\(155\) 4.40672e9 0.613230
\(156\) 0 0
\(157\) 9.39913e9 1.23464 0.617318 0.786714i \(-0.288219\pi\)
0.617318 + 0.786714i \(0.288219\pi\)
\(158\) 0 0
\(159\) 6.08341e9 0.754849
\(160\) 0 0
\(161\) 4.25773e9 0.499415
\(162\) 0 0
\(163\) −3.72144e9 −0.412920 −0.206460 0.978455i \(-0.566194\pi\)
−0.206460 + 0.978455i \(0.566194\pi\)
\(164\) 0 0
\(165\) 1.19820e10 1.25850
\(166\) 0 0
\(167\) 4.48607e9 0.446315 0.223158 0.974782i \(-0.428364\pi\)
0.223158 + 0.974782i \(0.428364\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −4.55687e9 −0.407553
\(172\) 0 0
\(173\) −1.69286e10 −1.43686 −0.718428 0.695602i \(-0.755138\pi\)
−0.718428 + 0.695602i \(0.755138\pi\)
\(174\) 0 0
\(175\) 3.88741e9 0.313321
\(176\) 0 0
\(177\) 4.10128e10 3.14080
\(178\) 0 0
\(179\) −1.23127e10 −0.896428 −0.448214 0.893926i \(-0.647940\pi\)
−0.448214 + 0.893926i \(0.647940\pi\)
\(180\) 0 0
\(181\) −2.43748e10 −1.68806 −0.844030 0.536295i \(-0.819823\pi\)
−0.844030 + 0.536295i \(0.819823\pi\)
\(182\) 0 0
\(183\) −4.77791e9 −0.314926
\(184\) 0 0
\(185\) 1.90066e10 1.19298
\(186\) 0 0
\(187\) 1.96027e10 1.17227
\(188\) 0 0
\(189\) −4.87653e10 −2.77992
\(190\) 0 0
\(191\) 8.67702e9 0.471759 0.235880 0.971782i \(-0.424203\pi\)
0.235880 + 0.971782i \(0.424203\pi\)
\(192\) 0 0
\(193\) −2.33509e10 −1.21142 −0.605712 0.795684i \(-0.707112\pi\)
−0.605712 + 0.795684i \(0.707112\pi\)
\(194\) 0 0
\(195\) −1.11285e10 −0.551165
\(196\) 0 0
\(197\) −2.62332e9 −0.124095 −0.0620473 0.998073i \(-0.519763\pi\)
−0.0620473 + 0.998073i \(0.519763\pi\)
\(198\) 0 0
\(199\) −8.36775e9 −0.378242 −0.189121 0.981954i \(-0.560564\pi\)
−0.189121 + 0.981954i \(0.560564\pi\)
\(200\) 0 0
\(201\) −1.81063e10 −0.782435
\(202\) 0 0
\(203\) 6.51249e9 0.269163
\(204\) 0 0
\(205\) −1.06303e10 −0.420392
\(206\) 0 0
\(207\) 2.20092e10 0.833179
\(208\) 0 0
\(209\) 3.25456e9 0.117987
\(210\) 0 0
\(211\) −3.66318e10 −1.27229 −0.636147 0.771568i \(-0.719473\pi\)
−0.636147 + 0.771568i \(0.719473\pi\)
\(212\) 0 0
\(213\) 6.64923e9 0.221342
\(214\) 0 0
\(215\) −5.98364e10 −1.90982
\(216\) 0 0
\(217\) 2.35959e10 0.722383
\(218\) 0 0
\(219\) −6.08289e10 −1.78695
\(220\) 0 0
\(221\) −1.82063e10 −0.513402
\(222\) 0 0
\(223\) −6.22383e10 −1.68533 −0.842667 0.538435i \(-0.819016\pi\)
−0.842667 + 0.538435i \(0.819016\pi\)
\(224\) 0 0
\(225\) 2.00949e10 0.522715
\(226\) 0 0
\(227\) −4.00531e10 −1.00120 −0.500599 0.865679i \(-0.666887\pi\)
−0.500599 + 0.865679i \(0.666887\pi\)
\(228\) 0 0
\(229\) 4.61622e10 1.10924 0.554621 0.832103i \(-0.312863\pi\)
0.554621 + 0.832103i \(0.312863\pi\)
\(230\) 0 0
\(231\) 6.41579e10 1.48251
\(232\) 0 0
\(233\) −2.82042e10 −0.626920 −0.313460 0.949601i \(-0.601488\pi\)
−0.313460 + 0.949601i \(0.601488\pi\)
\(234\) 0 0
\(235\) 2.02851e10 0.433882
\(236\) 0 0
\(237\) −1.16295e11 −2.39438
\(238\) 0 0
\(239\) −7.93923e9 −0.157394 −0.0786969 0.996899i \(-0.525076\pi\)
−0.0786969 + 0.996899i \(0.525076\pi\)
\(240\) 0 0
\(241\) −4.33069e10 −0.826953 −0.413476 0.910515i \(-0.635686\pi\)
−0.413476 + 0.910515i \(0.635686\pi\)
\(242\) 0 0
\(243\) −3.98026e10 −0.732290
\(244\) 0 0
\(245\) 4.51511e10 0.800610
\(246\) 0 0
\(247\) −3.02273e9 −0.0516730
\(248\) 0 0
\(249\) 1.36922e11 2.25724
\(250\) 0 0
\(251\) −3.48447e10 −0.554121 −0.277061 0.960852i \(-0.589360\pi\)
−0.277061 + 0.960852i \(0.589360\pi\)
\(252\) 0 0
\(253\) −1.57192e10 −0.241206
\(254\) 0 0
\(255\) 2.48378e11 3.67860
\(256\) 0 0
\(257\) 6.17149e10 0.882452 0.441226 0.897396i \(-0.354544\pi\)
0.441226 + 0.897396i \(0.354544\pi\)
\(258\) 0 0
\(259\) 1.01771e11 1.40533
\(260\) 0 0
\(261\) 3.36646e10 0.449046
\(262\) 0 0
\(263\) 1.78558e10 0.230132 0.115066 0.993358i \(-0.463292\pi\)
0.115066 + 0.993358i \(0.463292\pi\)
\(264\) 0 0
\(265\) −3.77806e10 −0.470611
\(266\) 0 0
\(267\) −9.15930e10 −1.10296
\(268\) 0 0
\(269\) −5.24399e10 −0.610628 −0.305314 0.952252i \(-0.598761\pi\)
−0.305314 + 0.952252i \(0.598761\pi\)
\(270\) 0 0
\(271\) 5.03988e10 0.567621 0.283811 0.958880i \(-0.408401\pi\)
0.283811 + 0.958880i \(0.408401\pi\)
\(272\) 0 0
\(273\) −5.95879e10 −0.649271
\(274\) 0 0
\(275\) −1.43520e10 −0.151327
\(276\) 0 0
\(277\) −1.58677e11 −1.61941 −0.809703 0.586840i \(-0.800372\pi\)
−0.809703 + 0.586840i \(0.800372\pi\)
\(278\) 0 0
\(279\) 1.21973e11 1.20516
\(280\) 0 0
\(281\) 3.04536e10 0.291381 0.145690 0.989330i \(-0.453460\pi\)
0.145690 + 0.989330i \(0.453460\pi\)
\(282\) 0 0
\(283\) −4.21589e10 −0.390706 −0.195353 0.980733i \(-0.562585\pi\)
−0.195353 + 0.980733i \(0.562585\pi\)
\(284\) 0 0
\(285\) 4.12373e10 0.370244
\(286\) 0 0
\(287\) −5.69204e10 −0.495221
\(288\) 0 0
\(289\) 2.87761e11 2.42656
\(290\) 0 0
\(291\) −2.50207e10 −0.204541
\(292\) 0 0
\(293\) 9.73493e10 0.771665 0.385832 0.922569i \(-0.373914\pi\)
0.385832 + 0.922569i \(0.373914\pi\)
\(294\) 0 0
\(295\) −2.54707e11 −1.95813
\(296\) 0 0
\(297\) 1.80037e11 1.34264
\(298\) 0 0
\(299\) 1.45995e10 0.105637
\(300\) 0 0
\(301\) −3.20395e11 −2.24976
\(302\) 0 0
\(303\) 1.69362e11 1.15432
\(304\) 0 0
\(305\) 2.96729e10 0.196341
\(306\) 0 0
\(307\) 1.62669e11 1.04516 0.522578 0.852591i \(-0.324970\pi\)
0.522578 + 0.852591i \(0.324970\pi\)
\(308\) 0 0
\(309\) −4.33996e10 −0.270815
\(310\) 0 0
\(311\) −1.80301e11 −1.09289 −0.546445 0.837495i \(-0.684019\pi\)
−0.546445 + 0.837495i \(0.684019\pi\)
\(312\) 0 0
\(313\) −6.08927e10 −0.358605 −0.179302 0.983794i \(-0.557384\pi\)
−0.179302 + 0.983794i \(0.557384\pi\)
\(314\) 0 0
\(315\) 5.57887e11 3.19263
\(316\) 0 0
\(317\) 4.75152e10 0.264281 0.132140 0.991231i \(-0.457815\pi\)
0.132140 + 0.991231i \(0.457815\pi\)
\(318\) 0 0
\(319\) −2.40436e10 −0.129999
\(320\) 0 0
\(321\) 3.09802e11 1.62859
\(322\) 0 0
\(323\) 6.74646e10 0.344877
\(324\) 0 0
\(325\) 1.33297e10 0.0662743
\(326\) 0 0
\(327\) 2.61704e11 1.26574
\(328\) 0 0
\(329\) 1.08617e11 0.511112
\(330\) 0 0
\(331\) 8.96236e10 0.410390 0.205195 0.978721i \(-0.434217\pi\)
0.205195 + 0.978721i \(0.434217\pi\)
\(332\) 0 0
\(333\) 5.26081e11 2.34452
\(334\) 0 0
\(335\) 1.12448e11 0.487810
\(336\) 0 0
\(337\) 2.05747e11 0.868957 0.434478 0.900682i \(-0.356933\pi\)
0.434478 + 0.900682i \(0.356933\pi\)
\(338\) 0 0
\(339\) 2.94293e11 1.21027
\(340\) 0 0
\(341\) −8.71142e10 −0.348894
\(342\) 0 0
\(343\) −9.43587e10 −0.368094
\(344\) 0 0
\(345\) −1.99172e11 −0.756907
\(346\) 0 0
\(347\) −3.41311e11 −1.26377 −0.631884 0.775063i \(-0.717718\pi\)
−0.631884 + 0.775063i \(0.717718\pi\)
\(348\) 0 0
\(349\) −4.15352e11 −1.49866 −0.749328 0.662198i \(-0.769624\pi\)
−0.749328 + 0.662198i \(0.769624\pi\)
\(350\) 0 0
\(351\) −1.67213e11 −0.588015
\(352\) 0 0
\(353\) −1.00300e11 −0.343806 −0.171903 0.985114i \(-0.554992\pi\)
−0.171903 + 0.985114i \(0.554992\pi\)
\(354\) 0 0
\(355\) −4.12946e10 −0.137996
\(356\) 0 0
\(357\) 1.32995e12 4.33338
\(358\) 0 0
\(359\) 3.35856e11 1.06716 0.533578 0.845751i \(-0.320847\pi\)
0.533578 + 0.845751i \(0.320847\pi\)
\(360\) 0 0
\(361\) −3.11487e11 −0.965289
\(362\) 0 0
\(363\) 3.53750e11 1.06934
\(364\) 0 0
\(365\) 3.77774e11 1.11407
\(366\) 0 0
\(367\) −3.43252e11 −0.987679 −0.493839 0.869553i \(-0.664407\pi\)
−0.493839 + 0.869553i \(0.664407\pi\)
\(368\) 0 0
\(369\) −2.94235e11 −0.826182
\(370\) 0 0
\(371\) −2.02297e11 −0.554379
\(372\) 0 0
\(373\) −3.20544e11 −0.857428 −0.428714 0.903440i \(-0.641033\pi\)
−0.428714 + 0.903440i \(0.641033\pi\)
\(374\) 0 0
\(375\) 5.79167e11 1.51239
\(376\) 0 0
\(377\) 2.23309e10 0.0569339
\(378\) 0 0
\(379\) −5.59129e11 −1.39199 −0.695994 0.718047i \(-0.745036\pi\)
−0.695994 + 0.718047i \(0.745036\pi\)
\(380\) 0 0
\(381\) 1.59044e11 0.386683
\(382\) 0 0
\(383\) 1.14158e11 0.271089 0.135544 0.990771i \(-0.456722\pi\)
0.135544 + 0.990771i \(0.456722\pi\)
\(384\) 0 0
\(385\) −3.98448e11 −0.924270
\(386\) 0 0
\(387\) −1.65620e12 −3.75330
\(388\) 0 0
\(389\) −1.10883e11 −0.245522 −0.122761 0.992436i \(-0.539175\pi\)
−0.122761 + 0.992436i \(0.539175\pi\)
\(390\) 0 0
\(391\) −3.25847e11 −0.705048
\(392\) 0 0
\(393\) −1.42425e12 −3.01175
\(394\) 0 0
\(395\) 7.22242e11 1.49278
\(396\) 0 0
\(397\) 2.31687e11 0.468107 0.234053 0.972224i \(-0.424801\pi\)
0.234053 + 0.972224i \(0.424801\pi\)
\(398\) 0 0
\(399\) 2.20806e11 0.436147
\(400\) 0 0
\(401\) 5.44480e10 0.105156 0.0525778 0.998617i \(-0.483256\pi\)
0.0525778 + 0.998617i \(0.483256\pi\)
\(402\) 0 0
\(403\) 8.09089e10 0.152800
\(404\) 0 0
\(405\) 9.62857e11 1.77834
\(406\) 0 0
\(407\) −3.75732e11 −0.678740
\(408\) 0 0
\(409\) 2.35793e11 0.416654 0.208327 0.978059i \(-0.433198\pi\)
0.208327 + 0.978059i \(0.433198\pi\)
\(410\) 0 0
\(411\) −1.12005e12 −1.93619
\(412\) 0 0
\(413\) −1.36384e12 −2.30668
\(414\) 0 0
\(415\) −8.50348e11 −1.40728
\(416\) 0 0
\(417\) −2.16235e12 −3.50197
\(418\) 0 0
\(419\) −5.43639e11 −0.861682 −0.430841 0.902428i \(-0.641783\pi\)
−0.430841 + 0.902428i \(0.641783\pi\)
\(420\) 0 0
\(421\) 2.70622e11 0.419849 0.209925 0.977718i \(-0.432678\pi\)
0.209925 + 0.977718i \(0.432678\pi\)
\(422\) 0 0
\(423\) 5.61467e11 0.852693
\(424\) 0 0
\(425\) −2.97506e11 −0.442329
\(426\) 0 0
\(427\) 1.58884e11 0.231289
\(428\) 0 0
\(429\) 2.19994e11 0.313583
\(430\) 0 0
\(431\) 1.07553e12 1.50132 0.750662 0.660687i \(-0.229735\pi\)
0.750662 + 0.660687i \(0.229735\pi\)
\(432\) 0 0
\(433\) −2.63085e11 −0.359667 −0.179833 0.983697i \(-0.557556\pi\)
−0.179833 + 0.983697i \(0.557556\pi\)
\(434\) 0 0
\(435\) −3.04647e11 −0.407939
\(436\) 0 0
\(437\) −5.40992e10 −0.0709618
\(438\) 0 0
\(439\) 8.20045e11 1.05377 0.526887 0.849935i \(-0.323359\pi\)
0.526887 + 0.849935i \(0.323359\pi\)
\(440\) 0 0
\(441\) 1.24973e12 1.57341
\(442\) 0 0
\(443\) 1.77977e10 0.0219557 0.0109779 0.999940i \(-0.496506\pi\)
0.0109779 + 0.999940i \(0.496506\pi\)
\(444\) 0 0
\(445\) 5.68832e11 0.687645
\(446\) 0 0
\(447\) 1.72487e12 2.04349
\(448\) 0 0
\(449\) 1.15873e12 1.34547 0.672734 0.739885i \(-0.265120\pi\)
0.672734 + 0.739885i \(0.265120\pi\)
\(450\) 0 0
\(451\) 2.10145e11 0.239180
\(452\) 0 0
\(453\) 1.00458e12 1.12083
\(454\) 0 0
\(455\) 3.70066e11 0.404789
\(456\) 0 0
\(457\) −9.23583e11 −0.990497 −0.495249 0.868751i \(-0.664923\pi\)
−0.495249 + 0.868751i \(0.664923\pi\)
\(458\) 0 0
\(459\) 3.73204e12 3.92455
\(460\) 0 0
\(461\) 6.32718e11 0.652464 0.326232 0.945290i \(-0.394221\pi\)
0.326232 + 0.945290i \(0.394221\pi\)
\(462\) 0 0
\(463\) −2.14607e11 −0.217035 −0.108517 0.994095i \(-0.534610\pi\)
−0.108517 + 0.994095i \(0.534610\pi\)
\(464\) 0 0
\(465\) −1.10379e12 −1.09483
\(466\) 0 0
\(467\) −5.49922e11 −0.535026 −0.267513 0.963554i \(-0.586202\pi\)
−0.267513 + 0.963554i \(0.586202\pi\)
\(468\) 0 0
\(469\) 6.02106e11 0.574639
\(470\) 0 0
\(471\) −2.35428e12 −2.20427
\(472\) 0 0
\(473\) 1.18287e12 1.08658
\(474\) 0 0
\(475\) −4.93939e10 −0.0445197
\(476\) 0 0
\(477\) −1.04572e12 −0.924875
\(478\) 0 0
\(479\) −1.60843e12 −1.39602 −0.698010 0.716088i \(-0.745931\pi\)
−0.698010 + 0.716088i \(0.745931\pi\)
\(480\) 0 0
\(481\) 3.48968e11 0.297258
\(482\) 0 0
\(483\) −1.06647e12 −0.891635
\(484\) 0 0
\(485\) 1.55389e11 0.127521
\(486\) 0 0
\(487\) 1.40030e12 1.12808 0.564040 0.825747i \(-0.309246\pi\)
0.564040 + 0.825747i \(0.309246\pi\)
\(488\) 0 0
\(489\) 9.32141e11 0.737211
\(490\) 0 0
\(491\) −1.31274e12 −1.01932 −0.509661 0.860376i \(-0.670229\pi\)
−0.509661 + 0.860376i \(0.670229\pi\)
\(492\) 0 0
\(493\) −4.98406e11 −0.379990
\(494\) 0 0
\(495\) −2.05967e12 −1.54197
\(496\) 0 0
\(497\) −2.21113e11 −0.162559
\(498\) 0 0
\(499\) 3.50247e11 0.252885 0.126442 0.991974i \(-0.459644\pi\)
0.126442 + 0.991974i \(0.459644\pi\)
\(500\) 0 0
\(501\) −1.12366e12 −0.796833
\(502\) 0 0
\(503\) −2.62962e12 −1.83163 −0.915815 0.401601i \(-0.868454\pi\)
−0.915815 + 0.401601i \(0.868454\pi\)
\(504\) 0 0
\(505\) −1.05181e12 −0.719661
\(506\) 0 0
\(507\) −2.04323e11 −0.137335
\(508\) 0 0
\(509\) 4.07673e11 0.269204 0.134602 0.990900i \(-0.457024\pi\)
0.134602 + 0.990900i \(0.457024\pi\)
\(510\) 0 0
\(511\) 2.02280e12 1.31238
\(512\) 0 0
\(513\) 6.19617e11 0.394998
\(514\) 0 0
\(515\) 2.69531e11 0.168840
\(516\) 0 0
\(517\) −4.01005e11 −0.246855
\(518\) 0 0
\(519\) 4.24025e12 2.56530
\(520\) 0 0
\(521\) −1.90638e12 −1.13355 −0.566773 0.823874i \(-0.691808\pi\)
−0.566773 + 0.823874i \(0.691808\pi\)
\(522\) 0 0
\(523\) 6.84980e11 0.400332 0.200166 0.979762i \(-0.435852\pi\)
0.200166 + 0.979762i \(0.435852\pi\)
\(524\) 0 0
\(525\) −9.73713e11 −0.559389
\(526\) 0 0
\(527\) −1.80581e12 −1.01982
\(528\) 0 0
\(529\) −1.53986e12 −0.854930
\(530\) 0 0
\(531\) −7.04999e12 −3.84825
\(532\) 0 0
\(533\) −1.95177e11 −0.104750
\(534\) 0 0
\(535\) −1.92400e12 −1.01534
\(536\) 0 0
\(537\) 3.08407e12 1.60044
\(538\) 0 0
\(539\) −8.92568e11 −0.455503
\(540\) 0 0
\(541\) −1.99962e12 −1.00360 −0.501798 0.864985i \(-0.667328\pi\)
−0.501798 + 0.864985i \(0.667328\pi\)
\(542\) 0 0
\(543\) 6.10538e12 3.01379
\(544\) 0 0
\(545\) −1.62529e12 −0.789128
\(546\) 0 0
\(547\) −2.19967e12 −1.05055 −0.525273 0.850933i \(-0.676037\pi\)
−0.525273 + 0.850933i \(0.676037\pi\)
\(548\) 0 0
\(549\) 8.21310e11 0.385861
\(550\) 0 0
\(551\) −8.27485e10 −0.0382453
\(552\) 0 0
\(553\) 3.86726e12 1.75849
\(554\) 0 0
\(555\) −4.76076e12 −2.12989
\(556\) 0 0
\(557\) 2.10846e12 0.928148 0.464074 0.885797i \(-0.346387\pi\)
0.464074 + 0.885797i \(0.346387\pi\)
\(558\) 0 0
\(559\) −1.09862e12 −0.475875
\(560\) 0 0
\(561\) −4.91005e12 −2.09292
\(562\) 0 0
\(563\) −2.49136e12 −1.04508 −0.522540 0.852615i \(-0.675015\pi\)
−0.522540 + 0.852615i \(0.675015\pi\)
\(564\) 0 0
\(565\) −1.82769e12 −0.754542
\(566\) 0 0
\(567\) 5.15564e12 2.09488
\(568\) 0 0
\(569\) 6.91496e11 0.276557 0.138278 0.990393i \(-0.455843\pi\)
0.138278 + 0.990393i \(0.455843\pi\)
\(570\) 0 0
\(571\) 2.70238e11 0.106386 0.0531930 0.998584i \(-0.483060\pi\)
0.0531930 + 0.998584i \(0.483060\pi\)
\(572\) 0 0
\(573\) −2.17341e12 −0.842259
\(574\) 0 0
\(575\) 2.38568e11 0.0910136
\(576\) 0 0
\(577\) −3.66686e12 −1.37722 −0.688610 0.725132i \(-0.741779\pi\)
−0.688610 + 0.725132i \(0.741779\pi\)
\(578\) 0 0
\(579\) 5.84891e12 2.16283
\(580\) 0 0
\(581\) −4.55321e12 −1.65777
\(582\) 0 0
\(583\) 7.46864e11 0.267752
\(584\) 0 0
\(585\) 1.91296e12 0.675313
\(586\) 0 0
\(587\) −1.16732e12 −0.405806 −0.202903 0.979199i \(-0.565038\pi\)
−0.202903 + 0.979199i \(0.565038\pi\)
\(588\) 0 0
\(589\) −2.99812e11 −0.102643
\(590\) 0 0
\(591\) 6.57085e11 0.221553
\(592\) 0 0
\(593\) 3.14463e12 1.04430 0.522148 0.852855i \(-0.325131\pi\)
0.522148 + 0.852855i \(0.325131\pi\)
\(594\) 0 0
\(595\) −8.25954e12 −2.70165
\(596\) 0 0
\(597\) 2.09594e12 0.675297
\(598\) 0 0
\(599\) −2.09251e12 −0.664120 −0.332060 0.943258i \(-0.607744\pi\)
−0.332060 + 0.943258i \(0.607744\pi\)
\(600\) 0 0
\(601\) 4.34608e12 1.35882 0.679410 0.733758i \(-0.262236\pi\)
0.679410 + 0.733758i \(0.262236\pi\)
\(602\) 0 0
\(603\) 3.11243e12 0.958675
\(604\) 0 0
\(605\) −2.19694e12 −0.666683
\(606\) 0 0
\(607\) −1.73690e12 −0.519310 −0.259655 0.965701i \(-0.583609\pi\)
−0.259655 + 0.965701i \(0.583609\pi\)
\(608\) 0 0
\(609\) −1.63124e12 −0.480552
\(610\) 0 0
\(611\) 3.72441e11 0.108112
\(612\) 0 0
\(613\) 4.02259e12 1.15062 0.575312 0.817934i \(-0.304881\pi\)
0.575312 + 0.817934i \(0.304881\pi\)
\(614\) 0 0
\(615\) 2.66267e12 0.750551
\(616\) 0 0
\(617\) −5.03083e12 −1.39752 −0.698758 0.715358i \(-0.746263\pi\)
−0.698758 + 0.715358i \(0.746263\pi\)
\(618\) 0 0
\(619\) 4.77626e12 1.30761 0.653807 0.756661i \(-0.273171\pi\)
0.653807 + 0.756661i \(0.273171\pi\)
\(620\) 0 0
\(621\) −2.99269e12 −0.807513
\(622\) 0 0
\(623\) 3.04582e12 0.810044
\(624\) 0 0
\(625\) −4.50842e12 −1.18186
\(626\) 0 0
\(627\) −8.15198e11 −0.210649
\(628\) 0 0
\(629\) −7.78864e12 −1.98396
\(630\) 0 0
\(631\) 3.04417e12 0.764428 0.382214 0.924074i \(-0.375162\pi\)
0.382214 + 0.924074i \(0.375162\pi\)
\(632\) 0 0
\(633\) 9.17549e12 2.27150
\(634\) 0 0
\(635\) −9.87734e11 −0.241078
\(636\) 0 0
\(637\) 8.28989e11 0.199490
\(638\) 0 0
\(639\) −1.14298e12 −0.271198
\(640\) 0 0
\(641\) −1.53417e12 −0.358932 −0.179466 0.983764i \(-0.557437\pi\)
−0.179466 + 0.983764i \(0.557437\pi\)
\(642\) 0 0
\(643\) −3.17074e12 −0.731494 −0.365747 0.930714i \(-0.619186\pi\)
−0.365747 + 0.930714i \(0.619186\pi\)
\(644\) 0 0
\(645\) 1.49878e13 3.40971
\(646\) 0 0
\(647\) 6.75140e12 1.51469 0.757347 0.653013i \(-0.226495\pi\)
0.757347 + 0.653013i \(0.226495\pi\)
\(648\) 0 0
\(649\) 5.03517e12 1.11407
\(650\) 0 0
\(651\) −5.91027e12 −1.28971
\(652\) 0 0
\(653\) −3.96591e12 −0.853559 −0.426780 0.904356i \(-0.640352\pi\)
−0.426780 + 0.904356i \(0.640352\pi\)
\(654\) 0 0
\(655\) 8.84520e12 1.87768
\(656\) 0 0
\(657\) 1.04563e13 2.18945
\(658\) 0 0
\(659\) 1.08932e12 0.224993 0.112497 0.993652i \(-0.464115\pi\)
0.112497 + 0.993652i \(0.464115\pi\)
\(660\) 0 0
\(661\) −9.01775e12 −1.83735 −0.918674 0.395017i \(-0.870739\pi\)
−0.918674 + 0.395017i \(0.870739\pi\)
\(662\) 0 0
\(663\) 4.56030e12 0.916606
\(664\) 0 0
\(665\) −1.37130e12 −0.271916
\(666\) 0 0
\(667\) 3.99667e11 0.0781865
\(668\) 0 0
\(669\) 1.55894e13 3.00893
\(670\) 0 0
\(671\) −5.86587e11 −0.111707
\(672\) 0 0
\(673\) 6.77812e12 1.27362 0.636812 0.771019i \(-0.280253\pi\)
0.636812 + 0.771019i \(0.280253\pi\)
\(674\) 0 0
\(675\) −2.73240e12 −0.506613
\(676\) 0 0
\(677\) −9.77011e12 −1.78752 −0.893759 0.448548i \(-0.851941\pi\)
−0.893759 + 0.448548i \(0.851941\pi\)
\(678\) 0 0
\(679\) 8.32035e11 0.150220
\(680\) 0 0
\(681\) 1.00325e13 1.78750
\(682\) 0 0
\(683\) −7.99180e12 −1.40524 −0.702621 0.711564i \(-0.747987\pi\)
−0.702621 + 0.711564i \(0.747987\pi\)
\(684\) 0 0
\(685\) 6.95597e12 1.20712
\(686\) 0 0
\(687\) −1.15626e13 −1.98040
\(688\) 0 0
\(689\) −6.93664e11 −0.117264
\(690\) 0 0
\(691\) 7.13265e12 1.19014 0.595072 0.803672i \(-0.297123\pi\)
0.595072 + 0.803672i \(0.297123\pi\)
\(692\) 0 0
\(693\) −1.10286e13 −1.81643
\(694\) 0 0
\(695\) 1.34291e13 2.18331
\(696\) 0 0
\(697\) 4.35616e12 0.699127
\(698\) 0 0
\(699\) 7.06456e12 1.11928
\(700\) 0 0
\(701\) 1.19764e13 1.87325 0.936626 0.350330i \(-0.113931\pi\)
0.936626 + 0.350330i \(0.113931\pi\)
\(702\) 0 0
\(703\) −1.29312e12 −0.199683
\(704\) 0 0
\(705\) −5.08099e12 −0.774635
\(706\) 0 0
\(707\) −5.63196e12 −0.847759
\(708\) 0 0
\(709\) −6.13692e12 −0.912099 −0.456050 0.889954i \(-0.650736\pi\)
−0.456050 + 0.889954i \(0.650736\pi\)
\(710\) 0 0
\(711\) 1.99908e13 2.93371
\(712\) 0 0
\(713\) 1.44806e12 0.209838
\(714\) 0 0
\(715\) −1.36626e12 −0.195504
\(716\) 0 0
\(717\) 1.98861e12 0.281004
\(718\) 0 0
\(719\) −4.74258e12 −0.661812 −0.330906 0.943664i \(-0.607354\pi\)
−0.330906 + 0.943664i \(0.607354\pi\)
\(720\) 0 0
\(721\) 1.44321e12 0.198893
\(722\) 0 0
\(723\) 1.08475e13 1.47641
\(724\) 0 0
\(725\) 3.64905e11 0.0490523
\(726\) 0 0
\(727\) 9.67795e12 1.28493 0.642464 0.766316i \(-0.277912\pi\)
0.642464 + 0.766316i \(0.277912\pi\)
\(728\) 0 0
\(729\) −2.21347e12 −0.290268
\(730\) 0 0
\(731\) 2.45201e13 3.17610
\(732\) 0 0
\(733\) 1.50341e13 1.92357 0.961787 0.273798i \(-0.0882801\pi\)
0.961787 + 0.273798i \(0.0882801\pi\)
\(734\) 0 0
\(735\) −1.13094e13 −1.42937
\(736\) 0 0
\(737\) −2.22293e12 −0.277537
\(738\) 0 0
\(739\) 2.14842e12 0.264983 0.132492 0.991184i \(-0.457702\pi\)
0.132492 + 0.991184i \(0.457702\pi\)
\(740\) 0 0
\(741\) 7.57131e11 0.0922548
\(742\) 0 0
\(743\) −5.22310e12 −0.628751 −0.314376 0.949299i \(-0.601795\pi\)
−0.314376 + 0.949299i \(0.601795\pi\)
\(744\) 0 0
\(745\) −1.07122e13 −1.27402
\(746\) 0 0
\(747\) −2.35366e13 −2.76567
\(748\) 0 0
\(749\) −1.03021e13 −1.19607
\(750\) 0 0
\(751\) −1.65523e13 −1.89880 −0.949399 0.314071i \(-0.898307\pi\)
−0.949399 + 0.314071i \(0.898307\pi\)
\(752\) 0 0
\(753\) 8.72786e12 0.989305
\(754\) 0 0
\(755\) −6.23886e12 −0.698786
\(756\) 0 0
\(757\) 1.59809e13 1.76877 0.884384 0.466761i \(-0.154579\pi\)
0.884384 + 0.466761i \(0.154579\pi\)
\(758\) 0 0
\(759\) 3.93733e12 0.430639
\(760\) 0 0
\(761\) 3.31655e12 0.358473 0.179236 0.983806i \(-0.442637\pi\)
0.179236 + 0.983806i \(0.442637\pi\)
\(762\) 0 0
\(763\) −8.70266e12 −0.929591
\(764\) 0 0
\(765\) −4.26955e13 −4.50719
\(766\) 0 0
\(767\) −4.67651e12 −0.487914
\(768\) 0 0
\(769\) −2.26842e12 −0.233913 −0.116956 0.993137i \(-0.537314\pi\)
−0.116956 + 0.993137i \(0.537314\pi\)
\(770\) 0 0
\(771\) −1.54583e13 −1.57549
\(772\) 0 0
\(773\) 1.45998e13 1.47075 0.735375 0.677661i \(-0.237006\pi\)
0.735375 + 0.677661i \(0.237006\pi\)
\(774\) 0 0
\(775\) 1.32212e12 0.131647
\(776\) 0 0
\(777\) −2.54916e13 −2.50901
\(778\) 0 0
\(779\) 7.23237e11 0.0703659
\(780\) 0 0
\(781\) 8.16330e11 0.0785120
\(782\) 0 0
\(783\) −4.57752e12 −0.435214
\(784\) 0 0
\(785\) 1.46211e13 1.37425
\(786\) 0 0
\(787\) 1.26923e13 1.17938 0.589692 0.807628i \(-0.299249\pi\)
0.589692 + 0.807628i \(0.299249\pi\)
\(788\) 0 0
\(789\) −4.47249e12 −0.410869
\(790\) 0 0
\(791\) −9.78638e12 −0.888849
\(792\) 0 0
\(793\) 5.44804e11 0.0489228
\(794\) 0 0
\(795\) 9.46324e12 0.840210
\(796\) 0 0
\(797\) −1.22392e13 −1.07446 −0.537230 0.843436i \(-0.680529\pi\)
−0.537230 + 0.843436i \(0.680529\pi\)
\(798\) 0 0
\(799\) −8.31254e12 −0.721561
\(800\) 0 0
\(801\) 1.57446e13 1.35140
\(802\) 0 0
\(803\) −7.46801e12 −0.633847
\(804\) 0 0
\(805\) 6.62325e12 0.555891
\(806\) 0 0
\(807\) 1.31351e13 1.09019
\(808\) 0 0
\(809\) −4.89425e12 −0.401714 −0.200857 0.979621i \(-0.564373\pi\)
−0.200857 + 0.979621i \(0.564373\pi\)
\(810\) 0 0
\(811\) 3.11178e12 0.252590 0.126295 0.991993i \(-0.459691\pi\)
0.126295 + 0.991993i \(0.459691\pi\)
\(812\) 0 0
\(813\) −1.26238e13 −1.01341
\(814\) 0 0
\(815\) −5.78900e12 −0.459615
\(816\) 0 0
\(817\) 4.07098e12 0.319669
\(818\) 0 0
\(819\) 1.02430e13 0.795517
\(820\) 0 0
\(821\) 3.48502e12 0.267708 0.133854 0.991001i \(-0.457265\pi\)
0.133854 + 0.991001i \(0.457265\pi\)
\(822\) 0 0
\(823\) 4.38954e12 0.333518 0.166759 0.985998i \(-0.446670\pi\)
0.166759 + 0.985998i \(0.446670\pi\)
\(824\) 0 0
\(825\) 3.59487e12 0.270172
\(826\) 0 0
\(827\) 1.21660e13 0.904424 0.452212 0.891910i \(-0.350635\pi\)
0.452212 + 0.891910i \(0.350635\pi\)
\(828\) 0 0
\(829\) −1.35524e12 −0.0996600 −0.0498300 0.998758i \(-0.515868\pi\)
−0.0498300 + 0.998758i \(0.515868\pi\)
\(830\) 0 0
\(831\) 3.97453e13 2.89122
\(832\) 0 0
\(833\) −1.85023e13 −1.33144
\(834\) 0 0
\(835\) 6.97845e12 0.496786
\(836\) 0 0
\(837\) −1.65852e13 −1.16803
\(838\) 0 0
\(839\) 1.12215e13 0.781847 0.390924 0.920423i \(-0.372156\pi\)
0.390924 + 0.920423i \(0.372156\pi\)
\(840\) 0 0
\(841\) −1.38958e13 −0.957861
\(842\) 0 0
\(843\) −7.62799e12 −0.520219
\(844\) 0 0
\(845\) 1.26894e12 0.0856218
\(846\) 0 0
\(847\) −1.17636e13 −0.785351
\(848\) 0 0
\(849\) 1.05599e13 0.697551
\(850\) 0 0
\(851\) 6.24564e12 0.408220
\(852\) 0 0
\(853\) 7.91778e11 0.0512074 0.0256037 0.999672i \(-0.491849\pi\)
0.0256037 + 0.999672i \(0.491849\pi\)
\(854\) 0 0
\(855\) −7.08858e12 −0.453640
\(856\) 0 0
\(857\) 1.76782e13 1.11950 0.559751 0.828661i \(-0.310897\pi\)
0.559751 + 0.828661i \(0.310897\pi\)
\(858\) 0 0
\(859\) −4.03561e12 −0.252895 −0.126448 0.991973i \(-0.540358\pi\)
−0.126448 + 0.991973i \(0.540358\pi\)
\(860\) 0 0
\(861\) 1.42573e13 0.884147
\(862\) 0 0
\(863\) 7.74540e11 0.0475330 0.0237665 0.999718i \(-0.492434\pi\)
0.0237665 + 0.999718i \(0.492434\pi\)
\(864\) 0 0
\(865\) −2.63338e13 −1.59934
\(866\) 0 0
\(867\) −7.20780e13 −4.33228
\(868\) 0 0
\(869\) −1.42776e13 −0.849311
\(870\) 0 0
\(871\) 2.06459e12 0.121549
\(872\) 0 0
\(873\) 4.30099e12 0.250613
\(874\) 0 0
\(875\) −1.92596e13 −1.11073
\(876\) 0 0
\(877\) −2.57530e13 −1.47004 −0.735020 0.678046i \(-0.762827\pi\)
−0.735020 + 0.678046i \(0.762827\pi\)
\(878\) 0 0
\(879\) −2.43839e13 −1.37770
\(880\) 0 0
\(881\) 1.93336e12 0.108124 0.0540620 0.998538i \(-0.482783\pi\)
0.0540620 + 0.998538i \(0.482783\pi\)
\(882\) 0 0
\(883\) −2.94334e13 −1.62936 −0.814681 0.579910i \(-0.803088\pi\)
−0.814681 + 0.579910i \(0.803088\pi\)
\(884\) 0 0
\(885\) 6.37988e13 3.49597
\(886\) 0 0
\(887\) −4.07138e12 −0.220844 −0.110422 0.993885i \(-0.535220\pi\)
−0.110422 + 0.993885i \(0.535220\pi\)
\(888\) 0 0
\(889\) −5.28884e12 −0.283990
\(890\) 0 0
\(891\) −1.90342e13 −1.01178
\(892\) 0 0
\(893\) −1.38010e12 −0.0726238
\(894\) 0 0
\(895\) −1.91534e13 −0.997799
\(896\) 0 0
\(897\) −3.65687e12 −0.188601
\(898\) 0 0
\(899\) 2.21491e12 0.113094
\(900\) 0 0
\(901\) 1.54819e13 0.782643
\(902\) 0 0
\(903\) 8.02523e13 4.01664
\(904\) 0 0
\(905\) −3.79170e13 −1.87895
\(906\) 0 0
\(907\) 5.11710e12 0.251068 0.125534 0.992089i \(-0.459936\pi\)
0.125534 + 0.992089i \(0.459936\pi\)
\(908\) 0 0
\(909\) −2.91130e13 −1.41432
\(910\) 0 0
\(911\) 1.65675e13 0.796937 0.398468 0.917182i \(-0.369542\pi\)
0.398468 + 0.917182i \(0.369542\pi\)
\(912\) 0 0
\(913\) 1.68101e13 0.800665
\(914\) 0 0
\(915\) −7.43243e12 −0.350539
\(916\) 0 0
\(917\) 4.73618e13 2.21191
\(918\) 0 0
\(919\) −2.46210e13 −1.13864 −0.569319 0.822117i \(-0.692793\pi\)
−0.569319 + 0.822117i \(0.692793\pi\)
\(920\) 0 0
\(921\) −4.07451e13 −1.86598
\(922\) 0 0
\(923\) −7.58182e11 −0.0343848
\(924\) 0 0
\(925\) 5.70242e12 0.256107
\(926\) 0 0
\(927\) 7.46028e12 0.331815
\(928\) 0 0
\(929\) 2.10967e13 0.929272 0.464636 0.885502i \(-0.346185\pi\)
0.464636 + 0.885502i \(0.346185\pi\)
\(930\) 0 0
\(931\) −3.07186e12 −0.134007
\(932\) 0 0
\(933\) 4.51616e13 1.95120
\(934\) 0 0
\(935\) 3.04935e13 1.30484
\(936\) 0 0
\(937\) −3.29230e13 −1.39531 −0.697656 0.716433i \(-0.745774\pi\)
−0.697656 + 0.716433i \(0.745774\pi\)
\(938\) 0 0
\(939\) 1.52523e13 0.640238
\(940\) 0 0
\(941\) 3.85496e13 1.60275 0.801376 0.598161i \(-0.204102\pi\)
0.801376 + 0.598161i \(0.204102\pi\)
\(942\) 0 0
\(943\) −3.49316e12 −0.143852
\(944\) 0 0
\(945\) −7.58583e13 −3.09428
\(946\) 0 0
\(947\) −1.22394e13 −0.494521 −0.247261 0.968949i \(-0.579530\pi\)
−0.247261 + 0.968949i \(0.579530\pi\)
\(948\) 0 0
\(949\) 6.93605e12 0.277597
\(950\) 0 0
\(951\) −1.19015e13 −0.471836
\(952\) 0 0
\(953\) 3.26425e13 1.28194 0.640968 0.767568i \(-0.278533\pi\)
0.640968 + 0.767568i \(0.278533\pi\)
\(954\) 0 0
\(955\) 1.34978e13 0.525108
\(956\) 0 0
\(957\) 6.02241e12 0.232095
\(958\) 0 0
\(959\) 3.72459e13 1.42198
\(960\) 0 0
\(961\) −1.84146e13 −0.696478
\(962\) 0 0
\(963\) −5.32540e13 −1.99542
\(964\) 0 0
\(965\) −3.63243e13 −1.34842
\(966\) 0 0
\(967\) 1.28552e13 0.472780 0.236390 0.971658i \(-0.424036\pi\)
0.236390 + 0.971658i \(0.424036\pi\)
\(968\) 0 0
\(969\) −1.68984e13 −0.615729
\(970\) 0 0
\(971\) 4.30846e13 1.55538 0.777689 0.628650i \(-0.216392\pi\)
0.777689 + 0.628650i \(0.216392\pi\)
\(972\) 0 0
\(973\) 7.19064e13 2.57193
\(974\) 0 0
\(975\) −3.33880e12 −0.118323
\(976\) 0 0
\(977\) 3.58870e13 1.26012 0.630059 0.776547i \(-0.283031\pi\)
0.630059 + 0.776547i \(0.283031\pi\)
\(978\) 0 0
\(979\) −1.12449e13 −0.391233
\(980\) 0 0
\(981\) −4.49861e13 −1.55084
\(982\) 0 0
\(983\) −4.49637e12 −0.153593 −0.0767964 0.997047i \(-0.524469\pi\)
−0.0767964 + 0.997047i \(0.524469\pi\)
\(984\) 0 0
\(985\) −4.08078e12 −0.138128
\(986\) 0 0
\(987\) −2.72062e13 −0.912518
\(988\) 0 0
\(989\) −1.96624e13 −0.653513
\(990\) 0 0
\(991\) −1.56221e13 −0.514526 −0.257263 0.966341i \(-0.582821\pi\)
−0.257263 + 0.966341i \(0.582821\pi\)
\(992\) 0 0
\(993\) −2.24488e13 −0.732693
\(994\) 0 0
\(995\) −1.30167e13 −0.421015
\(996\) 0 0
\(997\) −3.76783e13 −1.20771 −0.603856 0.797094i \(-0.706370\pi\)
−0.603856 + 0.797094i \(0.706370\pi\)
\(998\) 0 0
\(999\) −7.15335e13 −2.27230
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.h.1.1 5
4.3 odd 2 13.10.a.b.1.4 5
12.11 even 2 117.10.a.e.1.2 5
20.19 odd 2 325.10.a.b.1.2 5
52.51 odd 2 169.10.a.b.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.4 5 4.3 odd 2
117.10.a.e.1.2 5 12.11 even 2
169.10.a.b.1.2 5 52.51 odd 2
208.10.a.h.1.1 5 1.1 even 1 trivial
325.10.a.b.1.2 5 20.19 odd 2